OpenModelica Users Guide

Version 2012-03-29
for OpenModelica 1.8.1

March 2012

Peter Fritzson
Adrian Pop, Adeel Asghar, Willi Braun, Jens Frenkel,
Lennart Ochel, Martin Sjélund, Per Ostlund, Peter Aronsson,

Mikael Axin, Bernhard Bachmann, Vasile Baluta, Robert Braun, David Broman,
Stefan Brus, Francesco Casella, Filippo Donida, Anand Ganeson, Mahder
Gebremedhin, Pavel Grozman, Daniel Hedberg, Michael Hanke, Alf Isaksson, Kim
Jansson, Daniel Kanth, Tommi Karhela, Juha Kortelainen, Abhinn Kothari, Petter
Krus, Alexey Lebedev, Oliver Lenord, Ariel Liebman, Rickard Lindberg, Hakan
Lundvall, Abhi Raj Metkar, Eric Meyers, Tuomas Miettinen, Afshin Moghadam,
Maroun Nemer, Hannu Niemisto, Peter Nordin, Kristoffer Norling, Karl Pettersson,
Pavol Privitzer, Jhansi Reddy, Reino Ruusu, Per Sahlin,Wladimir Schamai,
Gerhard Schmitz, Anton Sodja, Ingo Staack, Kristian Stavaker, Sonia Tariq,
Mohsen Torabzadeh-Tari, Parham Vasaiely, Niklas Worschech, Robert Wotzlaw,
Bjorn Zackrisson,

Azam Zia

Copyright by:

Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c/o Linkopings universitet,
Department of Computer and Information Science, SE-58183 Linkdping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM
CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR THE GPL
VERSION 3, ACCORDING TO RECIPIENTS CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-PL)
are obtained from OSMC, either from the above address, from the URLs: http://www.openmodelica.org
or http://www.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution. GNU
version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: http://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, http://www.Modelica.org
MathModelica® is a registered trademark of MathCore Engineering AB, www.mathcore.com

Mathematica® is a registered trademark of Wolfram Research Inc, www.wolfram.com

http://www.openmodelica.org/

Table of Contents

TaDIE OF CONENTS......eieet ettt bttt b e et b e b b e e et bt s b e b e bt e beebe st et ebeebeneas 3
Preface 9
(O 7= o) £=T /A V0 oo 1110« o] o IS USPR 11
1.1 SYSEEM OVEIVIBW ...ttt sttt te et ae s teesa e et e s aeese e e e testeeseesaestesteeneeeesreaneenes 12
1.2 Interactive Session With EXAMPIES.........ccoeieiiiieieic et 13
1.2.1 Starting the INteractive SESSIONcccvcveiieiiiiciere e ne e 13
1.2.2 Using Compiler Debug Trace Flags in Interactive Mode.........cccccoovvveveveinsieecece e, 14
1.2.3 Trying the BUbblesort FUNCLION.........c.ccoiiiiieieiecc et 17
1.2.4 Trying the system and cd COMMANS...........cccveiieiierieiieiese e 17
1.2.5 Modelica Library and DCMOotor MOdElc.ccooveiiiiieiiiesecece e 18
126 The Val() TUNCHION ..ot sreene e 21
1.2.7 BouncingBall and SWitCh MOTEIScccccveiieiiiiiiicece e 21
1.2.8 Clear Al MOUEIS ..ottt 23
1.2.9 VanDerPol Model and Parametric PIOtccoooiiiiiiiniinineeee e 23
1.2.10 Using Japanese or Chinese CharaCtersccoveieiieiieienese et sie e 24
1.2.11 Scripting with For-Loops, While-Loops, and If-Statementscccccveveevevviiveieieseenan, 25
1.2.12 Variables, Functions, and Types of VariablesS..........c..ccoeviviiiiiiii e, 26
1.2.13 Getting Information about Error CAUSEcccevveiverieeieieie e se e 27
1.2.14 Alternative Simulation OULPUL FOIMALS..........cccoeiviiieiieieie e 27
1.2.15 Using EXternal FUNCLIONSc.coiiiiiieieic ittt 27
1.2.16 Using Parallel Simulation via OpenMP Multi-Core SUPPOrt........cccceveveveiesiieiere e, 27
1.2.17 Loading Specific Library VErsioncccccovvieiiieiicieicse et 28
1.2.18 Calling the Model Query and Manipulation APL...........cccooviiveiiereie e, 28
1.2.19 QUIt OPENIMOTEIICAveevveiicieciiee e sae e e s aesreene e 29
1.2.20 Dump XML RePreSeNtationccceciveieiuerieiieieiie e eeesiese e e e e sae e e eesae e snee e seesreenens 30
1.2.21 Dump Matlab RepreSENtation.........cccviieieiiiieiese e 30
1.3 Summary of Commands for the Interactive Session Handlercccocvevevevvieeiesesesenn 31
1.4 RETEIENCES ...ttt bbb bbb bt e ne bbb n et 32
Chapter 2 OMEdit — The OpenModelica Connection Editor..........cc.coeviiiiiiiiiineneeeeee, 33
2.1 SEArtiNg OMEGIL........ooeeeecce ettt re e e e e sreeneenes 33
2.1.1 MICrOSOFt WINTOWSviiiiieiecieee ettt bbb 33
0 O I 1 11U SRS 34
2.1.3 MBC OS X ittt bbbt R e Rt Rt R R e Rt Re e R e nReeRe e e renreeneas 34
2.2 Introductory Modeling in OMEGIL...........cccoiiiiiiieiese e 35
2.2.1 Creating a NEW File . ..cooiiiiiccee et eneas 35
2.2.2 Adding Component MOGEIS........ccoieiiiieieie et sra s 36
2.2.3 MaKiNGg CONNECLIONS......cvciieiiiiieieiie e eie et e ste e e e s te e e tesre e e e testeaneenaentesreenens 36
2.2.4 SIMUIAtING the MOEIcviiiiieee e sre s 38
2.2.5 Plotting Variables from Simulated MOElSccccveveiiiiiieece e 39
2.3 How to Create User Defined Shapes — ICONScccoveiiiiiiiieie e 41
2.4 OMEGIE VIBWS ...ttt bttt b e bbbt sb b s e bt e b e b et eneebe st 43

241 MOUEIING VIBW ..ottt sttt et e sbeene e e e stesneeneas 43

2.4.2 PlOHING VIBW ..ottt sttt e s beeae e et e s teesa e aesteaneenaeneenreenens 43
2.4.3 Interactive SIMUIAtION VIBWc..cviiiiiiicie e 43
2.5 OMEdit WINAOWS/TADS ...ttt bbb 44
2.5.1 LIBrary WINGOWccvoiiiieicciccece ettt sttt et e te e e saennenneeneas 44
2.5.2 DESIGNEN WINUOWoiviieieicite ettt s te e stesra e s e testeeneesaennesreenens 45
2.5.3 Plot Variables WINAOW..........cccoiiiiiiiie e 46
2.5.4 MESSA0ES WINUOWccuiiiieieiticieeieste sttt te et e s te st e e stesseesa e besteaneenaeneesraanens 46
2.5.5 Documentation WINGOW ..ottt 46
2.5.6 Model BroWSEr WINUOWcc.ciiiiiiiiiiiieicsie ettt 47
2.6 DT o1 48
2.6.1 NEW MOUEI DII0Qccvvevieiiiiicieese ettt be e aesreeneas 48
2.6.2 SIMUIALION DIAI0J.......ciiieieiticieiese et re et esreare e e e nresreeneas 48
2.6.3 Model Properties DIal0g..........ccveveieiriieiesiesieeiee e ste e sie st ae e e aesaesreeneas 48
2.6.4 Model AriDULES DIalOg......ccvviieiiieiecee e 49
2.7 Interactive Simulation iN OMEGIE..........coooiiiiiiiii e 50
2.7.1 Invoking Interactive SIMUIALIONccveviiiiicicce e 50
2.7.2 Interactive SIMUIAtION VIBWc..cviiiiiiiiiie e 50
Chapter 3 2D Plotting and 3D ANIMALIONcccoiiiiicicic e 52
3.1 Enhanced Qt-based 2D Plot FUNCLIONAIILYcccoveiviiicieece e 52
3.2 ST T00] o] L= N o [SRS 53
3.2.1 Plot Functions and Their OPtiONSccueieiiiieeiiere e e e sae e s 57

K I Ao o] 14112 [P S RSSO 59
3.2.3 Plotting all variables of @ MOUELccooeiiiiiiiee e 60
3.2.4 Plotting DUring SIMUIALION..........c.oiiiiiiiccie e 61
3.25 Programmable Drawing 0f 2D GraphiCscccceiveiiiiieriiie st 61
3.2.6 Plotting Of Table Data..........cccvcieiieiiiicicc et sraeneas 62
3.3 Java-based PtPIOt 2D PIOLLINGcveveiiiiciee e 63
3.4 3D ANTMALION. ...ttt b e bbb b e st e b e sb e b et e bt e b e bt neebe e 64
3.4.1 Object Based ViISUAIIZAIONc.ccveieiriiiiiesie ettt eneas 64
3.4.2 BOUNCINGBAIL.......coiiiiiieiee ettt e e re e enes 65
3.4.3 Pendulum 3D EXQMPIE.....cc.ooiiieieiece ettt sttt sraeneas 67
3.5 RETEIENCES ...ttt bbbt b bbb bt n e bbb n et 70
Chapter 4 OMNotebook with DrModelica and DrControl............cccooeieiiiniiiniiceeee, 72
4.1 Interactive Notebooks with Literate Programmingccccceveviverieienesieeriesese e 72
411 Mathematica NOEDOOKSc.oiiiiiiiec e 72
.12 OMNOLEDOOKcitiiiieiiitieteete ettt bttt b bbb e b et eb et e e e eneebe e 72
4.2 DrModelica Tutoring System — an Application of OMNOtebooK............cccceveviiicicicinnnn, 73
4.3 DrControl Tutorial for Teaching Control THEOIYcccveveieiiiieecece e 79
4.3.1 FEEUDACK LOOP ...veiveeieeie ettt ettt naeneas 79
4.3.2 Mathematical Modeling with Characteristic EQUatioNs..........cccccovvvvveieveie e 82
4.4 OpenModelica Notebook COMMANScoveiiiieieiececeee e 88
BATL CRIIS .t bbbt et h bt bt a e bt b e e ene et e 88
A O 0 1o £ TR TP TU PR URURTTPRPRON 88
4.4.3 Selection Of TEXE OF CeIIS ..o 89
A4 FIE IMIBNU. ..ottt b bbbt b e b e b e bt e b e st e b e st eb et e b e s ebeebe e 89
A5 EGIEIMIBNU ..ttt bbb bbbttt b e b e e e e bt et e 90
A48 CRINIMENU ..ttt bbbt bbbt b e s b e et e b e sbe e e e e bt ebe e 90
44T FOIMAE IMIBNU ...ttt bttt bbb e e e b e b e e s e e e et e e bt e seenenbesreeneas 91

o T 1o (Y=Y o A 1Y/ =T o LU TR 91

i I VAV A 0o o LYV Y (=Y o 1 TSR 92

4400 HEIP IMIBNU ...ttt ettt e se et e ae s beene et e teeteaneeseestenreeneas 92
4411 AdAItIONA] FEATUIES.c.eiuiieiiiieiee ettt bttt be e 92
45 RETEIENCES ...ttt ettt b e et b e b bt n et sa e b n et s 93
Chapter 5 Interactive SIMUIALIONc.ooviiiiie e 95
5.1 (O] 0T a1V [T Lo T Tor= W 1] T Ut LSS 95
5.1.1 Interactively Changeable Parameterscccooeiveieiiiiiciieie e 95
5.1.2 OpenModelica Interactive Components deSCription..........cccecvevveveresieeiieieseeeeseesie s 96
5.1.3 CommuNICation INEEITACEcc.oviiiiiieiecieese e 96
5.1.4 Network configuration SEHINGS........ccveiieieiiiieeiere e 97
5.1.5 Interactive Simulation general ProCeUIe..........ccoveiiiieiieie e 99
5.1.6 Interactive SIMUIAtion EXAMPIEccviveieiiiecee e 99
5.2 OPC and OPC UA INEEITACESeveuieieiieiteieeie ettt 102
5.2.1 Introduction to the OPC INtErfaCeScoviiiiriiiiiie e 102
5.2.2 IMpPlemented FEALUIES..........civeieie ettt e re e e e re s e 102
5.2.3 TSE CHBNES ...ttt bbb bt b et ebe s 105
5.2.4 REFEIBNCES ...ttt ettt bbb bbbt be s 105
Chapter 6 Model Import and EXport With FMI 1.0.........cccoooviiiiiiiiccee e 107
6.1 Y I 1 o To] o TP 107
6.2 Y I oo PP 108
Chapter 7 OMOptim — Optimization with OpenModelica..........cccocviiiiiinniiie 110
7.1 INEFOAUCTION .ttt bbbt b ettt b e bt se b e 110
7.2 Preparing the MOUEL...........ooi et aeene e 110
N R - 10111 (-] £ TPV PR UPTURT PR 110
T.2.2 CONSEFAINES ...ttt bbbtttk s b b e e e b e b et et e e et e s b et e e ebe et s 110
A T O o 1=Tod (=T3RS 111
7.3 Set Problem iN OMOPLIM........coiee e sr e s re e e e e saesreeneas 111
5 R I 0 o ol o @ 1Y/ 1@ o] 1 PSSR 111
7.3.2 Create @ NBW PrOJECLuvciiiiiiieieie e ste et e e ste e et et e s e e st e s testa e e e sbesbeesee e e stesneeneeeenreaneens 111
7.3.3 080 MOEIS ...ttt bbb ettt sbe s 111
7.3.4 Create a new optimization problemccccviieiiii e 112
7.3.5 Select Optimized Variablesccoviveiiiiiicicc e 113
7.3.6 SEIECE ODJECHIVES ...ttt re et e ene e 114
7.3.7 Select and configure algorithm.........ccoveiiiiii e 114
T.3:8 LAUNCI .ttt bbb b et bbbt 115
7.3.9 Stopping OPtiMIZALION......cc.ciieieiecie et e st re e et esreeneens 115
7.4 RESUIES ...ttt bbbt bbb et b e e e e b e 115
7.4.1 Obtaining all Variable ValUESccooeieiiiieece s 115
7.5 Window Regions in OMOPLIM GUIccoiiiiiiieic et 116
Chapter 8 MDT - The OpenModelica Development Tooling Eclipse Plugin............ccccccevvevvnen. 117
8.1 INEFOAUCTION ..t bttt sb e et b e bt e et se 117
8.2 INSTAITALION. ...ttt bbb bt 117
8.3 LCC 1] T TS = T [SSSSRSSSSI 118
8.3.1 Configuring the OpenModelica COMPIIENccoieiieieieie e 118
8.3.2 Using the Modelica PErSPECLIVEccciiiiiiicieiece st 118
8.3.3 Selecting a Workspace FOIAEcccveieieiieieie et 118

8.3.4 Creating one or more Modelica ProjeCtScccceivieeieie i 118

8.3.5 Building and RUNNING @ PTOJECL........cccveiieieiicieie et 118
8.3.6 Switching to ANOther PErsPECLIVEc.ccveieiiiieieie st 119
8.3.7 Creating @ PACKAGEc.coveiviiiieieie ittt sttt s te et teane e et e reene e 120
8.3.8 CreatiNg @ ClaSS......ciuiiieieiiiieieiie sttt te et ta et et e sbeese et e s teareeneeaenreeneens 120
8.3.9 SYNLAX ChECKING.....civiiieieiiieeiee ettt be e e e e tesraeneeeenreeneens 121
8.3.10 Automatic INdentation SUPPOIL..........ccveiiieiieiieiieie e 122
8.3.11 Code COMPIBLION.......icieiiieieeiee e sbe e e e saesreeneeeenreeneens 122
8.3.12 Code Assistance on Identifiers When HOVENNG.........c.cooveiiiieienc i 123
8.3.13 GO to DEfiNitioN SUPPOIt......c.ecieieiese et reene e 123
8.3.14 Code Assistance on Writing RECOIUSccveeeiiiiie i 123
8.3.15 Using the MDT Console for PIOttING........ccccveiveiiiiecieiee e 124
Chapter 9 Modelica Performance ANAIYZEN...........cccvoveieii i 126
9.1 Example Report Generated for the A MOdEeL...........ccooveieieii i 127
0. 1.1 INFOMMALION L.ttt bbbt b e bbbt 127
TN 1= 1] o SRS 127
0.1.3 SUMIMAIY ...eiutieiteetie ettt ettt et e ettt et e e e e st e e s teeste e s beesaeasaeasbeesbeesbeesbeesbeesbeasaeaseeenbeanaeaneens 127

TN T €] [o] o] =T o SRS 128
9.1.5 Measured FUNCEION CallS ..o e 128
0.1.6 MeaSUred BIOCKSoiiiiiiieee et 128
9.1.7 Genenerated XML for the EXamplecccooiiieiiieiieee e 129
Chapter 10 Modelica Algorithmic Subset DeDUGQETcoeiveiciiiecee e 131
10.1 The Eclipse-based Debugging ENVIFONMENL..........coeiiiieiieieieceeiese e 131
10.2 Starting the Modelica Debugging PerspectiVecovcveveieiiiieeicse e 132
10.2.1 Create MOS fIlE...c..cueieieeee bbb 132
10.2.2 Setting the debug CONfIQUIAtIoN.........cccoviiiiicee e 133
10.2.3 Setting/Deleting BreakpoiNtS........cccvccveiiieiecieeieie et sre e se e snaens 134
10.2.4 Starting the debugging session and enabling the debug perspectivecccccevevvnnene. 135
10.3 Debugging OpenMOEIICAcvcieiiieceeece e reene e 136
10.4 The Debugging PErSPECLIVEcccveiiiiiiicieiie sttt sneene e 136
Chapter 11 Interoperability — C, Java, and PYython ..o 139
111 Calling EXternal C fUNCHIONSccooiiiiiiiicicic e 139
11.2 Calling External Java FUNCHIONS.........ccoiiviieiiiececese et 140
11.3 Python INtEroperability........c.cccoiiiiieiiiececc et re e 141
Chapter 12 OMPython — OpenModelica Python Interfacecccccooveveveiicccicse e 143
0250 AN o To U1 A 11,1 4 1 0o o SRS 143
12,2 Features Of OMPYLNONcviiiicccc e reene e 143
12,3 USING OMPYLNON ..ottt te e e be e ne e e e e nneeneens 143
12.3.1 TSt COMMENDSuetieeieieeie ettt bbb et e b e e bt besbe e eneebeneas 144
12.3.2 IMPOMt AS LIDFAIY ..c.oecicce et eenneenes 144
12.3.3 Retrieve results from nested diCtioNAries.ccoceeiieriiicinereee e 144
12.3.4 Set values to NeSted diCtIONAITESccerieiiiieieieit e 145
I T T 1 1] o[- SO 146
I 11101 o] (=T =T g1 v U o ISR SP 147
L2410 CHIBNE .ttt b ek b e bt b e b et e st e bt s b e b e e e bt e be st e e eneebe e 147
L1242 PAISEE ...ttt b bt bt bR e Rt e R e R e R e R e e R eR e Rt e e R e eRe et e nennenreenes 147
12.4.3 The SIMUIAtioN RESUILS.........ciuiiiiiiiiieieieee e 149

12.4.4 RECOIM CONSLIUCTION ...vviiiieeieeeeetiieeeeetee ettt e e ettt e e s et e e e sttt e e s sbeeessssaaeesssseeessbaeesssreeeessaees 150

R T 1111 o [T S 151

1251 IMPOFt AS LIDFAIY ..coicieiee et e sne s 151
12.5.2 TSt COMMENDSueitieeieiieieste ettt ettt et b e bbbttt be e e bt e besbe e eneebeneas 153

12.6 LISt OFf COMMANTSc.oitiiiiiiiieite ettt b bbb e ne b e 153
Chapter 13 Frequently Asked QUESLIONS (FAQ)o 175
13.1 OpenMOodelica GENEIAcc.coveieiiiececic e st e s reene e 175
13.2 OMNOEDOOK ...t 175
13.3 OMDev - OpenModelica Development ENVIFONMENtcccooveieieieieeiieie e 176

Index 197

Preface

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

11

Chapter 1

Introduction

The OpenModelica system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical algorithms, e.g. for control
system design, solving nonlinear equation systems, or to develop optimization algorithms that are
applied to complex applications.

The longer-term goal is to have a complete reference implementation of the Modelica language,
including simulation of equation based models and additional facilities in the programming
environment, as well as convenient facilities for research and experimentation in language design or
other research activities. However, our goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can handle large models requiring
advanced analysis and optimization by the Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a
Modelica environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic
semantics. Such a specification can be used to assist current and future Modelica implementers by
providing a semantic reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier
to use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.
Application usage and model library development by researchers in various application areas.

12

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be
submitted to the Modelica Association for consideration regarding possible inclusion in the official Modelica
standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and
function parts of Modelica to be executed interactively, as well as equation models and Modelica functions to
be compiled into efficient C code. The generated C code is combined with a library of utility functions, a run-
time library, and a numerical DAE solver.

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1-1
below.

MDT Eclipse Plugin Graphical Model
Editor/Browser \ Editor/Browser
A
OMOptim Interactive I
i session handler
Optimization / T MoniTtllzjg:tor
Subsystem
OMNotebook
DrModelica Execution | Modelica
Model Editor Compiler
Modelica
. Debugger

Figure 1-1-1. The architecture of the OpenModelica environment. Arrows denote data and control flow. The
interactive session handler receives commands and shows results from evaluating commands and expressions that
are translated and executed. Several subsystems provide different forms of browsing and textual editing of
Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica

The following subsystems are currently integrated in the OpenModelica environment:

e An interactive session handler, that parses and interprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session handler also contains simple history facilities, and
completion of file names and certain identifiers in commands.

e A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing
definitions of classes, functions, and variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica interpreter for interactive usage and
constant expression evaluation. The subsystem also includes facilities for building simulation
executables linked with selected numerical ODE or DAE solvers.

e An execution and run-time module. This module currently executes compiled binary code from
translated expressions and functions, as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling facilities will be included for the discrete and
hybrid parts of the Modelica language.

13

o Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling)
provides file and class hierarchy browsing and text editing capabilities, rather analogous to previously
described Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse
framework has the advantage of making it easier to add future extensions such as refactoring and cross
referencing support.

e OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor,
compared to the more advanced Mathematica notebooks available in MathModelica. This basic
functionality still allows essentially the whole DrModelica tutorial to be handled. Hierarchical text
documents with chapters and sections can be represented and edited, including basic formatting. Cells
can contain ordinary text or Modelica models and expressions, which can be evaluated and simulated.
However, no mathematical typesetting facilities are yet available in the cells of this notebook editor.

e Graphical model editor/browser OMEdit.. This is a graphical connection editor, for component based
model design by connecting instances of Modelica classes, and browsing Modelica model libraries for
reading and picking component models. The graphical model editor also includes a textual editor for
editing model class definitions, and a window for interactive Modelica command evaluation.

e Optimization subsystem OMEdit.. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has
a graphical user interface, provides genetic optimization algorithms and Pareto front optimizaiton,
works integrated with the simulators and automatically accesses variables and design parameters from
the Modelica model.

e Modelica debugger. The current implementation of debugger provides debugging for an extended
algorithmic subset of Modelica, excluding equation-based models and some other features, but
including some meta-programming and model transformation extensions to Modelica. This is
conventional full-feature debugger, using Eclipse for displaying the source code during stepping,
setting breakpoints, etc. Various back-trace and inspection commands are available. The debugger also
includes a data-view browser for browsing hierarchical data such as tree- or list structures in extended
Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OpenModelica
notebook UsersGuideExamples.onb in the testmodels (C:/OpenModelica/share/doc/omc/ testmodels/)
directory, see also Chapter 4.

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica-
>0OpenMode lica Shel I which responds with an interaction window:

14

{ifi oMshell - Opentodelica Shell =0l x|
File Edit View Help
r 28 s|e 0|

OpenModelica 1.4.5 =

Copyright (<) OSMC 2002-2008

To get help on using OMShell and OpenModelica, type "help({)" and press enter.

-

.

Ready 4
We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored
in the variable x. The value of the expression is returned.

>> x 1= 1:12
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

1.2.2 Using Compiler Debug Trace Flags in Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make use of some of the
compiler debug trace flags defined in section 2.1.2 in the System Documentation. Here we give a few example
sessions.

Example Session 1

OpenModelica 1.8.0
Copyright (c) OSMC 2002-2011
To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

>> setDebugFlags("'failtrace')
true

>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

>> instantiateModel (A)
"/*- CevalScript.cevalGenerateFunctionDAEs failed(instantiateModel)*/

15

/*- CevalScript.cevalGenerateFunction failed(instantiateModel)*/

- Inst.makeBinding failed

- Inst.instElement failed: COMPONENT(t in/out: mod: = 1.5 tp: Integer var :VAR,
baseClass: <nothing>)

Scope: A

- Inst.instClassdef failed

class :A

- Inst.instClass: A failed

Inst.instClassInProgram failed

Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A
Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A

Example Session 2

OpenModelica 1.8.1
Copyright (c) OSMC 2002-2011
To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

>> setDebugFlags(*'dump™)

true

---DEBUG(dump) ---

IEXP(Absyn .CALL(Absyn.CREF_IDENT(*'setDebugFlags™, [1),
FUNCTIONARGS (Absyn . STRING(**dump™),)))
---/DEBUG(dump)---

---DEBUG(dump) ---
1EXP(Absyn.CALL(Absyn.CREF_IDENT(*'getErrorString”, []), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> model B Integer k = 10; end B;

{B}

---DEBUG(dump) ---

Absyn . PROGRAM([L

Absyn.CLASS(''B"", false, false, false, Absyn.R_MODEL,
Absyn.PARTS([Absyn.PUBLIC([Absyn_.ELEMENTITEM(Absyn._ELEMENT(false, _, Absyn.UNSPECIFIED
, '‘component’, Absyn.COMPONENTS(Absyn.ATTR(false, false, Absyn.VAR, Absyn.BIDIR,

[1). Integer, [Absyn.COMPONENT ITEM(Absyn.COMPONENT('k™, [1, SOME(Absyn.CLASSMOD([],
SOME(Absyn. INTEGER(10))))), NONEQ)1), Absyn.INFO(™", false, 1, 9, 1, 23)), NONE))DI,
NONE(Q)), Absyn.INFO(™, false, 1, 1, 1, 30))

1.,Absyn_TOP)

---/DEBUG(dump)---

---DEBUG(dump) ---
1EXP(Absyn .CALL(Absyn.CREF_IDENT(*"getErrorString”, [1), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> instantiateModel (B)

"fclass B

Integer k = 10;
end B;
---DEBUG(dump) ---

1EXP(Absyn .CALL(Absyn.CREF_IDENT(*"instantiateModel™, [1),
FUNCTIONARGS (Absyn .CREF(Absyn.CREF_IDENT('B™, [1)).,)))
---/DEBUG(dump)---

16

---DEBUG(dump) ---
I1EXP(Absyn._.CALL(Absyn.CREF_IDENT('getErrorString”, [1), FUNCTIONARGS(,)))
--—-/DEBUG(dump)—

>> simulate(B, startTime=0, stopTime=1, numberOfIntervals=500, tolerance=1le-4)
record SimulationResult

resultFile = "B_res.plt"

end SimulationResult;

---DEBUG(dump) ---

#ifdef __ cplusplus

extern "C" {

#endif

#ifdef _ cplusplus

}

#endif

1EXP(Absyn.CALL(Absyn.CREF_IDENT("'simulate™, [1),
FUNCTIONARGS (Absyn .CREF(Absyn.CREF_IDENT('B™, [1)), startTime = Absyn.INTEGER(0),
stopTime = Absyn.INTEGER(1), numberOfintervals = Absyn. INTEGER(500), tolerance =
Absyn.REAL(0.0001))))

---/DEBUG(dump)---

---DEBUG(dump) ---
1EXP(Absyn.CALL(Absyn.CREF_IDENT(*'getErrorString”, []), FUNCTIONARGS(,)))
---/DEBUG(dump)--

Example Session 3

OpenModelica 1.8.1
Copyright (c) OSMC 2002-2011
To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

>> setDebugFlags("'failtrace')
true

>> model C Integer a; Real b; equation der(a) = b; der(b) = 12.0; end C;
{C}

>> instantiateModel (C)

"/*- CevalScript.cevalGenerateFunctionDAEs failed(instantiateModel)*/
/*- CevalScript.cevalGenerateFunction failed(instantiateModel)*/
- Static.elabCall failed

function: der posargs: a

- Static.elabExp failed: der(a)

Scope: C

- iInstEquationCommon failed for eqn: der(a) = b; in scope:C

- iInstEquation failed egn:der(a) = b;

- Inst.instClassdef failed

class :C

- Inst.instClass: C failed

Inst.instClassInProgram failed

Error: l1llegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real

Error: Wrong type or wrong number of arguments to der(a)-".

Error: Error occured while flattening model C

Error: l1llegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real

Error: Wrong type or wrong number of arguments to der(a)-".

17

Error: Error occured while flattening model C

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly
giving the command:

>> loadFile("'C:/0OpenModelical.8.1/share/doc/omc/testmodels/bubblesort.mo™)

true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real [:], instantiated as Real [12], since this is
the declared type of the function result. The input Integer vector was automatically converted to a Real
vector according to the Modelica type coercion rules. The function is automatically compiled when called if
this has not been done before.

>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>> pubblesort({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

It is also possible to give operating system commands via the system utility function. A command is provided
as a string argument. The example below shows the system utility applied to the UNIX command cat, which
here outputs the contents of the file bubblesort.mo to the output stream. However, the cat command does not
boldface Modelica keywords — this improvement has been done by hand for readability.

>> cd("'C:/0OpenModelical.8.1/share/doc/omc/testmodels/™)
>> system("'cat bubblesort.mo™)

function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y = X;

fo 1:size(x,1) loop
n 1:size(x,1) loop
i] > y[J] then

end for;
end bubblesort;

1.2.4 Trying the system and cd Commands

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would
not be returned. Only a success code (0 = success, 1 = failure) is returned to the winmosh window. For
example:

18

>> system('dir'™)
0

>> system("'Non-existing command'™)
1

Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.

>> cd()
' C:/OpenModelical.8.1/share/doc/omc/testmodels/"

>> cd("..")
" C:/OpenModelical.8.1/share/doc/omc/""

>> cd(""'C:/0OpenModelical.8.1/share/doc/omc/testmodels/™)
" C:/OpenModelical.8.1/share/doc/omc/testmodels/"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>> loadModel (Modelica)
true

We also load a file containing the dcmotor model:

>> loadFile("'C:/0OpenModelical.8.1/share/doc/omc/testmodels/dcmotor.mo'™)
true

It is simulated:
>> simulate(dcmotor,startTime=0.0,stopTime=10.0)

record
resultFile = "dcmotor_res.plt"”
end record

We list the source code of the model:
>> list(dcmotor)

"model dcmotor
Modelica.Electrical .Analog.Basic.Resistor r1(R=10);
Modelica.Electrical .Analog.-Basic. Inductor il;
Modelica.Electrical _Analog.Basic.EMF emfl;
Modelica.Mechanics.Rotational . Inertia load;
Modelica.Electrical .Analog.Basic.Ground g;
Modelica.Electrical .Analog.Sources.ConstantVoltage v;

equation
connect(v.p,rl.p);
connect(v.n,g.-p);
connect(rl.n,il.p);
connect(il.n,emfl._p);
connect(emfl.n,g.p);
connect(emfl._flange_b, load.flange_a);
end dcmotor;

We test code instantiation of the model to flat code:

19

>> instantiateModel(dcmotor)

"fclass dcmotor

Real rl.v "Voltage drop between the two pins (= p.v - n.v)";
Real r1.i "Current flowing from pin p to pin n";

Real rl.p.v "Potential at the pin";

Real rl.p.i1 "Current flowing into the pin";

Real rl.n.v "Potential at the pin";

Real rl.n_.i1 "Current flowing into the pin";

parameter Real r1.R = 10 "Resistance";

Real il.v "Voltage drop between the two pins (= p.v - n.v)";
Real il.i "Current flowing from pin p to pin n";

Real il.p.v "Potential at the pin";

Real il.p.i1 "Current flowing into the pin";

Real il.n.v "Potential at the pin";

Real il.n.i1 "Current flowing into the pin";

parameter Real il1.L = 1 "Inductance";

parameter Real emfl.k = 1 "Transformation coefficient";

Real emfl.v "Voltage drop between the two pins";

Real emfl.i "Current flowing from positive to negative pin";
Real emfl.w "Angular velocity of flange b";

Real emfl_p.v "Potential at the pin";

Real emfl._p.i "Current flowing into the pin";

Real emfl._n.v "Potential at the pin";

Real emfl.n.i "Current flowing into the pin";

Real emfl.flange_b.phi "Absolute rotation angle of flange';
Real emfl.flange_b.tau "Cut torque in the flange";

Real load.phi "Absolute rotation angle of component (= flange_a.phi = flange_b.phi)";
Real load.flange_a.phi "Absolute rotation angle of flange';
Real load.flange_a.tau "Cut torque in the flange";

Real load.flange_b.phi "Absolute rotation angle of flange';
Real load.flange _b.tau "Cut torque in the flange";

parameter Real load.J = 1 "Moment of inertia";

Real load.w "Absolute angular velocity of component';

Real load.a "Absolute angular acceleration of component™;
Real g.p.v "Potential at the pin";

Real g.p.i "Current flowing into the pin";

Real v.v "Voltage drop between the two pins (= p-v - n.v)";
Real v.i "Current flowing from pin p to pin n";

Real v.p.v "Potential at the pin";

Real v.p.i "Current flowing into the pin";

Real v.n.v "Potential at the pin";
Real v.n.i "Current flowing into the pin";
parameter Real v.V = 1 "Value of constant voltage";
equation

ril.R *rl.i =rl.v;

rl.v = rl.p.v - rl.n.v;

0.0 = rl.p.i + rl.n.i;

rl.i = rl.p.i;

il.L * der(il.i) = il.v;

il.v = il.p.v - il.n.v;

0.0 = il.p.i + il.n.i;

il.1 = il.p.i;

emfl.v = emfl_p.v - emfl._n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.1 = emfl.p.i;

emfl.w = der(emfl.flange_b.phi);

emfl. kK * emFl.w = emfl.v;
emfl_flange_b.tau = -(emfl.k * emfl.i);
load.w = der(load.phi);

load.a = der(load.w);

20

load.J * load.a =

load.flange_a.tau + load.flange_b.tau;

load.flange_a.phi = load.phi;
load.flange _b.phi = load.phi;

g-p-v = 0.0;

V.V = Vv.V;

V.V = V.p.V - V.Nn.V;

0.0 = v.p.i + v.n.i;

v.i = v.p.i;

emfl_flange_b.tau + load.flange_a.tau = 0.0;
emfl_flange_b.phi = load.flange_a.phi;
emfl.n.i + v.n.i + g.p-i = 0.0;
emfl.n.v = v.n.v;

V.n.v = g.p.Vv;

il.n.i + emfl.p.i = 0.0;

il.n.v = emfl.p.v;

rl.n.i + il.p.i = 0.0;

rl.n.v = il.p.v;

v.p-i + rl.p.i = 0.0;

V.p.v = rl.p.v;

load.flange_b.tau = 0.0;

end dcmotor;

We plot part of the simulated result:
>> plot({load.w, load.phi})

true

File Edit Insert Tools

Help

=10 %]

J_| Open; Save | Print | Select | Zoom Pan | Grid | Hold | Preferences | Active | Image

Plot by OpenlModelica

@ load.w

@ load.phi

Connection closed

21

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation
result variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
key-words have been bold-faced by hand for better readability):

>> loadFile("'C:/0OpenModelical.8.1/share/doc/omc/testmodels/BouncingBall_mo'™)

true

>> list(BouncingBall)
"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;"

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos
(Modelica script) file sim_BouncingBal I .mos that contains these commands:

loadFile('BouncingBall_mo™);
simulate(BouncingBall, stopTime=3.0);

plot({h,flying});
The runScript command:

>> runScript(*'sim_BouncingBall .mos™)
"true
record

resultFile = "BouncingBall_res.plt"”
end record
true
true”

22

£ tmpPlot.plt _ 0] x|

File Edit Special

Plot by OpenModelica

flying ®

047 1

02r 7

0.0

0.0 0.4 1.0 1.5 20 24 3.0

We enter a switch model, to test if-equations (e.g. copy and paste from another file and push enter):

>> model Switch
Real v;
Real i;
Real i1l;
Real itot;
Boolean open;
equation
itot =i + il;

it open then

1-v-1=0;
open = time >= 0.5;
end Switch;
Ok

>> simulate(Switch, startTime=0, stopTime=1);

Retrieve the value of itot at time=0 using the val(variableName,time) function:
>> val (itot,0)
1

Plot itot and open:

>> plot({itot,open})
true

23

< tmpPlot.plt

File Edit Special

Plot by OpenModelica
2D L T T T T T i Dpen .
itt

0a Il

0.0

oo o1 02 03 04 05 06 07 08 09 1.0

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

1.2.8 Clear All Models

Now, first clear all loaded libraries and models:

>> clear()
true

List the loaded models — nothing left:
>> list(Q)

1.2.9 VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load Model):

>> loadFile("'C:/0OpenModelical.8.1/share/doc/omc/testmodels/VanDerPol._mo™))
true

It is simulated:
>> simulate(VanDerPol)
record
resultFile = "VanDerPol_res._plt"

end record

It is plotted:
plotParametric(x,y);

24

& tmpPlot.plt - 10| x|

File Edit Special

Plot by OpenModelica

-2.0 -1.5 -1.0 -0.5 0.a 0.5 1.0 1.5 2.0

Perform code instantiation to flat forrm of the VanDerPol model:
>> instantiateModel (VanDerPol)

"fclass VanDerPol
Real x(start=1.0);
Real y(start=1.0);
parameter Real lambda = 0.3;
equation
der(x) =vy;
der(y) = -x + lambda * (1.0 - x * xX) * y;
end VanDerPol;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers,
see for example the variable name to the right in the plot below:

File Edit Special

Plot by OpenModelica
1.0 ' ' ' L l=sn

0.6 1

0.4r 7

0.0 4

0.0 0.5 1.0 1.5 2.0 2.5

25

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):
>> k = 0;
for i in 1:1000 loop
k := k + 1;
end for;

>> k
500500

A nested loop summing reals and integers::

>> g = 0.0;
h :=5;
for i in {23.0,77.12,88.23} loop
for j in 1:0.5:(i+1) loop
g:=9+1;
g:=g+h/ 2;
end for;
h := h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>> h;g
1997 .45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>> jI="";
Ist := {"Here ", "are ","some ","strings.'};
s ="
for i in Ist loop
S 1=s + i;
end for;
>> s

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:
>> sI=";
i:=1;
while i<=10 loop
s:i="abc "+s;
i:=i+1;
end while;

>> s
"abc abc abc abc abc abc abc abc abc abc ™'

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>> §if 552 then a = 77; end if; a
77

An if-then-else statement with elseif:

>> if false then

26

a = 5;
elseif a > 50 then
b:= "test'"; a:= 100;
else
a:=34;
end if;
Take a look at the variables a and b:
>> a;b
100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:
>> a:=1:5
{1,2,3,4,5}

Type in a function:

>> function MySqr input Real x; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:
>> b:=MySqr(2)
4.0
Look at the value of variable a:
>> a
{1,2,3,4,5}
Look at the type of a:

>> typeOf(a)
"Integer[]"”

Retrieve the type of b:

>> typeOf(b)
"Real™

What is the type of MySqr? Cannot currently be handled.

>> typeOf(MySqr)
Error evaluating expr.

List the available variables:

>> listVariables()
{currentSimulationResult, a, b}

Clear again:

>> clear()
true

27

1.2.13 Getting Information about Error Cause

Call the function getErrorString in order to get more information about the error cause after a simulation
failure:

>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. pIt and mat are the only formats that
allow you to use the val () or plot() functions after a simulation. Compared to the speed of plt, mat is
roughly 5 times for small files, and scales better for larger files due to being a binary format. The csv format is
roughly twice as fast as pIt on data-heavy simulations. The plt format allocates all output data in RAM
during simulation, which means that simulations may fail due applications only being able to address 4GB of
memory on 32-bit platforms. Empty does no output at all and should be by far the fastest. The csv and plt
formats are suitable when using an external scripts or tools like gnuplot to generate plots or process data. The
mat format can be post-processed in MATLAB! or Octave?.

simulate(... , outputFormat="mat')
simulate(... , outputFormat="csv')
simulate(... , outputFormat="plt"™)
simulate(... , outputFormat="empty')
It is also possible to specify which variables should be present in the result-file. This is done by using POSIX

Extended Regular Expressions?. The given expression must match the full variable name (~ and $ symbols are
automatically added to the given regular expression).

// Default, match everything

simulate(... , variableFilter="_*")

// match indices of variable myVar that only contain the numbers using combinations
// of the letters 1 through 3

simulate(... , variableFilter="myVar\\[[1-3]*\\]1'")

// match x or y z

simulate(... , variableFilter="x]y|z")

1.2.15 Using External Functions

See Chapter 11 for more information about calling functions in other programming languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that
automatically partitions the system of equations and schedules the parts for execution on different cores using

1 http://www.mathworks.com/products/matlab/
2 http://www.gnu.org/software/octave/
3 http://en.wikipedia.org/wiki/Regular_expression

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression

28

shared-memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether
the system of equations can be partitioned well. This version in the OpenModelica 1.8 release is an
experimental version without load balancing. The following command, not yet available from the
OpenModelica GUI, will run a parallel simulation on a model:

omc +d=openmp model.mo

1.2.17 Loading Specific Library Version

There exists many different version of Modelica libraries which are not compatible. It is possible to keep
multiple versions of the same library stored in the directory given by calling getMode licaPath(). By calling
loadMode l (Modelica, {''3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file
called "Modelica 3.2.mo". It is possible to give several library versions to search for, giving preference for a
pre-release version of a library if it is installed. If the searched version is "default"”, the priority is: no version
name (Modelica), main release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered
versions (Modelica Special Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been
loaded. Given the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST
automatically.

package Modelica

annotation(uses(Complex(version="1.0"), ModelicaServices(version="1.1")))
end Modelica;

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC)
server. Current examples or such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
OMEdit graphic model editor, etc. This API is untyped for performance reasons, i.e., no type checking and
minimal error checking is done on the calls. The results of a call is returned as a text string in Modelica syntax
form, which the client has to parse. An example parser in C++ is available in the OMNotebook source code,
whereas another example parser in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on
this API is available in the system documentation. First we load and list the model again to show its structure:

>>loadFile("'C:/OpenModelical.8.1/share/doc/omc/testmodels/BouncingBall._mo™)
true

>>list(BouncingBall)

"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;

29

der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>getClassRestriction(BouncingBall)
"model™”

>>getClassInformation(BouncingBall)
{"model" """, ,{false, false, false},{"writable",1,1,18,17}}

>>isFunction(BouncingBall)
false

>>existClass(BouncingBall)
true

>>getComponents(BouncingBall)
{{Real ,e,"coefficient of restitution”, "public", false, false, false,

“"parameter', "none'", "unspecified"},

{Real,g,""gravity acceleration"”,

"public", false, false, false, "parameter', "none", "unspecified"},
{Real,h,"height of ball", "public", false, false, false,
"unspecified”, "none", "unspecified"},

{Real,v,"velocity of ball",

"public", false, false, false, "unspecified”, "none", "unspecified"},
{Boolean,flying,"true, if ball is flying”, "public"”, false, false,
false, "unspecified”, "none", "unspecified"},

{Boolean, impact,™",

"public", false, false, false, "unspecified”, "none", "unspecified"},
{Real,v_new,""", "public", false, false, false, "unspecified"”, "none",
"unspecified"}}

>>getConnectionCount(BouncingBall)
0

>>getlnheritanceCount(BouncingBall)
0

>>getComponentModifierValue(BouncingBall,e)
0.7

>>getComponentModifierNames(BouncingBall,e)

8

>>getClassRestriction(BouncingBall)
“"model™”

>>getVersion() // Version of the currently running OMC
1.6

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:
>> quitQ

30

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional
parameters.

dumpXMLDAE (modelname[,asInSimulationCode=<Boolean>] [,filePrefix=<String>]
[,storelnTemp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before
dumping the model), the other options are relative to the file storage: filePrefix for specifying a different
name and storelnTemp to use the temporary directory. The optional parameter addMathMLCode gives the
possibility to don't print the MathML code within the xml file, to make it more readable.Usage is trivial, just:
addMathMLCode=true/false (default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname) ;

This command dumps the mathematical representation of a model using a Matlab representation. Example:

$ cat daequery.mos
loadFile("'BouncingBall_mo™);
exportDAEtoMatlab(BouncingBall);
readFile("'BouncingBall_imatrix.m™);

$ omc daequery.mos
true
"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Incidence Matrix
%
% number of rows: 6

IM={[3,-6],[1,{"if", "true”,"==" {3}.{}.}].[2.{"if", "edge(impact)"
{3}.{5}.31.[4.21.[5.{"if", "true”,"==" {4}.{}.}1.[6.-51}:

EqStr = {"impact = h <= 0.0;","foo = if impact then 1 else 2;","when {h <= 0.0 AND v
<= 0.0, impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end
when;",*when {h <= 0.0 AND v <= 0.0, impact} then flying = v_new > 0.0; end
when;","der(v) = if flying then -g else 0.0;","der(h) = v;"};

OldEgStr={"fclass BouncingBall", "parameter Real e = 0.7 "coefficient of
restitution”; ", "parameter Real g = 9.81 "gravity acceleration"; ", "Real h(start = 1.0)
"height of ball";","Real v "velocity of ball";","Boolean flying(start = true) "true,
if ball is flying";","Boolean impact;~,"Real v_new;", "Integer foo;","equation~,”
impact = h <= 0.0;"," foo = if impact then 1 else 2;"," der(v) = if flying then -g
else 0.0;7," der(h) = v;"," when {h <= 0.0 AND v <= 0.0, impact} then"," v_new = i
edge(impact) then (-e) * pre(v) else 0.0;"," flying = v_new > 0.0;","
reinit(v,v_new);"," end when;","end BouncingBall;",""};"

f

31

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname)

Translate a model named modelname and simulate it.

simulate(modelname[,startTime=<Real>][,stopTime=<Real>][,numberOfintervals

plot(vars)

plotParametric(varl, var2)

cdO

cd(dir)

clearQ
clearVariables()
dumpXMLDAE(modelname, ...)

=<Integer>] [, outputlinterval=<Real>][,method=<String>]

[, tolerance=<Real>][, fixedStepSize=<Real>]
[,outputFormat=<String>]) Translate and simulate a model, with
optional start time, stop time, and optional number of simulation intervals or
steps for which the simulation results will be computed. Many intervales will
give higher time resolution, but occupy more space and take longer to
compute. The default number of intervals is 500. It is possible to choose
solving method, default is “dassl”, “euler” and “rungekutta” are also
available. Output format “plt” is default and the only one that works with th
val() command, “csv” (comma separated values) and “empty” (no output) are
also available.

Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or
plot(x1).

Plot var2 relative to varl from the most recently simulated model, e.g.
plotParametric(X,y).

Return the current directory.

Change directory to the directory given as string.
Clear all loaded definitions.

Clear all defined variables.

Dumps an XML representation of a model, according to several optional
parameters.

exportDAEtoMatlab(name) Dumps an Matlab representation of a model.

instantiateModel (modelname)Performs code instantiation of a model/class and return a string containing

listQ)
list(modelname)
listVariables()
loadMode I (classname)

loadFile(str)
readFile(str)
runScript(str)
system(str)

timing(expr)

the flat class definition.

Return a string containing all loaded class definitions.

Return a string containing the class definition of the named class.
Return a vector of the names of the currently defined variables.

Load model or package of name classname from the path indicated by the
environment variable OPENMODEL I CAL IBRARY.

Load Modelica file (.mo) with name given as string argument str.
Load file given as string str and return a string containing the file content.
Execute script file with file name given as string argument str.

Execute str as a system(shell) command in the operating system; return
integer success value. Output into stdout from a shell command is put into
the console window.

Evaluate expression expr and return the number of seconds (elapsed time)
the evaluation took.

32

typeOf(variable) Return the type of the variable as a string.

saveModel (str,modelname) Save the model/class with name modelname in the file given by the string
argument str.

val (variable,timePoint) Return the value of the variable at time timePoint.

helpQ Print this helptext (returned as a string).

quitQ) Leave and quit the OpenModelica environment

1.4 References

Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrom, Adrian Pop, Levon Saldamli, and David
Broman. The OpenModelica Modeling, Simulation, and Software Development Environment.
In Simulation News Europe, 44/45, December 2005. See also: http://www.openmodelica.org.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., ISBN
0-471-471631, Wiley-1EEE Press, 2004.

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

http://www.modelica.org/

33

Chapter 2

OMEdit — The OpenModelica Connection Editor

OMEdit — the OpenModelica Connection Editor is the new Graphical User Interface for graphical model
editing in OpenModelica. It is implemented in C++ using the Qt 4.7 graphical user interface library and
supports the Modelica Standard Library version 3.1 that is included in the latest OpenModelica installation.
This chapter gives a brief introduction to OMEGdit and also demonstrates how to create a DCmotor model using
the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:

e Modeling — Easy model creation for Modelica models.

e Pre-defined models — Browsing the Modelica Standard library to access the provided models.

o User defined models — Users can create their own models for immediate usage and later reuse.

e Component interfaces — Smart connection editing for drawing and editing connections between model
interfaces.

e Simulation — Subsystem for running simulations and specifying simulation parameters start and stop
time, etc.

e Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

21.1 Microsoft Windows

OMEdit can be launched using the executable placed in
OpenModelicalnstallationDirectory/bin/OMEdit/OMEdit.exe. Alternately, choose
OpenModelica > OpenModelica Connection Editor from the start menu in Windows. A splash screen
similar to the one shown in Figure 2-1 will appear indicating that it is starting OMEdit. After the splash screen
the main OMEdit window will appear; see Figure 2-2.

34

OMEdit

Version: 1.7.0

Loading Modelica Standard Library

{}

OpenModelica Connection Editor

Figure 2-1: OMEdit Splash Screen.
2.1.2 Linux
27?2 fill in

2.1.3 Mac OS X

27?2 fill in

35

2.2 Introductory Modeling in OMEdit

In this section we will demonstrate how one can create Modelica models in OMEdit, e.g. a DCmotor.

B4 OMEdit - OpenModelica Co

o o
File Edit View Simulation Tools Help

& - U B # R0 0P wome E \ & X ’." oM [oy &P\otﬂng N Interactive Simulation

Components 8 x

Modelica Standard Library
= [Modelica

(g Blocks

(2] Constants

(& Electrical

& Icons

5] Magnetic

[Math

[Mechanics

* pltpkg

® (O] Simplevisual
[Slunits

[StateGraph

® [Thermal

& [l UsersGuide

[Utilities

= [P] ModelicaServices

o X

Genersl | Info | Waming | Eror |

OMEdit, Version: 1.7.0
OpenModelica, Version: "1.7.0"

Messages

Modelica Library | Modelica Files

Figure 2-2: OMEdit Main Window.

2.2.1 Creating a New File

Creating a new file/model in OMEdit is rather straightforward. In OMEdit the new file can be of type model,
class, connector, record, block, function and package. User can create any of the file types
mentioned above by selecting File > New from the menu. Alternatively, you can also click on the drop down
button beside new icon shown in toolbar right below the File menu. See Figure 2-4.

For this introductory example we will create a new model named DCmotor. By default the newly created
model will open up in the tabbed view of OMEdit, also called Section 2.5.2), and become visible. The models
are created in the OMC global scope unless you specify the parent package for it.

36

&% OMEdit - OpenModelica Con fo
File Edit View Simulation Tools Help

A-THBHE # L 00 womol & X & oo 5 Pottng 5 Interactive Smulation

Components 8 x

Modelica Standard Library
= [O] Modelica

@ [g] Blocks

(2] Constants

E (=) Electrical

= [O] Analog

| _ﬁlfazpmm Modelica Standard L@
- ccc
= cov

| <= Conductor ‘4’
- sii= EMF

b+ Ground

- &=L Gyrator

- <z HeatingResistor

= === Inductor

n

b =1 M_Transformer
[& OpAmp
i $+ OpAmpDetailed

= = Resistor

- === Saturatinglnductor

b 262 Transformer General | Info | Warming | Error |

o X

-2 TrnsatonslEME OMEdit, Version: 1.7.0
b~ VariableCapacitor OpenMadelica, Version: *1.7.0°

<> VariableConductor
F Lo Variablelnductor

Modelica Library | Modelica Files

Messages

Figure 2-3: Modelica Standard Library.

2.2.2 Adding Component Models

The Modelica standard library is loaded automatically and is available in the left dock window. The library is
retrieved through the loadModel (Modelica) API call and is loaded in the OMC symbol table and workspace
after the command execution is completed. Component models available in the Modelica standard library are
added to the models by doing a drag and drop from the Library Window (see Figure 2-3 and Section 2.5.1).
Navigate to the component model in the library tree, click on it, drag it to the model you are building while
pressing the mouse left button, and drop the component where you want to place it in the model.

Similarly, the component models present in the Modelica Tree View, i.e. the Custom Modelica Models also
can be added into some other custom Modelica models by a similar drag and drop. The dropped component
keeps getting updated as soon as we make any changes in the original model.

For this example we will add four components as instances of the models Ground, Resistor, Inductor
and EMF from the Modelica.Electrical.Analog.Basic package, an instance of the model
SignalVoltage from the Modelica.Electrical.Analog.Sources package, one instance of the model
Inertia from the Modelica.Mechanics.Rotational.Components package and one last instance of the
model Step from the Modelica.Blocks.Sources package.

2.2.3 Making Connections

In order to connect one component model to another the user simply clicks on any of the ports. Then it will
start displaying a connection line. Then move the mouse to the target component where you want to finish the
connection and click on the component port where the connection should end. You do not need to hold the
mouse left button down for drawing connections.

37

In order to have a functioning DCmotor model, connect the Resistor to the Inductor and the
SignalVoltage, EMF to Inductor and Inertia, Ground to SignalVoltage and EMF, and finally Step to
SignalVoltage. Check Figure 2-7 to see how the DCmotor model looks like after connections.

&4 OMEdit - CpenModelica Con fo
Edit View Simulation Tools Help
New v Model CtrieN | woHme a & X &P u o &% Modeing {5 Pottng 5 Interactive Smulation
Open Ctrl+0 Class -
B save Ctrl+S Connector
I savess Ctrl+Shift+5 [zl
© Close Cirl+Q Block
—eeeeeed Function
Package Ctrl+P
oA OMEdit - Create New Model ==
Model Name:
[oemotor] |
Insertin Package (optional):
e

o X

Genersl | Info | Waming | Eror |

OMEdit, Version: 1.7.0
OpenModelica, Version: "1.7.07

Messages

Modelica Library | Modelica Files

Create New Model

Figure 2-4: Creating a new model.

In order to connect one component model to another the user first enables the connect mode from the toolbar to
make the connect mode active. See Figure 2-5.

Figure 2-5: Connect mode button.

The different kinds of connections are:

e Connections for Models — If the connect mode is active then user then simply clicks on any of the ports.

e Connection for Connector Types — If the connect mode is active then we can also connect two
components of connector types to each other if they are of the same type. Since, it is a connector type,
to start or end a connection, you can just click anywhere on the component icon and it will start.

e Connection for Connector Array Type — If any of the start port or the end port of the connection is of an
array type, the user also needs to add indices at which the connection is to be made. For this a dialog
box will pop up, as soon as the user clicks on the end port of the connection asking the user for indices
of the array for whichever port it is necessary. For example, let’s say, the user wants to connect, the x
component instance of Modelica.Electrical .Digital .Converters.BooleanTolLogic to the y
component instance of Modelica.Blocks.Sources.BooleanConstant. Now since,
Modelica.Electrical .Digital .Converters.BooleanTolLogic.x is a connector array, as soon

as the user clicks on the end port for this connection, a dialog box appears asking user the index of the
start instance. See Figure 2-6.

38

bodeanomonstantl

. B

booleantologicl

ot OMEdit - Connector Array Menu ﬁ

COMMECT booleantologicl.x[i] WITH booleanconstantl.y

Enter Index in the Array For Start Component ;

1 | Maximum Index: Mo Bound

[oK] [Cancel

Figure 2-6: Connector Array Menu

224 Simulating the Model

The OMECdit Simulation dialog (see Figure 2-8, Section 2.6.2) can be launched either from Simulation >
Simulate or by clicking the simulate icon from the toolbar. Once the user clicks on Simulate! button,
OMEdit starts the simulation process, at the end of the simulation process the Plot Variables Window (Figure
2-9, Section 2.5.3) useful for plotting will appear at the right side. Figure 2-8 shows the simulation dialog.

39

OMEdit - Openhod:
File Edit View Simulation Tools Help

-1 W # RRLEO WeROE

Compenents & % | pevotor= [

Modelica Standard Library |l R | |

= (] Modelica e e
[&] Blocks
[=] Constants
E (5] Electrical
= [Analog

& (7 Basic

| =+~ Capacitor
HIE ccc

- cov

> Conductor

F o= EMF

b+ Ground

=L Gyrator

- <2 HeatingResistor

NoPXs ap

2 Plotting ;Q Interactive Simulation

o Modeing | B

| Diagram View ‘ C: [Users/adeas31/Desktop/DCmotor.mo

resistorl inductort

L=2

R
n

m

sigralwdtagel

- = Inductor
F =1 M Transformer
b ¥ OpAmp
b = OpAmpDetailed

[<> Resistor

== Saturatinglnductor
- 2 Transformer

F # TranslationalEMF
F +1 VariableCapacitor

groundl

m X

Genersl | Info | Wamning | Errer |

OMEdit, Version: 1.7.0
OpenModelica, Version: "1.7.07

<5 VariableConductor
b +Le variablslnductor

Modelica Library | Modelica Files

Messages

Figure 2-7: DCmotor model after connections.

225 Plotting Variables from Simulated Models

The instance variables that are candidate for plotting are shown in the right dock window. This window is
automatically launched once the user simulates the model; the user can also launch this window manually
either from Simulation > Plot Variables or by clicking on the plot icon from toolbar. It contains the
list of variables that are possible to use in an OpenModelica plot. The plot variables window contains a tree

structure of variables; there is a checkbox beside each variable. The user can launch the plotted graph window
by clicking the checkbox.

40

Edit View Simulstion Tools Help

-TUW # RRLE

MOBOEN X W

N Interactive Simulation

Companents

8%

Modelica Standard Library E
= [Modelica

[& Blocks

[=] Constants

E [g] Electrical

= [Analog

& (7 Basic

F =~ Capacitor
I ccc

kI cov

> Conductor

F o= EMF

F ¥ Ground

=L Gyrator

- <2 HeatingResistor

m

b == Inductor

F =1 M_Transformer

b $ OpAmp

b = OpAmpDetailed

[<> Resistor

- === SaturatingInductor
- 35 Transformer

F # TranslationalEMF
F +1 VariableCapacitor
<5 VariableConductor

DCMotor® [

% n|wmgdje |Mmle|

|Ijagalnnew

Ci/Users/adeas31/Desktop/DCmotarmo

o OMEdit - Simulation

[= |

Simulation

simulation Interval

Start Time: [0.0

Stop Tme: [1.0

Output Interval

Number of Intervals: [500

Integration
Methad: [dassl
Tolerance: [0.000001
Output Format: [mat

File Name (Optional): |

Compiler Flags: [

Simulate!

b

m X

.
Genersl | Info | Wamning | Errer |

OMEdit, Version: 1.7.0
OpenModelica, Version: "1.7.07

b +Le variablslnductor

Modelica Library | Modelica Files

Messages

Figure 2-8: Simulation Dialog.

Figure 2-9 shows the complete DCmotor model along with the list of plot variables and an example plot

window.

Edit View Simulation

Tools Help

I # RLOEO WOROEN & X[F wipw 212

& Modeling ;Q Interactive Simulation

Companents 8%
Modelica Standard Library

= [Modelica

[&] Blocks

[=] Constants

E (5] Electrical

= [Analog

5 [Basic

|- == Capacitor

b ccc

bR cov

<> Conductor

- sii= EMF

b+ Ground

- &=L Gyrator

|- <= HeatingResistor

F = Inductor

b 121 M_Transformer

F %= OpAmp

i $+ OpAmpDetailed
<> Resistor

| v Saturatinglnductor
35 Transformer

t g TranslationalEMF
b~ VariableCapacitor
<> VariableConductor

E - Variablelnductor il

Modelica Library

——Info 1: 15:32:45 —
Simulated 'DCMotor’ successfully!

Messages

A Plot: 1 ‘ Plot Variables & x
Pan FitinView Save | Print LogX [iogY n o
P
04 P — W inertiat.phi L@y
, T D=0 = inertial
0.2 i / @ emfL.fixed. flange. tau
] @ inductord.v M
d
7] — T T T—— | Bresstorly [dertw)
] — flange_a
] e flange_b
-0,2
1 R
0.4 & resistorl
i / LossPower L
-0,6
] _heatPort
] / i
08 n
1 ’
= L
1 v
r T T T T T
0 0,2 04 0,6 0,8 signalvoltagel
time stepl Tl
X [General | Info | Weming | Eror |
&

Figure 2-9: Plotted variables.

41

2.3

How to Create User Defined Shapes — Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

Line Tool — Draws a line. A line is created with a minimum of two points. In order to create a line, the
user first selects the line tool from the toolbar and then click on the Designer Window; this will start
creating a line. If a user clicks again on the Designer Window a new line point is created. In order to
finish the line creation, user has to double click on the Designer Window.

Polygon Tool — Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line
and if a polygon contains more than two points it will become a closed polygon shape.

Rectangle Tool — Draws a rectangle. The rectangle only contains two points where first point indicates
the starting point and the second point indicates the ending the point. In order to create rectangle, the
user has to select the rectangle tool from the toolbar and then click on the Designer Window, this
click will become the first point of rectangle. In order to finish the rectangle creation, the user has to
click again on the Designer Window where he/she wants to finish the rectangle. The second click will
become the second point of rectangle.

Ellipse Tool — Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.

Text Tool — Draws a text label.

Bitmap Tool — Draws a bitmap container.

The shape tools are located at the top in the toolbar. See Figure 2-10.

(¢ Rectangle Tool) (Text Tool D

(Polygon Tool) (Ellipse Tool)

Figure 2-10: User defined shapes.

The user can select any of the shape tools and start drawing on the Designer Window. The shapes created on
the Diagram View of Designer Window are part of the diagram and the shapes created on the Icon View
will become the icon representative of the model.

For example, if a user creates a model with hame testModel and add a rectangle using the rectangle tool
and a polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will
appear as follows:

model testModel

42

annotation(lcon(graphics = {Rectangle(rotation = 0, lineColor = {0,0,255}, fillColor =
{0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern_None, lineThickness
= 0.25, extent = {{ -64.5,88},{63, -22.5}}),Polygon(points = {{ -47.5, -29.5},{52.5, -
29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0, lineColor = {0,0,255}, fillColor =

{0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern_None, lineThickness

= 0.25)}1)):
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the
model. Similarly, any user defined shape drawn on a Diagram View of the model will be added to the
diagram annotation of the model.

43

2.4 OMEdit Views
OMEdit has three kinds of views.

24.1 Modeling View

This is the default view. This view shows the Designer Window and allows users to create their models.

24.2 Plotting View

This view is used for showing plot graphs. The user can launch this view anytime by using the views button in
the tool bar. This view also becomes active automatically when user simulates the model successfully.

2.4.3 Interactive Simulation View

This view is quite similar to Plotting View. One of the primary differences is that Plotting View is used
to show graphs of pre-built models that cannot be changed. However, in the Interactive Simulation
View the user can change the values of variables and parameters of the model at runtime.

44

2.5 OMEdit Windows/Tabs

The OMEdit GUI contains several windows that shows different views to users:

e Library Window for the Modelica Standard Library.

e Drawing interface in the form of Designer Window.

e Plot Window contains the list of instance variables.

o Messages Window displays the informational, warning and error messages.

e Documentation Window displays the Modelica annotations based documentation in a QWebView.
e Model Browser Window displays the component hierarchy of the model.

251 Library Window

The Modelica Standard Library is automatically loaded in OMEdit and is located on the left dock window.
Once a Modelica model has been created then the user can just drag and drop components into the model from
the MSL, the Library Window. The available libraries in the MSL are:

e Blocks

e Constant

e Electric

e |cons

e Magnetic
e Math

e Mechanics
e Slunits

e Thermal

e UsersGuide
e Utilities

The Library Window consists of two tabs one shows the Modelica Standard Library and is selected by
default the other tab shows the Modelica files that user creates in OMEdit.

2511 Viewing Models Description

In order to view the model details, double click the component and details will be opened in Designer
Window. Alternative way is to right click on the component and press Show Component, it will do the same.
25.1.2 Viewing Models Documentation

Right click the model in the Library Window and select View Documentation; it will launch the
Documentation Window. See Figure 2-11.

2513 How to Open an Existing Model?

e GotoFile->0pen. An Open Model Dialog Appears. The user can go to the required file location and
click on it to open the model in OMEdit.

e The user can also drag any model from an outside window and drop it into the Main Window of
OMEdit to open that model.

45

2514 How to create a Copy of an Existing Model?

To copy a model, the user can simply right click on the model in the Library Window, and then select copy.
To paste the copied model the user can click on any empty space in the Library Window and click on the
paste Option. A copy of the model will be created initialized with a new name.

25.15 How to Check a Model?

Right click the component in the library window and select Check; it will launch the Check Dialog. See Figure
2-11.

25.16 How to Instantiate a Model?

Right click the component in the library window and select Instantiate Model; it will launch the
Instantiate Model Dialog. See Figure 2-11.

25.1.7 How to Rename a Model?

Right click the model in the Library Window and select Rename; it will launch the Rename Dialog. See
Figure 2-11.

25.1.8 How to Delete a Model?

Right click the model in the library window and select Delete; a popup will appear asking “Are you sure
you want to delete?”

&4 OMEdit - OpenMod
File Edit View Simulstion Tools Help

wﬁ' = DB % &QD- 2e \\...a. ’N;’\ o ﬂl’\omng % Interactive Simulation
Compenents 8 % | oavotr= [|

Modelica Standard Library s En |Wnteab|e |Me| |[)aqam view ‘ |
= £ Modelica

(&) Blocks
[=] Constants
B [Eectrical
= £ Analog

& (] Basic

resistorl inductorl

Re
L=2
n

- = Capacitor
FO® ccc
bR cov
<> Conductor
sl EMF

H * Ground
- &L Gyrator
|- <= Heating
f = Inducto
E oM
F &~ OpAmp

i $+ OpAmpDetailed

<> Resistor

sigralvatagel

Show Component
View Documentation
Check

Instantiate Model

[o= &

groundl

- === Saturatinglnductor

[=5 Transformer General |_info_| Waming | _Error |
t g TranslationalEMF OvEdt, ersion: 1,70
b~ VariableCapacitor OpenMadelica, Version: *1.7.0°

<> VariableConductor
F Lo Variablelnductor

Modelica Library | Modelica Files

o X

Messages

Figure 2-11: Context menu to view component model details.

252 Designer Window

The Designer Window is the main window of OMEdit. It consists of three views,

46

e |con View - Shows the model icon view.
e Diagram View - Shows the diagram of the model created by the user.
e Modelica Text View - Shows the Modelica text of the model.

25.3 Plot Variables Window

The right dock window represents the Plot Variables Window. It consists of a tree containing the list of
instance variables that are extracted from the simulation result. Each item of the tree has a checkbox beside it.
The user can click on the check box to launch the plot graph window. The user can add/remove the variables
from the plot graph window by marking/unmarking the checkbox beside the plot variable.

254 Messages Window

Messages Window is located at the bottom of the application. The Messages Window consists of 4 types of
messages,

o General Messages — Shown in black color.

¢ Informational Messages — Shown in green color.
e Warning Messages — Shown in orange color.

e Error Messages — Shown in red color.

255 Documentation Window

This window is shown when a user right clicks the component in the library window and selects View
Documentation. This shows the OpenModelica documentation of components in a web view. All externals
links present in the documentation window are opened in the default browser of the user. All local links are
opened in the same window. Figure 2-12 shows the Documentation Window view.

47

&4 OMEdit - OpenhModelica Con

File Edit View Simulation Tools Help
- R0 ° . > o DR p—
& HE # LLLEO W He N PN WDy &% Modeing Plotting)i Interactive Simulation
Companents 8 x| povotor” [0 Doaumentation & x
= writeable | Model | Diagram view I
Medelica Standard Library == Modelica
= (] Modelica
(& Blocks
[=] Constants resistor inductorl
= [Electrical _..|:|_D_.JYTT_D. Pockage Hodelica is > stondardiced and free pocksge that s devaluped togethar vith the il
= Anal Modelica language from the Modelica It is also called
[Analog 2 - Nodalica Standard Lbrary. 1t oviies modal ammenenie o oy Semos that ora escd on
= [Basic 1 " standardized interface definttions. Seme typical sxamples are shovm in the next figure:
|- = Capacitor o
- ccc 3
I cov 3 ips |
E E
<> Conductor 2
b wi= EMF 2 g
* ? o 45
b+ Ground e { &
b &L Gyrator 1 J T L | 1 l
|- <= HeatingResistor s N M| LA
I == Inductor
L =1 W Transformer For an introduction, have espacially = ook st:
O'A + Overview provides an overview of the Modelica Standard Library inside the User's Guide.
[%= OpAmp — + Release Notes summarizes the changes of new versions of this package.
L « Contact lists the contributors of the Modelica Standard Library.
$o+ OpAmpDetailed aroundi + The Examples packages in the various libraries, demonstrats how to usa the
b = Resistor of the coresponding sublibrary.
L v=e Saturatinginductor This version of the Modelica Standard Library consists of -
I 5352 Transformer
=5 |[General | info | Werning | Errer |
t g TranslationalEMF & | e, verson: 1,70
b~ VariableCapacitor OpenModelica, Versian: *1,7.0°
<> VariableConductor .
8
b L Variablelnductor B
Modelica Library | Modelica Files £

Figure 2-12: Documentation Window.

25.6 Model Browser Window

The Model Browser Window is located on the left bottom dock window below the Library Window. It lays the
outline of the currently opened model and show all the component heirarchy in a tree format. See Figure 2-13.

. OMEdit - OpenModelica

nection Editor

File Edit View Simulation Tools Help

A- T Hd # RRLEO WemROE

Components

M1* Gearbox [

PRSP Ay

Modelica Standard Library it
B (7] Modelica

= FAE R

Read-0Only

Model ‘Diagram\ﬁew ‘

@ Blocks

=] Constants

Modelica Library Modelica Files

Model Browser

Outline
=l Modelica.Mechanics.Rotational. Components.Gearbox
PartialTwoFlangesAndSupport
ratio

lossTable

Ec

| ® Real

= d

| Real

Eb

| Real

Type: type
Name: b
Description:

stateSelect
ohi rel

Figure 2-13:

Model Browser Window.

48

2.6 Dialogs

Dialogs are a kind of window that is not visible by default. The user has to launch them or they will
automatically appear due to some user action. The following dialogs are available:

e New Dialog for creating new Modelica models.

e Simulation Dialog for simulating Modelica models.
e Model Properties Dialog.

o Model Attributes Dialog.

2.6.1 New Model Dialog

The New Dialog can be launch from File > New > Model Type. Model type can be model, class,
connector, record, function and package.

2.6.2 Simulation Dialog

Simulation Dialog can be launched either from Simulation > Simulate or by clicking on the
Simulate! button in the toolbar. Figure 2-8 shows a simulation dialog. The simulation dialog consists of
simulation variables. You can set the value of any variable, depending on the simulation requirement.
Simulation variables are,

e Simulation Interval
= Start Time
= Stop Time
e Output Interval
= Number of Intervals
= Qutput Interval
e Integration
= Method
= Tolerance
= Fixed Step Size

2.6.3 Model Properties Dialog

The models that are placed in the Designer Window can be modified by changing the properties. In order to
launch the Model Properties Dialog of a particular model right click the model and select Properties.
See Figure 2-14. The properties dialog contains the name of the model, class hame the model belongs to and
the list of parameters of the component.

49

FA OMEdit - GpenModelica Con

File Edit View Simulation Tools Help

-1 # LRLOEO WONOEN P XS W

= HeatingResistor

b = Inductor

F 11 M Transformer

F %~ OpAmp

i $+ OpAmpDetailed
<> Resistor

- w=e Saturatinglnductor
- 25 Transformer

t g TranslationalEMF
b~ VariableCapacitor
<> VariableConductor
F Lo Variablelnductor

Modelica Library | Modelica Files

Companents 2 X || pcMotor® [‘
Modelica Standard Library = |l E n |m |Mndd ‘Wmm |
= (7] Modelica
[g]l Blocks o OMEdit - Compenent Prope;
[=] Constants
E (5] Electrical Properties
= [Analog
5 [Basic L
|- == Capacitor
- cco General | Parameters | Modifiers
r I cov Component
|- == Conductor
T Name: [emfl
- sii= EMF
a Comment: Modelica.Electrical. Analog.Basic. EMF
F * Ground L
- =L Gyrator

General | Info | Waming [Eror |

OMEdit, Version: 1.7.0
OpenModelica, Version: "1.7.0"

Messages

Figure 2-14: Properties Dialog.

264 Model Attributes Dialog

Right click the model placed in the Designer Window and select Attributes. It will launch the attributes
dialog. Figure 2-15 shows the Model Attributes Dialog.

|4 OMEdit - OpenModelica
File Edit View Simulation ook Help

Al # 2RO E0 WeBOEN P XS @

- = HeatingResistor

= == Inductor

b =1 M_Transformer

F B OpAmp

i $+ OpAmpDetailed
<> Resistor

- »== Saturatinglnductor
35 Transformer

C & X || pcMotor® [‘
Modelica Standard Library = oo E \ |W'i |,“mk,_I ‘mmm |
= [Medelica =
(& Blocks Attributes
[=] Constants
E (5] Electrical
= (] Analog
= (7 Basic L =
F 4~ Capacitor T Mame: Modelica.Electrical. Analog. Basic. EMF
Lo cce Comment: |
-0 cov variability Properties
b <= Conductor
‘%_ o) Canstant -
Paramter
F ¥ Ground S mE
L ©) Diserete
F & Gyrator Replacesble

®) Unspecified (Default)

Causality
© Input
© output
@) None

InnerfQutput

Inner
Outer

Lo J[ol]

X | General | Info | waming [Emor |
t g TranslationalEMF & | e, verson: 1,70
b~ VariableCapacitor OpenModelica, Versian: *1,7.0°
<> VariableConductor .
F - Variablelnductor <18
Modelica Library | Modelica Files £

Figure 2-15: Attributes Dialog.

50

2.7 Interactive Simulation in OMEdit

OMEdit uses the OpenModelica Interactive (OMI) subsystem to perform the interactive plotting. The OMI uses
the TCP/IP technique to transfer data back and forth. OMEdit connects with OMI through TCP sockets.

2.7.1 Invoking Interactive Simulation

Interactive Simulation Dialog can be launched either from Simulation > Interactive
Simulation or by clicking on the Interactive Simulation! button in the toolbar. Interactive Simulation
Dialog looks similar to the Simulation Dialog but it differs in functionality, instead of performing normal pre-
built simulation it performs online interactive simulation where simulation responds in real-time to user input
and changes to parameters.

A OMEdit - OpenModelica Connect . =
File Edit View Simulation Took Help
n = 3 = - o . .
d-THld # RLP B0 MOBOEN X Wow [mosies| @B ot I cacivesmntn
Components & X | pcMotor* [
Modelica Standard Library (= B D | |voce ‘Dmm . |
£l] Moddica
Block: -
(&) Blocks <A OMEdit - Interactive Simulation ‘ ==
=] Constants
=l (& Electrical - - -
= Interactive Simulation
= (£ Anslog
=[] Basic L Smulation Interval
-+ Capacitor Start Tme: [0.0
- coc Stop Time: [1.0
I8 ccv
b Conductor Output Interval
,,?.. EMF Number of Intervals: | 500
H
I Ground B | Integration
[iEE: Gyrat
L Gyrator Method: [dassl -]
b <z HeatingResistor
0 Tolerance: 0.000001
I~ Inductor
f 121 M_Transformer OuputFormati [mat =
b2~ Opamp File Name (Optional): []
b ott= OpAmpDetailed Compiler Flags: [|
b < Resistor
. Simulate!
L2 Sotrstinginguctor
F 52 Transformer o —
F & TrenslationalEMF B Mt Verson: 1.70
b~ VariableCapacitor OpenModelica, Version: *1.7.0"
5> VariableConductor .
b1 variablelnductor g
£
:

Modelica Library | Modelica Files

Figure 2-16: Interactive Simulation Dialog.

2.7.2 Interactive Simulation View

Once your model was successfully built using the Interactive Simulation Dialog, the Interactive
Simulation View will become active automatically. Interactive Simulation View contains,

e Graph — It contains a graph which is used to display the values of selected variables over the time.

e Parameters — The parameters of the model are shown on the right top section with the default values.

e Variables — The right bottom section contains the list of variables that user can select for interactive
plotting.

o Initialize Button — This button is used to send the information of changed parameters and checked
variables to the OpenMaodelica Interactive subsystem.

51

e Start Button — Once the parameters and variables are initialized and sent to the OMI. Then the user can
click on start button and start the interactive plotting.

e Pause Button — This button pauses the running interactive plotting.

e Stop Button — Clears everything but does not remove the connection with OMI. After clicking stop
button user has to reinitialize everything and start the interactive plotting again.

e Shut Down Button — Disconnects from OMI and closes the interactive simulation session.

e Show OMI Log Button — Pops up a log window which displays the messages exchanged between
OMEdit and OMI.

File Edit View Simulation Tools Help

- THH # 200 EO WoeBOEN 9 X4 @

Components 8 x

model1]

Modelica Standard Library |-
= [Modelica

¥ (@ Blocks

(&) Constants

= (&) Electrical

= £ Analog

= {7 Basic

= Capacitor
FI® ccc

FIE cov

| Conductor
b EMF

F * Ground

- :E: Gyrator

-2 HeatingResistor

m

= Inductor
b 21 M _Transformer
[¥+ OpAmp
b S OpAmpDetailed
> Resistor

[ictor

of% Modeing S Pltting | 757 Interacive Smulation

Pan FitinView Save Print (Grd) [logx [JLlogy

suu::
euu::
400::
ZEIEI::

r v v T
0 200

= Initislize

400

O st O rause

[~ 35 Transformer

F e TrensletionalEMF

b ~¥~ VariableCapacitor

b <= VariableConductor

b -1« Variablelnductor i

Modelica Library | Modelica Files

600
time

T
800

v 1
1000

IOSmu]

[@ Shut Down]

[Show OMI Log

Parameters

*The parameters defauit value s used if no value is spedified.

lambds [0.3

Variables

= Select the variable to plotit.
Ex

Ov

[der()

[0 der(y)

[lambda

General | Info | Wamning | Erer

m X

- Info 1; 20:48:58 -
Renamed 'm' to 'model1’

Messages

Figure 2-17: Interactive Simulation View.

52

Chapter 3

2D Plotting and 3D Animation

This chapter covers 2D plotting available from OMNotebook, OMShell or programmable plotting from your
own Modelica model. The 3D animation is currently turned off by default, but will be available in an enhanced
version in a future release.

3.1 Enhanced Qt-based 2D Plot Functionality

Starting with OpenModelica 1.4.5, enhanced plotting functionality is available (Eriksson, 2008). The enhanced
plotting is implemented based on a Qt-based (Trolltech, 2007) GUI package. This new plotting functionality
has additional features compared to the old Java-based PtPlot plotting. The simulation data is sent directly to
the plotting window in OMNotebook (or a popup window if called from OMShell), which handles the
presentation (see Figure 3-2). As OMNotebook now has access to all source data it is now possible to
manipulate diagrams, e.g. zoom or change scales.

To allow the use of graphics functions from within Modelica models a new Modelica APl has been
developed. This utilizes an external library to communicate with OMNotebook. In addition to this, a number of
new functions that can be used for drawing geometric objects like circles, rectangles and lines have been added.

The following is a summary of the capabilities of the new 2D graphics package:

o Interaction with OMNotebook. The graphics package has been developed to be fully integrated with
OMNotebook and allow modifications of diagrams that have been previously created.

e Usage without OMNotebook. If the functionality of the graphics package is used without OMNotebook,
a new window should be opened to present the resulting graphics.

e Logarithmic scaling. Some applications of OpenModelica produce simulation data with large value
ranges, which is hard to make good plots of. One solution to this problem is to scale the diagram
logarithmically, and this is allowed by the graphics package.

e Zoom. To allow studying of small variations the user is allowed to zoom in and out in a diagram.

e Support for graphic programming. To allow creation of Modelica models that are able to draw
illustrations, show diagrams and suchlike, it is possible to use the graphics package not only from the
external APl of OMC, but also from within Modelica models. To accomplish this a hew Modelica
interface for the graphics package has been created.

53

Programmable Modelica API. The Modelica API is defined by a number of Modelica functions, located
in the package Modelica.Graphics.Plot, which use external libraries to access functionality of the
graphics package.

The programmable Modelica API functions include the following:

plot(x). Draws a two-dimensional line diagram of x as a function of time.

plotParametric(x,y). Draws a two-dimensional parametric diagram with y as a function of x.
plotTable([xd, .., y1; .. ; Xn, .., yn]). Draws a two-dimensional parametric diagram with y as a function
of x.

drawRect(x1, X2, y1, y2). Draws a rectangle with vertices in (x1, y1) and (x2, y2).

drawEl lipse(X1, X2, y1, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1) and
(x2, y2).

drawLine(x1, x2, y1, y2). Draws a line from (x1, y1) to (x2, y2).

A faster and more stable plot implementation is available from the OpenModelica 1.7 release. Currently these
commands can be used by giving the plot3(...) command instead of plot(...). In future releases the faster
plot implementation will be the default.

CORBA: answer. I.e. done

Y
TCP/IP: simulation data
OoMC = GraphWidget
= Resutfie
t GraphCell
CORBA: plot OMMNotebook

Figure 3-1. Plotting architecture with the new 2D graphics package.

3.2 Simple 2D Plot

To create a simple time plot the model Hel loWor1d defined in DrModelica is simulated. To reduce the amount
of simulation data in this example the number of intervals is limited with the argument
numberOfIntervals=10. The simulation is started with the command below.

simulate(HelloWorld, startTime=0, stopTime=4, numberOflntervals=10);

54

When the simulation is finished the file HellowWorld res.plt contains the simulation data. The contents of

the file is the following (some formatting has been applied).

0 1
4.440892098500626e-013 0.9999999999995559
0.4444444444444444 0.6411803884299349
0.8888888888888888 0.411112290507163
1.333333333333333 0.2635971381157249
1.777777777777778 0.1690133154060587
2.222222222222222 0.1083680232218813
2.666666666666667 0.06948345122279623
3.111111111111112 0.04455142624447787
3.555555555555556 0.02856550078454138
4 0.01831563888872685

Diagrams are now created with the new graphics package by using the following command.
plot(Xx);
seems to correspond well with the data.
Plot by OpenModelica

0.8

0.6

&

0.4

0.2

\

0.5 1 1.5 2 2.5 3 3.5 4
kirre

Figure 3-2. Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, e.g. using the default 500 intervals, a much smoother
plot can be obtained.

55

simulate(HelloWorld, startTime=0,

plot(Xx);

stopTime=4, numberOflntervals=500);

plot (x)

true

Plot by OpenModelica

AN

0.6

0.4

N

0.21

>~

‘“%ﬁﬁhﬁhﬁih

--_--_--'_""—-—.

T —

0.5 1

1.5

2
time

2.5 3

3.5

[T%

Figure 3-3. Simple 2D plot of the HelloWorld example with larger number of points.

Additional features of the new plotting are shown in Figure 3-4 and Figure 3-5.

56

i x]

File Edit Insert Tools Help

|l cpen save | Print | Select | zoom Pan || Grid | Preferences || Active

Plot by OpenModelica

0.8
0.6 B
r
|T Show line
0.4 \ |T Show data points
Change color
0.2
0.5 1 1.5 2 2.5 3 3.5 4
time
A

Figure 3-4. Features of the new Qt-based Plotting Package: Show data points, Change line colors, etc.

H graphWindow -0 x|

File Edit Insert Tools Help

J_l Dpen; Save | Print: | Select | Zoom Pan || Grid | Preferences || Active

Plot by OpenModelica

Q.36

s
0.35
\& Fan |

0.34 v Zoom
v Grid

Clear
0.33 Hold

Antialiasing

Save parameters '\\
0.32
Simulation data \\
Preferences |

1.04 1,06 1.08 1.1 1.12 1.14 1.15
time

Figure 3-5. Features of the new Qt-based Plotting Package: Zoom, Fit in view, Grid, etc.

3.2.1 Plot Functions and Their Options

All plot functions are part of Mode licaBui I'tin.mo* with additional explanation below.

4 OPENMODELICAHOME/lib/omc/ModelicaBuiltin.mo

58

Command

Description

plot(x)

Creates a diagram with data from the last simulation that
had a variable named x.

plot({X,Y¥,---, z})

Like the previous command, but with several variables.

plotParametric(x, Yy)

Creates a parametric diagram with data from the last
simulated variables named x and y.

plotParametric(x, {yl,y2})

Like the previous command, but with several variables.

plotAll ()

Creates a diagram with all variables from the last

simulated model as functions of time.

All of these commands can have any number of optional arguments to further customize the the resulting
diagram. The available options and their allowed values are listed below.

Option Default value Description
fileName The result of the last | The name of the result-file containing the variables to
simulation plot
grid true Determines whether or not a grid is shown in the
diagram.
title "Plot by OpenModelica"™ | This text will be used as the diagram title.

interpolation linear

Determines if the simulation data should be interpolated
to allow drawing of continuous lines in the diagram.
"linear" results in linear interpolation between data
points, "constant™" keeps the value of the last known data
point until a new one is found and "none" results in a
diagram where only known data points are plotted.

legend true Determines whether or not the variable legend is shown.

points true Determines whether or not the data points should be
indicated by a dot in the diagram.

logX false Determines whether or not the horizontal axis is
logarithmically scaled.

logY false Determines whether or not the wvertical axis is
logarithmically scaled.

xRange {0, 0} Determines the horizontal interval that is visible in the
diagram. {0, 0} will select a suitable range.

yRange {0, 0} Determines the vertical interval that is visible in the
diagram. {0, 0} will select a suitable range.

antiAliasing false Determines whether or not antialiasing should be used
in the diagram to improve the visual quality.

vTitle This text will be used as the vertical label in the
diagram.

hTitle “time” This text will be used as the horizontal label in the

diagram.

59

3.2.2 Zooming

The left mouse button can for instance be used for zooming in on interesting parts of the diagram.The same
result can be achieved by using the optional parameters xRange and yRange. The plotParametric
command would then look like the following.

plotParametric(x, y, xRange={0.9, 1.95}, yRange={-1.5, 1.35})

-
4 OMNotebook: (untitled)®
File Edit Cell Format Insert Window Help

Al =2er 0 QElve
plotPara_metric{x,)

True

Plot by dpenMod.eI.ica

20
L5H

iq

0.5H
o
0.5

qf
~1.5H

24

Ready Ln 1, Col 20

Figure 3-6. Zooming in an Input cell.

60

o
i OMNotebook: (untitled)*

File FEdit Cel Format Insert Window Help
= % |
H = i 2 Ul « ©
plotPara_metrJ.c(x y]
true
Plot by OpenModelica
1
0.5
.“\-.
“ = ek
BT
5 ’_._‘__'_._____.——'".,F.- L _r‘:#:ﬁ:.:::;#.__-_,_d'—'
__________._._-—-—-—'_'_'____...———-'--—.
——F"::::::___.—-——“——
1 1.2 1.4 18 L3
time
Ready Ln 1, Col 20

Figure 3-7. Magnified input cell.

3.2.3 Plotting all variables of a model

A command, plotAll, has been introduced to plot all the variables of a model. This can be useful if a model
contains many interesting variables, as it might be easier to remove variables that are not important than to list
all those who are. The command available for this is plotAl1().The command below applies plotAll to the
model HelloWorld. The result is shown in Figure 3-8. The simplest way to remove unimportant variables is to
use the Remove command in the Legend menu.

' plotall (HelloWorld)

1
true

Flot by OpenModelica

"'1 \‘l'l"|r|+u|”';|'9 T g
A
i -i'_-;l-!-" g
N cmmum '||||||||' :“;I .';
"“"WH I L «mul L w\|'nu i

Figure 3-8. Result of the plotAll command.

61

3.2.4 Plotting During Simulation

When running long simulations, or if plotting without need for commands like plot or plotParametric is
desired, the interface for transfer of simulation data during running simulations can be used. This is enabled by
running the following command.

enableSendData(true)

The same command, but with the parameter false, is used to disable the interface. Enabling of the interface has
some drawbacks though. The simulation time will be longer as the transfer of data will require some resources.
If the simulation data would have been plotted anyway, some of this time will be saved later however. To
reduce the amount of data that has to be transferred, and thereby reduce the time needed to do so, the
interesting variables in the model can be specified with the variableFilter option of the simulate
command (see Section 1.2.14 for details). If for instance the model HelloWorld is to be simulated the
following commands can be used.
class HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld;

enableSendData(true);
simulate(HelloWorld, startTime=0, stopTime=25, variableFilter="x");

When the simulation data has been transferred the button D will appear to the right of the input field. By
pressing this dialog Simulation data will appear, where new curves can be created.

3.2.5 Programmable Drawing of 2D Graphics

The graphics package provides functions for drawing of basic geometrical objects in the graphics area. These
can be used from Modelica models and are executed when the model is simulated. To avoid name conflicts, the
functions have been put in the package Modelica.pltpkg. The functions of the Modelica programmable
plotting interface are described below.

o plot(model, "x™). Creates a diagram with data from the variable x in the
previously simulated model model.
o plot(model, "X, y"). Like the function above, but with more than one variable.

o plotParametric(model, "X", "y"). Creates a parametric diagram with data from the variables x and y
in the previously simulated model model.

o plotTable([x1, y1, z1, ...; X2,y2, z2, ...;...]). Draws y and z as functions of x..
e clear().Clears the active GraphWidget.

e rect(Xxy, X2, y1, y2). Draws a rectangle with vertices in (x1, y1) and (x2, y2).
o ellipse(xt, X2, y1, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1) and (xz,
y2).

62

o line(xl, x2, y1, y2). Draws a line from (x1, y1) to (x2, y2).

e hold(Boolean on). Determines whether or not the active GraphWidget should be cleared before new
graphics is drawn.

e wait(ms). Waits for (at least) ms milliseconds.

The following model shows how these functions can be used to draw ellipses, rectangles, and lines.

model testGeom
parameter Integer n=10;
protected
Boolean b[n,n];
equation
for x in 1:n loop
for y in 1:n loop
when initial() then
if((y == 1) or (y == 10) or (x == 1) or (x == 10)) then
b[x,y] = pltpkg.rect(x, y, x+1, y+1, fillColor = “blue",
color = "green');
else if(y >> 4 and y <= 5 and x >= 4 and x <= 5) then
b[x,y] = pltpkg.line(x, y, x+1, y+1, color = "red");
else
b[x,y] = pltpkg.ellipse(x, y, x+1, y+1, fillColor = "yellow",
color = "black');
end if;
end if;
end when;
end for;
end for;
end testGeom;

Plat title

\AAAAAAA

4
4
4

AALAAAAR
444444

2 4 6 g 10

Figure 3-9. Programmable drawing of rectangles and ellipses.

3.2.6 Plotting of Table Data

Another way to visualize data provided by the graphics package is plotting of table data. This is done by using
the command pltpkg.plotTable, which expects a matrix of Real values as a parameter. The rows of this

63

matrix represent variable values. The first column is the time variable and the other columns contains values at
these points in time. The names of the variables can be specified with the argument variableNames, which is

a String list. The following model demonstrates how this command can be used.

model table
protected
Boolean b;
algorithm
b := pltpkg.pltTable([O,
10, 0.94, 0.92, 23, 28;
20, 0.94, 0.91, 32, 35;
30, 0.93, 0.90, 43, 46]
end table;

0.95, 0.92, 20, 25;

);

The result is shown in Figure 3-10 below.

45 =
- I
40 T
35 | T T
0 L | e
L L LT | | 1
2508 —— I
e —8
20—
150
10
5]
ok]) §
5 10 15 20 25

Figure 3-10. Plotting of table data.

3.3 Java-based PtPlot 2D plotting

The plot functionality in OpenModelica 1.4.4 and earlier was based on PtPlot (Lee, 2006), a Java-based plot
package produced within the Ptolemy project. To plot one uses plot commands within input cells which it
evaluates. Available plotting commands which call Java-based plotting are as follows, still available but

renamed with a suffix 2:

// normal one variable plotting, time on the X axis

plot2(variable);

// normal multiple variable plotting, time on the X axis

plot2({variablel, variable2, variable3, ..

// to plot dependent values

plotParametric2(variableX, variableY);

variableN});

64

For example:

simulate(HelloWorld, startTime=9, stopTime=4);
plot(Xx);

_loix

File Edit Special

Plot by OpenModelica

0.0

0.0 0.5 1.0 1.8 2.0 25 a0 a5 4.0

Figure 3-11. Java-based PtPlot plot window.

3.4 3D Animation

There are two main approaches to add 3D graphics information to Modelica objects:

e Graphical annotations
e Graphical objects

Both of these approaches were investigated, but the second was finally chosen.

3.4.1 Object Based Visualization

Since one important goal of this work is to come up with a system for visualization that might be used for
simulations done with the Modelica MultiBody library (Otter, 2008), it follows that much can be learned from
investigating currently available solutions. There are commercial software packages available that can visualize
MultiBody simulations.

The MultiBody package is well suited for visualization. Entities in a MultiBody simulation correspond to
physical entities in a real world and as such have many of the properties needed to correctly display them
within a visualization of the simulation, such as position and rotation. Other properties such as color and shape
can easily be added as properties or be decided based on the object type.

Instead of using annotations to encode information about how a certain object is supposed to look when
visualized, object based visualization creates additional Modelica objects of a predetermined type that can be

65

known to the client actually doing the visualization. These objects contain variables such as position, rotation
and size that can be connected to the simulated variables using ordinary Modelica equations. When asked to
visualize a model, the OpenModelica compiler can find variables in the model that are in the visualization
package and only send only those datasets over to the client doing the visualization, in this case OMNotebook.

Taking inspiration from the MultiBody library, a small package has been designed that provides a minimal
set of classes that can be connected to variables in the simulation. It is created as a Modelica package and can
be included in the Modelica Library. The package is called SimpleVisual, and consists of a small hierarchy
of classes that in increasing detail can describe properties of a visualized object. It is implemented on top of the
Qt graphics package called Coin3D (Coin3D, 2008). More information is available in (Magnusson, 2008). A
comprehensive earlier work on integrating and generating 3D graphics from Modelica models is reported in
(Engelson, 2000).

This section gives a short introduction to how the SimpleVisual package is used.

3.4.2 BouncingBall

The bouncing ball model is a simple example to the Modelica language. Adding visualization of the bouncing
ball using the SimpleVisual package is very straightforward.

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=10) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

To run a simulation of the bouncing ball, create a new InputCell and call the simulate command. The simulate
command takes a model, start time, and an end time as arguments.

simulate(BouncingBall, startTime = 0, stopTime = 5);

3.4.2.1 Adding Visualization

The bouncing ball will be simulated with a red sphere. We will let the variable h control the y position of the
sphere. Since the ball has a size and the model describes the bouncing movement of a point, we will use that
size to translate the visualization slightly upwards. First, we must import the SimpleVisual package and

66

create an object to visualize. That is done by adding a few lines to the beginning of the BouncingBal l model,
which we rename to BouncingBal 13D to emphasize that we have made some changes:
model BouncingBall3D

import SimpleVisual.*
SimpleVisual .PositionSize ball "color=red;shape=sphere;";

The string "color=red;" is used to set the color parameter of the object and the shape parameter controls how
we will display this object in the visualization.

The next step is to connect the position of the ball object to the simulation. Since Modelica is an equation
based language, we must have the same number of variables as equations in the model. This means that even
though the only aspect of the ball that is really interesting is its y-position, each variable in the ball object must
be assigned to an equation. Setting a variable to be constant zero is a valid equation. The SimpleVisual library
contains a number of generic objects which gives the user an increasing amount of control.

SimpleVisual .Position
SimpleVisual .PositionSize
SimpleVisual .PositionRotation

SimpleVisual .PositionRotationSize
SimpleVisual .PositionRotationSize0O_set

Since we are really only interested in the position of the ball, we could use SimpleVisual.Position, but to
make it a little bit more interesting we use SimpleVisual .PositionSize and make the ball a little bigger.

obj.size[1]=5; obj.size[2]=5; obj.size[3]=5;
obj.frame_a[1]=0; obj.frame_a[2]=h+obj.size[2]/2; obj.frame_a[3]=0;

A SimpleVisual .PositionSize object has two properties; size and frame_a. All are three dimensional
real numbers, or Real[3] in Modelica.

e size controls the size of the visual representation of the object.
o frame_a contains the position of the object.

3.4.2.2 Running the Simulation and Starting Visualization

To be able to simulate the model with the added visualization, OpenModelica must load the SimpleVisual
package.

loadLibrary(SimpleVisual)

Now, call simulate once more. This time the simulation will generate values for the added SimpleVisual object
that can be read by the visualization in OMNotebook.

simulate(BouncingBal 13D, start=0, end=5s);

To display the visualization, create an input cell and call the visualize in the input part of the cell.

visualize(BouncingBall3D);

67

N DT O A ST R IR X T pIEsO D)

File Edit Cell Format Insert Window Help
i .
2 Simulation
zimul ate (BouncingBHall, startTime=0,

[done]

visualize(BouncingBall);

[daone]

Ready

Figure 3-12. 3D animation of the bouncing ball model.

3.4.3 Pendulum 3D Example

stopTime=10);

L -
- 254

L

0.763

Dane

=163

Ln 1, Col 25

This example explores a slightly more complex scenario where the visualization uses all the properties of a
SimpleVisual object. The model used is a simple ideal 2D pendulum, not modeling properties like friction, air

resistance etc.

class MyPendulum3D "Planar Pendulum"
constant Real P1=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;
Real x(start=5),y(start=0);
Real vx,vy;
equation
m*der (vx)=-(x/L)*F;
m*der(vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
XN2+yN2=LL"2;
end MyPendulum3D;

68

Start by identifying the variables in the model that will be needed to create a visual representation of the
simulation.

¢ Real x and Real y hold the current position of the pendulum.
e Real L is a parameter which holds the length of the pendulum.

3.4.3.1 Adding the Visualization

As before, to be able to use the SimpleVisual package we must import it.

class MyPendulum3D "Planar Pendulum"
import Modelica.SimpleVisual;

Adding a sphere to represent the weight of the pendulum is done in the same way the BouncingBall was
visualized. The variables x and y hold the position.
ééél VX,VY;
SimpleVisual .PositionSize ball "color=red;shape=ball;";
equation
ball.size[1]=1.5; ball_size[2]=1.5; ball.size[3]=1.5;

ball.frame_a[1]=x; ball_frame_a[2]=y; ball_frame_a[3]=0;
m*der (vx)=-(x/L)*F;

The next step is to create a visualization of the "thread" that holds the pendulum. It will be represented by a
small elongated cube connected to the ball in one end and in the fixed center of the pendulum movement. We
will want the object to rotate with the pendulum motion so create a SimpleVisual.
PositionRotationSize object.

SimpleVisual .PositionRotationSize thread "shape=cube;"

To specify the rotation of an object, the visualization package uses two points. One is the position of the object,
frame_a, that has been demonstrated earlier. The other position, frame_b, is interpreted as the end point of a
vector from frame_a. This vector is used as the new up direction for the object. In this example, defining
frame_b is simple. The cube that represents the thread will always be pointing to (0, 0, 0). We already know
the length of the thread from the parameter L.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;

thread.frame_a[l]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame _b[2]=0; thread.frame_b[3]=0;

Running this simulation and starting the visualization, we notice that everything is not quite right. The thread is
centered around the pendulum. We could calculate a new position by translating the x and y coordinates along
the rotation vector, but there is a better way. Change the object type to SimpleVisual.
PositionRotationSizeOffset. The offset parameter is a translation within the local coordinate system of
the object. To shift the center of the object to be at the bottom of the thread we add an offset of L/2 to the y
component of offset.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;

thread.frame_a[l]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;

thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;

69

In the final model, a simple static fixture has also been added.

class MyPendulum3D "Planar Pendulum"
import Modelica.SimpleVisual;
constant Real P1=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;
Real x(start=5),y(start=0);
Real vx,vy;
SimpleVisual .PositionSize ball "color=red;shape=ball;";
SimpleVisual .PositionSize fixture "shape=cube;";
SimpleVisual .PositionRotationSizeOffset thread '“shape=cube;";
equation
fixture.size[1]=0.5; fixture.size[2]=0.1; Ffixture.size[3]=0.5;
fixture.frame_a[1]=0; fixture.frame_a[2]=0; fixture.frame_a[3]=0;
ball.size[1]=1.5; ball._size[2]=1.5; ball.size[3]=1.5;
ball.frame_a[l1]=x; ball_frame_a[2]=y; ball._frame_a[3]=0;
thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
thread.frame_a[1]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;
m*der (vx)=-(x/L)*F;
m*der(vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
XN2+yN2=L"2;
end MyPendulum3D;

We simulate and visualize as previously:

70

| | (| . W .I
OME 8y o et e g et g e el J Jd

Fle Edt Cell Format Insert window Help
loadModel (Modelica.3implevVisual)

[done]

simulate (MyPendulum, startTime=0, stoplime=35);

[done]

visualize (MyPendulim) 1

[Hone]

Play

HlH

tap

Rew

1.1

: Reardy Mnne Ini, Cnl 22

Figure 3-13. Visualization with animation of 3D pendulum.

3.5 References

Trolltech. Qt. http://www.trolltech.com/, accessed July 2007.
Coin3D. www.coin3d.org, accessed August 2008.

Henrik Eriksson. Advanced OpenModelica Plotting Package for Modelica. Master Thesis, LIU-

IDA/LITH-EX-A-08/036-SE, Linkdping University Electronic Press, www.ep.liu.se, June 22,
2008.

Henrik Magnusson. Integrated Generic 3D visualization of Modelica Models. Master Thesis, LIU-

IDA/LITH-EX-A-08/035-SE, Linkdping University Electronic Press, www.ep.liu.se, June 27,
2008.

Martin Otter. The Modelica MultiBody Library. http://www.modelica.org/libraries/Modelica,
Modelica.Mechanics.MultiBody, accessed August 2008.

Vadim Engelson. Tools for Design, Interactive Simulation, and Visualization of Object-Oriented Models

in Scientific Computing. Ph.D. Thesis. Linkdping Studies in Science and Technology,
Dissertation No. 627, http://www.ida.liu.se/~vaden/thesis/, 2000.

71

Edward Lee et al. The PtPlot package The Ptolemy Project. http://ptolemy.berkeley.edu/body.htm,
accessed July 2007.

72

Chapter 4

OMNotebook with DrModelica and DrControl

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook, together with the
DrModelica tutoring system for teaching Modelica, and DrControl for teaching control together with Modelica.
Both are using such notebooks.

4.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as
well as graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation
scripting, model documentation and storage, etc.

4.1.1 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with
documentation in the same document. Mathematica notebooks (Wolfram 1997) is one of the first WYSIWYG
(What-Y ou-See-Is-What-You-Get) systems that support Literate Programming. Such notebooks are used, e.g.,
in the MathModelica modeling and simulation environment, e.g. see Figure 4-1lbelow and Chapter 19 in
(Fritzson 2004)

4.1.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernstrém 2006) is a new open source free software that gives an
interactive WYSIWYG (What-Y ou-See-Is-What-You-Get) realization of Literate Programming, a form of
programming where programs are integrated with documentation in the same document.

The OMNotebook facility is actually an interactive WYSIWYG (What-Y ou-See-Is-What-Y ou-Get)
realization of Literate Programming, a form of programming where programs are integrated with
documentation in the same document. OMNotebook is a simple open-source software tool for an electronic
notebook supporting Modelica.

A more advanced electronic notebook tool, also supporting mathematical typesetting and many other
facilities, is provided by Mathematica notebooks in the MathModelica environment, see Figure 4-1.

73

E E valuated Modeling, Code Generation, and... [H[=] E3 ‘
N
Modeling E Evaluated Modeling. Code Generation, and... [H[=] E3

Simulati |

-
& =3 Evaluated Modeling. Code Generation, and... [l[=] E3
Process — =l

e
- using Mathe Rear urnn ou = Tie Limmastane ot

E E valuated Modeling, Code Generation, and... !E]m
RS- Sree v il Empn e con .

— mace skl o che w1 a I
S 2 The Seesaw/i = - gFwquistacCainx |

Pk
56-311 20 Cebavn ¥m 1B DD == {. phozicalusiurs,
=)

In dn meawn v Dlsgoneitetelx 141, 5., 1, 5., 8, @, &, 031,

c =) ruckl oFa rasie Than can cumly be chaurcd #.1TdentiopMeteix 12] |:

Cricm 3-8, 28, (o = ¢ Mat elxlaem

= Linemcim|F,
tom, 03,

60020 SR N4 2L3606 LL.EZEL 2.E3MEE L3NS
tam, 03, <4 -

& . sz
ST.EELEE L3ENRE L LE.RIDE L3D.3EEN L L ENN L B33ELD LfEEdL .

242, 943,
Map [Matcixtarm, 3 The conoml lus o be el 18 al = = YH, wher YH W recamrcricra of g mmms This pues de
Plomre cload loop murd @ e V= f W, = £ VHI

H
1
a
H
1
H
"
13

. N
P TN R

1 Introductior

Conari mwzra

= Praiiimeten

.
o e &
\ 50z -~ 4| v

Figure 4-1. Examples of Mathematica notebooks in the MathModelica modeling and simulation environment.

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are
divided into sections, subsections, paragraphs, etc. Both the document itself and its sections usually have
headings as labels for easier navigation. This kind of structure is also reflected in electronic notebooks. Every
notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can have different
kinds of contents, and can even contain other cells. The notebook hierarchy of cells thus reflects the hierarchy
of sections and subsections in a traditional document such as a book.

4.2 DrModelica Tutoring System — an Application of OMNotebook

Understanding programs is hard, especially code written by someone else. For educational purposes it is
essential to be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation it is
also important to have the source code, the documentation about the source code, the execution results of the
simulation model, and the documentation of the simulation results in the same document. The reason is that the
problem solving process in computational simulation is an iterative process that often requires a modification
of the original mathematical model and its software implementation after the interpretation and validation of
the computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing
efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning and
teaching of the language. There is a need for an environment facilitating the learning and understanding of
Modelica. These are the reasons for developing the DrModelica teaching material for Modelica and for
teaching modeling and simulation.

74

An earlier version of DrModelica was developed using the MathModelica environment. The rest of this
chapter is concerned with the OMNotebook version of DrModelica and on the OMNotebook tool itself.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a
table of contents that holds all other notebooks together by providing links to them. This particular notebook is
the first page the user will see (Figure 4-2).

@ DMNotebook: DrModelica.onb®

File Edit el Format Insert Window Help

Version 2006-04-11 |

DrModelic gMmodeiica Edition

Copyright: (o) Linképing University, PELAR, 2003-2006, Wiley-IEEE Press, Modelica Association.
Centact: Openblodelica@idaliu.se, Openbdodelica Project web site:

wwrw ida lu sefprojects/Opentdodelica

Book web page: www.mathcore com/drlodelica, Beook author: Peter Fritzson@ida I se

DilIodelica Authors: (2003 version) Susanna Monemat, Eva-Lena Lengguist Sandelin, Peter Fritzson, Peter Bunus
Dihdodelics Authors: (2005 and later updates): Peter Fritzaon

This DrModelica notebaok has been developed io facilitate learning the Modelica language as well as
providing an introduction to object-oriented madeling and simudation. It is based on and is
supplementary maierial to the Modelica hook: Feter Fritzeon: "Frinciples of Object-COriented
Modeling and Simudation with Modelica™ (2004), 940 pages, Wiley-IEEE Press, ISEN 0-471-471631.
Al of the examples and exercises in DrModelica and the pags references are from that book, Mosi aof
the fext in DrModelica iz also based on that book.

Detailed Copyright and Acknowledgment Information
Getting Started Using ONNotebook
OpenModelica commnands

Berkeley license OpeniModelica
1 A Quick Tour of Modelica
1.1 Getting Started - First Basic Examples
There 1z a long tradition that the first sample program in any computer language is a trivial program
printing the gii ?e]lo TWotld" (p. 19 1 Peter Fritzson's bools). Smee Modelica 13 an equation based
language, string does not make much sence. Instead, cur Helle World Modelica program solves
a trvial differential equation. The second example shows how you can write a model that zolves a

Differential Algebraic Equation Systetn (p. 15). In the Van der Pol (p. 22) example declaration as well as
iitialization and prefix usage are shown in a slightly more complicated way.

1.2 Classes and Instances

In Modelica objects are created wnplicitly just by Declanng Instances of Clazzes (p. 26). Almost anything
i Modelica iz a class, but there are some keywords for specific use of the class concept, called =

Ready

Figure 4-2. The front-page notebook of the OMNotebook version of the DrModelica tutoring system.

75

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The summary

introduces some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords
in detail

g OMNotebook: HelloWorld.onb*
File Edit el Format Insert Window Help

First Basic Class

1 HelloWorld

The progratm contains a declaration of a class called He 1 1oWo r1d with two fields and one equation. The first field is
the vanable = which iz mitahzed to a start value 2 at the time when the sunulation starts. The second field 1z the variable
a, which 1z a constant that is sutialized to 2 at the beginnmg of the simulation. Such a constant 1z prefized by the
keyword parameter m order to indicate that it 1z constant dunng smulation but is a model parameter that can be
changed between simulations.

The Modelica program solves a trivial differential equation: =T = — a * 3. The variable xis a state variable
that can chatge value over time. The x ' i3 the tine derivative of =

class HelloWorld
Real xi{start = 1);

parameter Real a = 1;
equation
dexr(x) = - a * x;

end HelloWorld:;

Ok

2 Simulation of HelloWorld

simulate{ HellaWorld, startTime=0, stopTime=4);

[done]

plot{ x);

Plot by OpenModelica

04r 1

ool

oo 0.5 1.0 1.5 20 2.8 an 3.8 40

Ready

Figure 4-3. The Hel loWor Id class simulated and plotted using the OMNotebook version of DrModelica.

Now, let us consider that the link “Helloworld” in DrModelica Section is clicked by the user. The new
HelloWorld notebook (see Figure 4-3), to which the user is being linked, is not only a textual description but

76

also contains one or more examples explaining the specific keyword. In this class, Hel lowWorld, a differential
equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write his/her own programs or
copy examples from other notebooks. This new notebook can be linked from existing notebooks.

EZ OMNotebook: drmodelica.onb o] 531

File Edit Cell Faormat Inmsert ‘Window Help
114l

Algorithms and Functions
Algorithims

In Modelica, algorithmic statements can only occur Wlﬂ]]ll Alf:mltlun Sections (p. 285),
starting with the keyword algorithm Sunple / g (p. 287) iz the
most common kind of statements m algorithm s,ectmns, Thele i a special form of
assignment statement that iz only vsed when the right hand side containg a call to a
Function with Multiple Results (. 287).

The for-Statement (also called for-loop) is a convenient way of expressmg iteration (p.
288). When using the for-loop for iteration we must be able to express the range of
values over which the iteration variable should iterate m a closed form as an iteration
expresszion. For cages where this iz not feasible there ig alzo a While-loop iteration
construct in Modelica (p. 290). For conditional expressions the if-Statement (p. 292) is
uzed. When-Statements (p. 293) are used to express actions at event instants and are
clozely related to when-equations. The Reinit (p. 296) statement can be used
when-statements to define new values for contimous-time stafe variables of a model at
an event.

The Assert (p. 298) statement provides a convenient means for specifying checls on
model validity within a model.

The most common usage of Terminate (p. 298) is to give more appropriate stopping
criteria for terminating a simulation than a fixed pomt in tune.

Exercises } J
Exercise 1

Exercise 2
Exercise 3
Exercise 4
Exercise §

Functions

The body of a Modelica function is a kind of algorithm section that containg procedural
algorithimic code to be executed when the function is Called (p. 300). Since a function ig
a restricted and enhanced kind of clags. it iz nogsible to inherit an existing fimetion hd
Ready v

Figure 4-4. DrModelica Chapter on Algorithms and Functions in the main page of the OMNotebook version of
DrModelica.

When a class has been successfully evaluated the user can simulate and plot the result, as previously depicted
in Figure 4-3 for the simple He l loWor 1d example model.

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by
doing the exercises that concern the specific chapter. Exercises have been written in order to elucidate language

77

constructs step by step based on the pedagogical assumption that a student learns better “using the strategy of
learning by doing”. The exercises consist of either theoretical questions or practical programming assignments.
All exercises provide answers in order to give the user immediate feedback.

Figure 4-4 shows part of Chapter 9 of the DrModelica teaching material. Here the user can read about
language constructs, like algorithm sections, when-statements, and reinit equations, and then practice
these constructs by solving the exercises corresponding to the recently studied section.

@DMNutehook: Exercisel.nb i] 4|

File Edit Zell Format Insert Window Help

Exercise 1

Using Algorithm Sections

Write a function, Sum, which calculates the sum of numbers, in an array of arbitrary size.

Write a function, Ave rage, which calculates the average of mumbers, i an array of arbitrary size. Average
should use malke a fimction call to Sum.

|]

TWrite a class, LargestAve rage, that has two arrays and calculates the average of each of them. Then it

compares the averages and sets a variable to true if the first array is larger than the second and otherwise false.

|]

Answer

Ready 7
Figure 4-5. Exercise 1 in Chapter 9 of DrModelica
Exercise 1 from Chapter 9 is shown in . In this exercise the user has the opportunity to practice different

language constructs and then compare the solution to the answer for the exercise. Notice that the answer is not
visible until the Answer section is expanded. The answer is shown in

78

0l OMNotebook: Exercisel.nb®
File Edit Cell Format Insert Window Help

=10l x|

I
Answer

Sum

function Sum
input Real[:] x;
output Real sum;
algorithm
for i1 in l:size(x,1) loop
sum := sum + x[1];
end for;
end Sum;

Average

function Average
input Real[:] x;
output Real awverage;
protected
Feal sum;
algorithm
average := Bum(x) / size(x,1);

end Average;

LargestAverage

class LargestAverage
parameter Integer[:] A1l = {1, Z, 3, 4,
parameter Integer[:] &2 = {7, 8, %};
Real averagehl, averagedZ;
Boolean AlLargestistart = false);
algorithm

averageil = Average(al);
averageAZ := Average(AZ);
if averageil > awverageAZ then
AlTargest = true;
else
AlLargest := false;
end if;

end Largesthverage;

Simulation of LargestAverage

S}

Fimulate(LargestAverage | ;

vaniable A 1L argest 15 false (= 0.

Ready

When we look at the values in the variables we see that 42 has the largest average (2) and therefore the

I

s el

Figure 4-6. The answer section to Exercise 1 in Chapter 9 of DrModelica.

79

4.3 DrControl Tutorial for Teaching Control Theory

DrControl is an interactive OMNotebook document aimed at teaching control theory. It is included in the
OpenModelica distribution and appears under the directory OpenModelical.8.1/share/
omnotebook/drcontrol.

The front-page of DrControl resembles a linked table of content that can be used as a navigation center. The
content list contains topics like:

e (Getting started

e The control problem in ordinary life
o Feedback loop

o Mathematical modeling

e Transfer function

e Stability

o Example of controlling a DC-motor
e Feedforward compensation

e State-space form

e State observation

e Closed loop control system.

e Reconstructed system

e Linear quadratic optimization

e Linearization

Each entry in this list leads to a new notebook page where either the theory is explained with Modelica
examples or an exercise with a solution is provided to illustrate the background theory. Below we show a few
sections of DrControl.

4.3.1 Feedback Loop

One of the basic concepts of control theory is using feedback loops either for neutralizing the disturbances from
the surroundings or a desire for a smoother output.

In Figure 4-7, control of a simple car model is illustrated where the car velocity on a road is controlled, first
with an open loop control, and then compared to a closed loop system with a feedback loop. The car has a mass
m, velocity y, and aerodynamic coefficient a. The 0 is the road slope, which in this case can be regarded as
noise.

80

File Edit Cell Format Insert Window Help

Feedback

One important method in designing control system is a feedback loop. It can be used to eliminate the
influence of noise or to decrease the output error.

ity efty

—>Q

vith
Regulator

1 Example

Assume that we want to control the speed of a car on the road. The car has a mass m, velocity y, and
aerodynamic coefficient . The 8 is the road slope, which in this case can be regarded as noise.

my =u— ay —mgsin(8)
If we want a reference speed of 20 m/s for a car with m=1500 kg, a=250 Ns/m, 8=0 rad, how high should T

the amplification factor be in the regulator?
Try with u = 250%r.

vit)=mesin(B)=0

L

-

Open Loop

loadModel(Modelica)
true

model noFeedback

import SI = Modelica.SIunits;

SI.velocity y; // output signal without
noise, theta = @ -> v(t) = @

8T Walaritu wNnica- /7 antnnt cianal with nnica

Figure 4-7. Feedback loop

Lets look at the Modelica model for the open loop controlled car:
my =u —ay —mgsin(f)

model NoFeedback
import SI = Modelica.Slunits;
Si.Velocity y "No noise"';
SI.Velocity yNoise "With noise";
parameter SlI._Mass m = 1500;
parameter Real alpha = 200;
parameter Sl. ngle theta = 5*3.14/180;
parameter Sl.Acceleration g = 9.82;
S1.Force u;
SI.Velocity r = 20 "Reference signal';
equation
m*der(y)=u - alpha*y;
m*der(yNoise)= u - alpha*yNoise —
m*g*sin(theta);
u = 250A*r;
end NoFeedback;

By applying a road slope angle different from zero the car velocity is influenced which can be regarded as
noise in this model. The output signal in Figure 4-8 is stable but an overshoot can be observed compared to the
reference signal. Naturally the overshoot is not desired and the student will in the next exercise learn how to get
rid of this undesired behavior of the system.

81

1 OMNotsbcok Feadback onb E= s]
Fie Ede Cl Fomat bt Wiedow Hep

1.1 Open Loop

LonaModel (Modelica)

BI.Maza m = 1500;

Feal alpha = 200;

pa z theta = 8°3.1%1882/180;
sae

similase (aoFesdbask, stopTins=108] 11
plot [y, T, yNaisel)

Plat by

o El ® C]]
e

Figure 4-8. Open loop control example.

The closed car model with a proportional regulator is shown below:

u=K=+(r—-y)

model WithFeedback
import SI = Modelica.Slunits;
Sl.Velocity y "Output, No noise";
Sl.Velocity yNoise "Output With noise";
parameter Sl_.Mass m = 1500;
parameter Real alpha = 250;
parameter Sl.Angle theta = 5*3.14/180;
parameter Sl_.Acceleration g = 9.82;
Sl .Force u;
Sl .Force uNoise;
Sl.Velocity r = 20 "Reference signal'';
equation
m*der(y) = u - alpha*y;
m*der(yNoise) = uNoise - alpha*yNois —
m*g*sin(theta);
u = 5000*%(r - y);
uNoise = 5000*(r - yNoise);
end WithFeedback;

By using the information about the current level of the output signal and re-tune the regulator the output
quantity can be controlled towards the reference signal smoothly and without an overshoot, as shown in Figure
4-9.

In the above simple example the flat modeling approach was adopted since it was the fastest one to quickly

obtain a working model. However, one could use the object oriented approach and encapsulate the car and
regulator models in separate classes with the Modelica connector mechanism in between.

82

File Edit Cell Format Insert Window Help

TR

model withFeedback
import SI = Modelica.SIunits;
SI.Velocity y;
SI.Velocity yNoise;
parameter SI.Mass m = 1500;
parameter Real alpha = 250;
parameter SI.Angle theta = 5*3.141592/180;
parameter SI.Acceleration g = 9.82;
SI.Force u;
SI.Force uNoise;
SI.Velocity r=20;
equation
m*der(y)=u-alpha*y;
m*der (yNoise)=uNoise-alpha*yNoise-m*g*sin(theta);
u = 5000*(r-y);
uNoise = 5000*(r-yNoise);
end withFeedback;

simulate(withFeedback, stopTime=10)

plot({r,y, yNoise}) // (reference signal, output signal with theta = @,
output signal with theta <> @)

true
Plot by Op

15 or

10 L 2%

5

@ yNoise
0
n)) & 2 in

Ready Ln4, Col 49

Figure 4-9. Closed loop control example.

4.3.2 Mathematical Modeling with Characteristic Equations

In most systems the relation between the inputs and outputs can be described by a linear differential equation.
Tearing apart the solution of the differential equation into homogenous and particular parts is an important
technique taught to the students in engineering courses, also illustrated in Figure 4-10.

d™y d™ty d™u

F‘l‘ﬂlF—F ...+ﬂn}i’=budt—m+'"+b

Now let us examine a second order system:

- +5b
m—1 dt mu

jrag+ay=1

model NegRoots

Real y;

Real der_y;

parameter Real al = 3;
parameter Real a2 = 2;

equation

83

der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end NegRoots;

Choosing different values for a; and a; leads to different behavior as shown in Figure 4-11 and Figure 4-12.

File Edit Cell Format Insert Window Help

Mathematical Modeling

In most systems the relation between the inputs and outputs can be approximated by a linear differential
equation.

n

d dn1 dm d
E}'(t) + al—dt”_l}‘(t} + o ta,yl(t) = bgdt—mu(t) +.+ bm,lgu(t)+bmu(t)

where the coefficients a; and b; are constants. The above differential equation has a homogeneous and a
particular solution:

¥=Yatm
The homogeneous solution where u is set to zero has the form:
Vi = CreMt + ot Cefnt
where

APt At ta, 44 +a,=0

] S | R S | R | EE | R Y R |
m m

1 Example

Consider the following model.

Examine the behavior of the system for different values on a, and a,

L

[

d 2 d 1
E}-‘(t} taios y(&) +aw() =1
Characteristic Equation with Negative Real Roots, A=-1,-2]
model negRoots
Real vy;
Real der y;
parameter Real al
parameter Real a2
equation
der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end negRoots;

{negRoots}
simulate(neaRoots. stonTime=18} 1

3;
2;

Figure 4-10. Mathematical modeling with characteristic equation.

In the first example the values of a; and a, are chosen in such way that the characteristic equation has negative
real roots and thereby a stable output response, see Figure 4-11.

84

File Edit Cell Format Insert Window Help

W W | = ¥ 1 QU= v | O

1 Example]
Consider the following model. }]
d? dt
Y8 tarogy() +axy®) =1
Examine the behavior of the system for different values on a; and az }

1.1 Characteristic Equation with Negative Real Roots, }=-1,-2 }]

model negRoots
Real y;
Real der_y;
parameter Real al
parameter Real a2
equation
der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end negRoots;

{negRoots}
simulate(negRoots, stopTime=10)

3;
2;

record SimulationResult
resultFile = "negRoots_res.plt"
end SimulationResult;

plot({y})
frue
Plot by Op

0.5

0.4
0.3
oy
0.2

0.1

time

Ready
Figure 4-11. Characteristic eq. with real negative roots.
The importance of the sign of the roots in the characteristic equation is illustrated in Figure 4-11 and Figure

4-12, e.g., a stable system with negative real roots and an unstable system with positive imaginary roots
resulting in oscillations.

model NegRoots

Real y;

Real der_y;

parameter Real al = -2;
parameter Real a2 = 10;

equation

der_y = der(y);

der(der_y) + al*der_y + a2*y = 1;
end NegRoots;

File Edit Cell Format Insert Window Help

7 = - ¥ L =~ —:.Q v | @

1.4 Characteristic Equation with Imaginary Roots with Positive Real Part, A=1+3i,1-3i

model imgPosRoots

Real y;

Real der_y;

parameter Real al = -2;
parameter Real a2 = 18;

equation

der_y = der(y);

der(der_y) + al*der_y + a2*y = 1;
end imgPosRoots;
{imgPosRoots}
simulate(imgPosRoots, number0fIntervals=10080, stopTime=15.5)
record SimulationResult

resultFile = "imgPosRoots_res.plt"
end SimulationResult;
plot(y)
true

Plot by Op

500000
400000
300000
200000
100000 ey

0

-100000
-200000

(4] 5 10 15
time
As concluding words one can say that if the characteristic equation has negative real roots then the
homogenous solution dies out. On the other hand real positive root leads to that the signal becomes
Ready

Figure 4-12. Characteristic eg. with positive imaginary roots.

File Edit Cell Format Insert Window Help

WN-EH (=B & [||« | @
1 Example
Consider a tank system with the following transfer function 1
. -
i
T

‘What is the weight function? Can you plot the step response of the ank?

1

-

Tank Transfer Function

loadModel(Modelica.Blocks)

model Tank
Modelica.Blocks.Continuous.TransferFunction G(b={1/A},
a={1,1/T},y_start(fixed=true)=1/A);
Modelica.Blocks.Continuous.TransferFunction GStep(b={1/A}, a={1,1/T});
parameter Real T = 15;
parameter Real A = 5;
Real u = if (time > ©@ or time<@) then @ else Modelica.Constants.inf;
Real uStep = if (time > © or time<@) then 1 else ©;
equation
G.u = if time > © then © else 1el®;
GStep.u = uStep;
end Tank;

{Tank}
simulate(Tank, startTime=-1e-10, numberOfIntervals=500, stopTime=10);

plot({G.y,GStep.y})
true

Plot by OpenModelica

14
1.2
1 @Gy
0.8
0.6
0.4 @ GStep.y

0.2

0 2 4 6 8 10
Ready Ln8,Coll

86

Figure 4-13. Step and pulse (weight function) response.

The theory and application of Kalman filters is also explained in the interactive course material.

@‘EMNoiebook: Kalman.oi d =kl
File Edit Cell Format Insert Window Help
o 97 W = oy _ | = @ v @

1 Kalman Filter

Often we don't have access to the internal states of a system and can only measure the outputs of the system and
have to reconstruct the state of the system based on these measurements. This is normally done with an observer.
The idea with an observer is that we feedback the difference of the measured output with the estimated output. If
the estiamtion is correct then the difference should be zero.

Another difficulty is that the measured quantities often contain disturbance, i.e. noise.

J

{f:Ai+3u+e
§=CR+v

lm

Here are e denoting a disturbance in the input signal and v is a measurement error. The quality of the estimate can
be evaluated by the difference

f K(y(t) - C2(t) - Du(t))

By using this quantity as feedback we obtain the observer

£ = AZ(t) + Bu(t) + K(y(t) — C2(t) — Du(t))

Now form the error as

The differential error is

Ready Ready

Figure 4-14. Theory background about Kalman filter.

In reality noise is present in almaost every physical system under study and therefore the concept of noise is also
introduced in the course material, which is purely Modelica based.

87

File Edit Cell Format Inset Window Help

-|"H'-5'?".“ ._u\‘_;‘f/@

model RalmanFeedback
parameter Real A[:,size(A, 1)] = {{0,1},{1,0}} ;
parameter Real B[size(a, 1),:] {{0},{1}};
parameter Real C[:,size(a, 1)] {{1,0}1;
parameter Real[2,1] K = [2.4;3.4];
parameter Real[l,2] L = [2.4,3.4];
parameter Real[:,:] ABL = A-B*L;
parameter Real[:,:] BL = B*L;
[parameter Real[:,:] Z = zeros(size (ABL,2),=ize(ARC,1));
parameter Real[:,:] ARC = A-K*C;
parameter Real[:,:] Anew [0,1,0;0 : 1.4, —3.4, 2.4,3.4: 0,0,-2.4;1:0,0,=-2.4,0]:
parameter Real[:,:] Bnew [0;1:0:0];
parameter Real[:,:] Fnew = [1;0;0;0];
stateSpaceNoise Ralman(stateSpace.A=Anew,stateSpace.B=Bnew, stateSpace.C=[1,0,0,0],
stateSpace.F = Fnew);
stateSpaceNoise noKalman;
|end KalmanFeedback;

o

o

simulate (KalmanFeedback, stopTime=3)
plot ({Ealman.stateSpace.y[l],noRalman.stateSpace.y[1]})

[[true
Plot by OpenModelica

i T
|

15

@Kalman, stateSpace.y[1]

10
! @ roKalman.stateSpace. y[1]

5 £

Ready Lni2 Col3 |

Figure 4-15. Comparison of a noisy system with feedback link in DrControl.

88

4.4 OpenModelica Notebook Commands

OMNotebook currently supports the commands and concepts that are described in this section.

441 Cells

Everything inside an OMNotebook document is made out of cells. A cell basically contains a chunk of data.
That data can be text, images, or other cells. OMNotebook has four types of cells: headercell, textcell,
inputcell, and groupcell. Cells are ordered in a tree structure, where one cell can be a parent to one or
more additional cells. A tree view is available close to the right border in the notebook window to display the
relation between the cells.

Textcell — This cell type are used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cell’s style can be changed in the menu Format->Styles,
example of different styles are: Text, Title, and Subtitle. The Textcell type also has support for
following links to other notebook documents.

Inputcell — This cell type has support for syntax highlighting and evaluation. It is intended to be used
for writing program code, e.g. Modelica code. Evaluation is done by pressing the key combination
Shift+Return or Shift+Enter. All the text in the cell is sent to OMC (OpenModelica
Compiler/interpreter), where the text is evaluated and the result is displayed below the inputcell. By
double-clicking on the cell marker in the tree view, the inputcell can be collapsed causing the result to
be hidden.

Groupcell — This cell type is used to group together other cell. A groupcell can be opened or closed.
When a groupcell is opened all the cells inside the groupcell are visible, but when the groupcell is
closed only the first cell inside the groupcell is visible. The state of the groupcell is changed by the user
double-clicking on the cell marker in the tree view. When the groupcell is closed the marker is changed
and the marker has an arrow at the bottom.

4.4.2 Cursors

An OMNotebook document contains cells which in turn contain text. Thus, two kinds of cursors are needed for
positioning, text cursor and cell cursor:

Textcursor — A cursor between characters in a cell, appearing as a small vertical line. Position the
cursor by clicking on the text or using the arrow buttons.

Cellcursor — This cursor shows which cell currently has the input focus. It consists of two parts. The
main cellcursor is basically just a thin black horizontal line below the cell with input focus. The
cellcursor is positioned by clicking on a cell, clicking between cells, or using the menu item Cell-
>Next Cell or Cell->Previous Cell. The cursor can also be moved with the key combination
Ctrl+Up or Ctrl+Down. The dynamic cellcursor is a short blinking horisontal line. To make this visible,
you must click once more on the main cellcursor (the long horizontal line). NOTE: In order to paste
cells at the cellcursor, the dynamic cellcursor must be made active by clicking on the main cellcursor
(the horisontal line).

89

4.4.3 Selection of Text or Cells

To perform operations on text or cells we often need to select a range of characters or cells.

Select characters — There are several ways of selecting characters, e.g. double-clicking on a word,
clicking and dragging the mouse, or click followed by a shift-click at an adjacent positioin selects the
text between the previous click and the position of the most recent shift-click.

Select cells — Cells can be selected by clicking on them. Holding done Ctrl and clicking on the cell
markers in the tree view allows several cells to be selected, one at a time. Several cells can be selected
at once in the tree view by holding down the Shift key. Holding down Shift selects all cells between last
selected cell and the cell clicked on. This only works if both cells belong to the same groupcell.

4.4.4 File Menu

The following file related operations are available in the file menu:

Create a new notebook — A new notebook can be created using the menu Fille->New or the key
combination Ctrl+N. A new document window will then open, with a new document inside.

Open a notebook — To open a notebook use Fi le->0pen in the menu or the key combination Ctrl+O.
Only files of the type .onb or .nb can be opened. If a file does not follow the OMNotebook format or
the FullForm Mathematica Notebook format, a message box is displayed telling the user what is wrong.
Mathematica Notebooks must be converted to fullform before they can be opened in OMNotebook.

Save a notebook — To save a notebook use the menu item File->Save or File->Save As. If the
notebook has not been saved before the save as dialog is shown and a filename can be selected.
OMNotebook can only save in xml format and the saved file is not compatible with Mathematica. Key
combination for save is Ctrl+S and for save as Ctrl+Shift+S. The saved file by default obtains the file
extension -onb.

Print — Printing a document to a printer is done by pressing the key combination Ctrl+P or using the
menu item File->Print. A normal print dialog is displayed where the usually properties can be
changed.

Import old document — Old documents, saved with the old version of OMNotebook where a different
file format was used, can be opened using the menu item File->Import->0ld OMNotebook File.
Old documents have the extension .xml.

Export text — The text inside a document can be exported to a text document. The text is exported to this
document without almost any structure saved. The only structure that is saved is the cell structure. Each
paragraph in the text document will contain text from one cell. To use the export function, use menu
item File->Export->Pure Text.

Close a notebook window — A notebook window can be closed using the menu item File->Close or
the key combination Ctrl+F4. Any unsaved changes in the document are lost when the notebook
window is closed.

Quitting OMNotebook — To quit OMNotebook, use menu item File->Quit or the key combination
Crtl+Q. This closes all notebook windows; users will have the option of closing OMC also. OMC will
not automatically shutdown because other programs may still use it. Evaluating the command quit() has
the same result as exiting OMNotebook.

90

4.45 Edit Menu

Editing cell text — Cells have a set of of basic editing functions. The key combination for these are:
Undo (Ctrl+Z), Redo (Ctrl+Y), Cut (Ctrl+X), Copy (CtrI+C) and Paste (Ctrl+V). These functions can
also be accessed from the edit menu; Undo (Edit->Undo), Redo (Edit->Redo), Cut (Edit->Cut),
Copy (Edit->Copy) and Paste (Edit->Paste). Selection of text is done in the usual way by double-
clicking, triple-clicking (select a paragraph), dragging the mouse, or using (Ctrl+A) to select all text
within the cell.

Cut cell — Cells can be cut from a document with the menu item Edit->Cut or the key combination
Ctrl+X. The cut function will always cut cells if cells have been selected in the tree view, otherwise the
cut function cuts text.

Copy cell — Cells can be copied from a document with the menu item Edit->Copy or the key
combination Ctrl+C. The copy function will always copy cells if cells have been selected in the tree
view, otherwise the copy function copy text.

Paste cell — To paste copied or cut cells the cell cursor must be selected in the location where the cells
should be pasted. This is done by clicking on the cell cursor. Pasteing cells is done from the menu Edit-
>Paste or the key combination Ctrl+V. If the cell cursor is selected the paste function will always paste
cells. OMNotebook share the same application-wide clipboard. Therefore cells that have been copied
from one document can be pasted into another document. Only pointers to the copied or cut cells are
added to the clipboard, thus the cell that should be pasted must still exist. Consequently a cell can not
be pasted from a document that has been closed.

Find — Find text string in the current notebook, with the options match full word, match cell, search
within closed cells. Short command Ctrl+F.

Replace — Find and replace text string in the current notebook, with the options match full word, match
cell, search+replace within closed cells. Short command Ctrl+H.

View expression — Text in a cell is stored internally as a subset of HTML code and the menu item Edit-

>View Expression let the user switch between viewing the text or the internal HTML representation.
Changes made to the HTML code will affect how the text is displayed.

4.4.6 Cell Menu

Add textcell — A new textcell is added with the menu item Cel 1->Add Cel 1 (previous cell style) or the
key combination Alt+Enter. The new textcell gets the same style as the previous selected cell had.

Add inputcell — A new inputcell is added with the menu item Cell->Add Inputcell or the key
combination Ctrl+Shift+1.

Add groupcell — A new groupcell is inserted with the menu item Cell->Groupcell or the key
combination Ctrl+Shift+G. The selected cell will then become the first cell inside the groupcell.
Ungroup groupcell — A groupcell can be ungrouped by selecting it in the tree view and using the menu
item Cell1->Ungroup Groupcell or by using the key combination Ctrl+Shift+U. Only one groupcell
at a time can be ungrouped.

Split cell — Spliting a cell is done with the menu item Cell->Split cell or the key combination
Ctrl+Shift+P. The cell is splited at the position of the text cursor.

Delete cell — The menu item Cell->Delete Cell will delete all cells that have been selected in the
tree view. If no cell is selected this action will delete the cell that have been selected by the cellcursor.

91

This action can also be called with the key combination Ctrl+Shift+D or the key Del (only works when
cells have been selected in the tree view).

Cellcursor — This cell type is a special type that shows which cell that currently has the focus. The cell
is basically just a thin black line. The cellcursor is moved by clicking on a cell or using the menu item
Cell->Next Cell or Cell->Previous Cell. The cursor can also be moved with the key
combination Ctrl+Up or Ctrl+Down.

4.4.7 Format Menu

Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cells style can be changed in the menu Format->Styles,
examples of different styles are: Text, Title, and Subtitle. The Textcell type also have support
for following links to other notebook documents.

Text manipulation — There are a number of different text manipulations that can be done to change the
appearance of the text. These manipulations include operations like: changing font, changing color and
make text bold, but also operations like: changing the alignment of the text and the margin inside the
cell. All text manipulations inside a cell can be done on single letters, words or the entire text. Text
settings are found in the Format menu. The following text manipulations are available in OMNotebook:
> Font family

> Font face (Plain, Bold, Italic, Underline)

> Font size

> Font stretch

> Font color

> Text horizontal alignment

> Text vertical alignment

> Border thickness

> Margin (outside the border)

> Padding (inside the border)

4.4.8 Insert Menu

Insert image — Images are added to a document with the menu item Insert->Image or the key
combination Ctrl+Shift+M. After an image has been selected a dialog appears, where the size of the
image can be chosen. The images actual size is the default value of the image. OMNotebook stretches
the image accordantly to the selected size. All images are saved in the same file as the rest of the
document.

Insert link — A document can contain links to other OMNotebook file or Mathematica notebook and to
add a new link a piece of text must first be selected. The selected text make up the part of the link that
the user can click on. Inserting a link is done from the menu Insert->Link or with the key
combination Ctrl+Shift+L. A dialog window, much like the one used to open documents, allows the
user to choose the file that the link refers to. All links are saved in the document with a relative file path
so documents that belong together easily can be moved from one place to another without the links
failing.

92

4.49 Window Menu

Change window — Each opened document has its own document window. To switch between those use
the Window menu. The window menu lists all titles of the open documents, in the same order as they
were opened. To switch to another document, simple click on the title of that document.

4.4.10 Help Menu

About OMNotebook — Accessing the about message box for OMNotebook is done from the menu Help-
>About OMNotebook.

About Qt — To access the message box for Qt, use the menu Help->About Qt.

Help Text — Opening the help text (document OMNotebookHe I p .onb) for OMNotebook can be done in
the same way as any OMNotebook document is opened or with the menu Help->Help Text. The
menu item can also be triggered with the key F1.

4.4.11 Additional Features

Links — By clicking on a link, OMNotebook will open the document that is referred to in the link.

Update link — All links are stored with relative file path. Therefore OMNotebook has functions that
automatically updating links if a document is resaved in another folder. Every time a document is
saved, OMNotebook checks if the document is saved in the same folder as last time. If the folder has
changed, the links are updated.

Evaluate several cells — Several inputcells can be evaluated at the same time by selecting them in the
treeview and then pressing the key combination Shift+Enter or Shift+Return. The cells are evaluated in
the same order as they have been selected. If a groupcell is selected all inputcells in that groupcell are
evaluated, in the order they are located in the groupcell.

Command completion — Inputcells have command completion support, which checks if the user is
typing a command (or any keyword defined in the file commands.xml) and finish the command. If the
user types the first two or three letters in a command, the command completion function fills in the rest.
To use command completion, press the key combination Ctrl+Space or Shift+Tab. The first command
that matches the letters written will then appear. Holding down Shift and pressing Tab (alternative
holding down Ctrl and pressing Space) again will display the second command that matches. Repeated
request to use command completion will loop through all commands that match the letters written.
When a command is displayed by the command completion functionality any field inside the command
that should be edited by the user is automatically selected. Some commands can have several of these
fields and by pressing the key combination Ctrl+Tab, the next field will be selected inside the
command.

> Active Command completion: Ctrl+Space / Shift+Tab

> Next command: Ctrl+Space / Shift+Tab

> Next field in command: Ctrl+Tab’
Generated plot — When plotting a simulation result, OMC uses the program Ptplot to create a plot.
From Ptplot OMNotebook gets an image of the plot and automatically adds that image to the output
part of an inputcell. Like all other images in a document, the plot is saved in the document file when the
document is saved.
Stylesheet —-OMNotebook follows the style settings defined in stylesheet.xml and the correct style is
applied to a cell when the cell is created.

93

e Automatic Chapter Numbering — OMNotebook automatically numbers different chapter, subchapter,
section and other styles. The user can specify which styles should have chapter numbers and which
level the style should have. This is done in the stylesheet.xml file. Every style can have a
<chapterLevel> tag that specifies the chapter level. Level 0 or no tag at all, means that the style should
not have any chapter numbering.

e Scrollarea — Scrolling through a document can be done by using the mouse wheel. A document can also
be scrolled by moving the cell cursor up or down.

e Syntax highlighter — The syntax highlighter runs in a separated thread which speeds up the loading of
large document that contains many Modelica code cells. The syntax highlighter only highlights when
letters are added, not when they are removed. The color settings for the different types of keywords are
stored in the file modelicacolors.xml. Besides defining the text color and background color of
keywords, whether or not the keywords should be bold or/and italic can be defined.

e Change indicator — A star (*) will appear behind the filename in the title of notebook window if the
document has been changed and needs saving. When the user closes a document that has some unsaved
change, OMNotebook asks the user if he/she wants to save the document before closing. If the
document never has been saved before, the save-as dialog appears so that a filename can be choosen for
the new document.

e Update menus — All menus are constantly updated so that only menu items that are linked to actions
that can be performed on the currently selected cell is enabled. All other menu items will be disabled.
When a textcell is selected the Format menu is updated so that it indicates the text settings for the text,
in the current cursor position.

4.5 References

Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In
Proceedings of the 33rd ACM Technical Symposium on Computer Science Education
(SIGCSE 2002) (Northern Kentucky — The Southern Side of Cincinnati, USA, February 27 —
March 3, 2002).

Ingemar Axelsson. OpenModelica Notebook for Interactive Structured Modelica Documents. Final thesis,
LITH-IDA-EX-05/080-SE, Linkdping University, Linkdping, Sweden, October 21, 2005.

Anders Fernstrom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop. OMNotebook —
Interactive WYSIWYG Book Software for Teaching Programming. In Proc. of the Workshop
on Developing Computer Science Education — How Can It Be Done?. Linkdping University,
Dept. Computer & Inf. Science, Linképing, Sweden, March 10, 2006.

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents. Final thesis, LITH-IDA-EX--06/057—SE, Dept. Computer and Information
Science, Linkdping University, Sweden, September 4, 2006.

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages,
ISBN 0-471-471631, Wiley-IEEE Press. Feb. 2004.

Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97-111, May 1984.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica — A Web-
Based Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian
Conference on Simulation and Modeling (SIMS’2003), available at www.scan-sims.org.
Vasteras, Sweden. September 18-19, 2003.

94

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

Stephen Wolfram. The Mathematica Book. Wolfram Media Inc, 1997.

95

Chapter 5

Interactive Simulation

In order to offer a user-interactive and time synchronous simulation, OpenModelica has an additional
subsystem to fulfill general requirements on such simulations.

This module is part of the simulation runtime core and is called “OpenModelica Interactive” (OMI). OMI
will result in an executable simulation application, such as the non interactive simulation. The executable file
will be generated by the OMC, which contains the full Modelica model as C/C++ code with all required
equations, conditions and different solvers to simulate a whole system or a single system component. This
executable file offers a non-interactive and an interactive simulation runtime.

The following are some general functionalities of an interactive simulation runtime:

e The user will be able to stimulate the system during a running system simulation and to observe its’
reaction immediately.

e Simulation runtime behavior will be controllable and adaptable to offer an interaction with a user.

o A user will receive simulation results during a simulation synchronous to the real-time. Since network
process time and some other factors like scheduling of processes from the operation system this is not
given at any time.

o In order to offer a stable simulation, a runtime will inform a user interface of errors and consequential
simulation aborts.

e Simulation results will not under-run or exceed a tolerance compared to a thoroughly reliable value, for
a correct simulation.

e Communication between a simulation runtime and a user interface will use a well defined interface and
be base on a common technology, in this case network communication.

Note that OMI is available in an easy-to-use way from OMEdit, see Section 2.7.

5.1 OpenModelica Interactive

5.1.1 Interactively Changeable Parameters

An important modification/addition to the semantics of the Modelica language during interactive simulation is
the fact that parameters are changeable while simulating interactively using OMI. All properties using the
prefix “parameter” can be changed during an interactive simulation. The fully qualified name is used as a
unique identifier, so a parameter value can be found and changed regardless of its hierarchical position in the
model.

96

5.1.2 OpenModelica Interactive Components description

OpenModelica Interactive Interactive GUI
(As Server/Service) : (As Client)
Simulation Units 1 Communication Units |
|
-------------------- LR U EEEEEEE
OMI Subsystem I 1 I
I i
! b . .
1 Control I Simulation
<4-7———- tontro I ! — Control
1 H |
| 1
| | |
| 1
. o
I i I
: Lo
I |
I ! !
1 ! |
: Y Lo
o : Simulation
< : Transfer —'—l—b: I DataFlow
1

Figure 5-1. OpenModelica interactive communication architecture..

The OpenModelica Interactive subsystem is also separated into different modules, following are important for
the user to communicate with:

Control: The “Control” module is the interface between OMI and a Ul. It is implemented as a single
thread to support parallel tasks and independent reactivity. As the main controlling and communication
instance at simulation initialization phase and while simulation is running it manages simulation
properties and also behavior. A client can permanently send operations as messages to the “Control”
unit, it can react at any time to feedback from the other internal OMI components and it also sends
messages to a client, for example error or status messages.

Transfer: Similar to a consumer, the “Transfer” thread tries to get simulation results from a result
manager and sends them to the Ul immediately after starting a simulation. If the communication takes
longer than a calculation step, it is also possible to create more than one consumer. The “Transfer” uses
a property filter mask containing all property names whose result values are important for the Ul. The
Ul must set this mask using the “setfilter” operation from chapter 2.1.3.2, otherwise the transfer sends
only the actual simulation time. This is very useful for increasing the communication speed while
sending results to the UI.

5.1.3 Communication Interface

The network communication technology “TCP/IPv4” (later IPv6) will be used to send and receive messages.
Each system has its own server and client implementations to receive and send messages respectively. The
Control and Transfer are the OMI components which are designated for a communication over TCP/IP.

97

5.1.4 Network configuration Settings

Name

Description

URL

Control Server

Waits for requests from the Ul

By Default, waits for connection on:

127.0.0.1:10501

Control Client

Replies to the Ul and sends other
synchronization messages to it

By Default, tries to connect on:
127.0.0.1:10500

Transfer Client

Sends simulation results to a Ul

By Default, tries to connect on:
127.0.0.1:10502

OMI server and client components: Communication behaviour and configuration by default

Name

Description

URL

Control Client

Requests to the OMI Control Server

By Default, tries to connect on:
127.0.0.1:10501

Control Server

Waits for information from the OMI
Control Client

By Default, waits for connection on:

127.0.0.1:10500

Transfer Server

Waits for simulation results from the
OMI Transfer Client

By Default, waits for connection on:

127.0.0.1:10502

Ul server and client components: Suggested configuration by default

5.1.4.1 Operation Messages

To use messages parsing there is a need to specify a communications protocol.
A string message begins with a specified prefix and ends with a specified suffix.
The prefix describes the request type, for example an operation. Depending on the request type, some
additional information and parameters can append on it. The suffix is to check if the message has been received
correctly and if the sender has created it correctly. All parts should be separated with “#”.
A sequence number is helpful to manage operation request and reply, a Ul has to send a sequence number

combined with an operation.

The following are all available message strings between a Ul and the OMI system:

Request from Ul to Control

Ul Request Description OMI::Control Reply
start#SEQ#end Starts or continues the simulation done#SEQ#end
pause#SEQ#end Pauses the running simulation done#SEQ#end
stop#SEQ#end Stops the running simulation and done#SEQ#end
resets all values to the beginning
shutdown#SEQ#end Shuts the simulation down done#SEQ#end
setfilter#SEQ# Sets the filter for variables and done#SEQ#end
varl:var2# parameters which should send from
parl:par2# OMI to the client Ul
end
useindex#SEQ#end Uses indexes as attribute names. The done#SEQ#end
index will be used at transmitting
results to a client. This will cause
much less data to transmit. (??Not
implemented yet)
setcontrolclienturl#SEQ# Changes the IP and port of the done#SEQ#end
ip#port# Control Server. Otherwise the

98

end default configuration will be used.
settransferclienturl#SEQ# Changes the IP and port of the done#SEQ#end
ip#port# Control Server. Otherwise the
end default configuration will be used.
changetime#SEQ#Tn#end Changes the simulation time and done#SEQ#end
goes back to a specific time step
changevalue#SEQ#Tn# Changes the value of the appended done#SEQ#end
parl=2.3:par2=33.3# parameters and stets the simulation
end time back to the point where the user
clicked in the Ul
error#TYPE#end Error handling not implemented yet Error: *

Table 5-1 Available messages from a Ul to OMI (Request-Reply)

Messages from Control to Ul

OM::Control Description

ul

Error: MESSAGE If an error occurs the OMI::Control
generates an error messages and
sends the messages with the prefix
“Error:” to the Ul (not implemented

yet)

Up to the Ul developers

Table 5-2 Available messages from OMI::Control to Ul

Messages from Transfer to Ul

OMI:: Transfer Description Ul
result#1D#Tn# Sends the simulation result for a time None
varl=Val:var2=Val# step Tn to the client Ul, using the
parl=Val:par2=Val# property names as identifier. Maybe
end a result ID is important to identify
the results which are obsolete (not
implemented yet).
result#1D#Tn# Sends the simulation result for a time None
1=Val:2=Val# step Tn to the client UI, using an
1=Val:2=Val# index as identifier. This requires a
end convention about the used index

mask. Transfer optimization.
NOTE: Operation from Ul needed,
Mask creation using the standard
array index is recommended.
Maybe a result ID is important to
identify the results which are
obsolete (not implemented yet).

Table 5-3 Available messages from OMI::Transfer to Ul

99

5.1.5 Interactive Simulation general Procedure

Note that OMI is available in an easy-to-use way from OMEdit, see Section 2.7, as an alternative to the
procedure described below.

5.1.5.1 Initialize an Interactive Simulation Session

Start the OpenModelica Shell or OMNotebook which is available in the start menu as
OpenModelica->OpenModelica Shell or OpenModelica->OMNotebook.

fifi oMshell - OpenModelica Shell =101 x|

File Edit View Help

t 2B 8|20

OpenModelica 1.4.5 =
Copyright () OSMC 2002-2008

To get help on using OMShell and OpenModelica, type "help()" and press enter.
>

1. Load a model or file.
Optional: You can check if your model or file has been loaded correctly with the operation “list()”

2. Build the model using the operation “buildModel(...)” with the following parameters:
a) Model main class name: Name of the main class of your model.
b) numberOfintervals: Number of output values in an interval of one second. For Example:
“numberOfintervall=5" means that 5 results will be put out every one second (0s, 0.2s, 0.4s, 0.6s, 0.8s,
1.0s...).
c) Note: You can use all parameters which are accepted from the operation “buildModel” except the
parameters “Start” and “Stop”. These parameters are unnecessary because an interactive simulation
always starts at the time “0s” and runs as long as it won’t be stopped or aborted.

3. Execute the created simulation runtime with the parameter “-interactive” and with a port for the control
server optionally “-port xxxxx”. After starting the runtime it will wait until a client connects to its
control server port. Now you can enter the operations mentioned above.

5.1.6 Interactive Simulation Example

In this chapter we will explain how to simulate a Modelica system interactively. This procedure should be a
default step by step procedure for using OMI with a Ul.
5.1.6.1 How to get an example Modelica Model

The application sample for Windows is present in C:\OpenModelical.8.1\share\doc\omc\interactive-simulation.
Also read C:\OpenModelical.8.0\share\doc\omc\interactive-simulation\README.txt.

100

The source code for the client is in the Subversion repository: trunk/c_runtime/interactive.
An application test is in the Subversion repository here: trunk/testsuite/interactive-simulation.
See here how to get the code: https://www.openmodelica.org/index.php/developer/source-code

5.1.6.2 Create the simulation runtime

We will use an example system based on a demonstration model which is given in the Modelica book by Peter
Fritzson [[2], Page 386].

TanlsConnec ted PI
. aln 5 . ot lIflll'l= e ™ ot
R an B] an H
tSenzor toctuator tSensor t&ctuator
—Clnh Cln I:O ut

Figure 5-2. TanksConnectedPI structure diagram.
Please follow the steps to create an executable simulation runtime file.

1. Start OMShell “Start->OpenModelica->OpenModelica Shell”

2. Enter the operation “loadModel(TwoTanks)”
NOTE: We assume that the TwoTanks model is in the ModelicaLibary OM installation folder
(...\OpenModelical.8.1\ModelicaLibrary\TwoTanks) otherwise please load the file from its location
(...\OpenModelical.8.1\share\doc\omc\interactive-simulation*.zip).

3. Use the “buildModel” operation with the following parameters to build the TwoTanks model:
buildModel(TwoTanks. TanksConnectedPl, numberOfintervals=5)

EDMShEII - OpenModelica Shell i o] A |

File Edit Wiew Help
t 2@ &2 |0

OpenMaodelica 1.5.0 2
Copyright (<) ©8MC Z0O0Z-Z008

To get help on using OMshell and CpenModelica, type "help()" and

press enter.

**> loadModel (TwoTanks)
true

»» buildModel (TwoTanks. TanksConnectedPI, numberOfIntervals=5)
{"MwoTanks. TanksConnectedPI"”, "TwoTanks. TanksCDnnectedPI_init. tat"}

-

5.1.6.3 Start an interactive Simulation Session

Start the created simulation runtime it should be located in the “tmp” folder of the OM installation folder
(.\OpenModelical.8.1\tmp\TwoTanks.TanksConnectedPI .exe)

https://www.openmodelica.org/index.php/developer/source-code

101

Use the b “~interactive —port xxxxx”. NOTE: If the default port (10501) should be used ignore the
parameter “—port”. Now the simulation runtime will be waiting until a Ul client has been connected on its port.

Start the client: “client.exe”.

YSimulationDemo_G... [ll[=]

OpenModelica 1.5.8 — OpenModelica Interactive Uer 8.7
Interactive Simulation Environment Demonstration GUI

[help]l To get help and a list of availahle operations.
[zstart] To start the environment deomstrator.

— NOTE: MAKE SURE THE SIMULATIOM RUNTIME IS RUMNHNING
[ports] To change ports of communication units

[exit] To exit this application.

Enter Operation for Environment: _

(Deprecated: Now enter “start” into the console and wait until the client is successfully connected.)

Enter following operation for the simulation runtime:

setcontrolclienturl#1#127.0.0.1#10500#end
settransferclienturl#2#127.0.0.1#10502#end
setfilter#3#tankl.h#source.flowLevel#end

Start the simulation with: start#4#end

NOTE: After starting the simulation your keyboard entries and the results will be displayed in the same console
and you can’t see what you are typing. Please pause the simulation first than enter a longer operation string.

Pause the simulation with: pause#5#end

Change a Value with: changevalue#6#xx.x#source.flowLevel=0.04#end.

For example if time is higher than 60 and lower than 200 enter >
changevalue#6#60 .0#source . flowLevel=0.0004#end

» recived H 1t#185.2H#tankl . h=8.250086#source . f lowLeve 1=0.082%end II
» recived H 1t#185.4fitankl . h=8.250006#source . f lowLeve 1=0.82%end

» recived H 1t#1B5.6Hitankl .h=0.250086H#source . f lowLeve 1=0.@2#end

» recived H 1t#1B5.8H#tankl .h=0.250086#source . f lowLeve 1=0.@2#end

» recived H 1t#i1B6H#tankl . h=0.258006#source . f lowLevel=0.82Hfend

» recived H 1t#1 086 . 2H#tankl . h=0._250005%kz0urce . f lowLeve 1=0_@2#end

» recived H 1t#1 86 . 4litankl . h=0._250005%zource . f lowLeve 1=A._02#end

» recived H 1t#1 86 .6Htankl . h=8._250005%kzo0urce . f lowLeve 1=A._@2#end

» recived H sult#if6 . BHitankl .h=A.258085#zource.flowLevel=A.82Hend
» pecived H sulti#iB@?Htankl . h=0.2580058source . f lovLevel=0.82#fend
» recived H B5fisource.f lowLevel=0.82Hfend

» recived H B5fisource.f lowLevel=0.82Hfend
» recived H B5fisource.f lowLevel=0.82Hfend
» recived H B5#zource.flowLevel=H.

» recived H
» recived
» recived
» recived message: source .f lowLevel=A_82#end

102

Shutdown the simulation runtime and the environment with: shutdown#7#end

5.2 OPC and OPC UA Interfaces

In addition to OMI, OpenModelica can also be stimulated through the OPC interface. At the moment OPC DA
and OPC UA interfaces are supported. As OPC UA is seen as the technology that will replace the regular OPC
in the future, the OPC UA implementation is concentrated on more than OPC DA.

5.2.1 Introduction to the OPC Interfaces

In this chapter, the basics of OPC are explained. In addition, a literature survey [OPC_1] has been made for the
project “OPC Interfaces in OpenModelica”. In that survey, OPC is explained on a higher level generally as well
as from the viewpoint of OpenModelica.

OPC is a set of specifications which defines a common interface for communication between software
packages and hardware devices of different kinds. The most used of the OPC interfaces, OPC DA (3.00)
specification [OPC_2], defines how to get and set data in real time devices using client-server communication
paradigm and Ethernet based communication. OPC DA uses Microsoft COM (Component Object Model)
technology.

The next generation of OPC specifications is OPC Unified Architecture. It combines the different OPC
interfaces under one specification. The basic idea behind OPC UA is the same even though the technology
behind is different. Unlike the regular OPC specification, OPC UA is platform independent and has new
features, such as method calls, included. A binary transfer protocol is provided for a better performance, as well
as the XML based one. The OPC UA specification is defined in a 13-part specification downloadable in OPC
Foundation homepage [OPC_3].

Since OPC and OPC UA are rather large specifications, their usage cannot be discussed here in detail. For a
deeper understanding of the technology behind OPC and OPC UA the reader should get familiar with the
interface specifications above. However, for both of the interfaces there exist test clients which can be used to
utilize the interfaces in a quick and easy manner. A couple of test clients are introduced in section 5.2.3.

5.2.2 Implemented Features

Both the OPC UA and the OPC DA interface (combined with the Simulation Control (SC) interface) provide a
very similar functionality. Thus only OPC UA is discussed extensively here. In subsection 5.2.2.2 the most
noteworthy differences in features between OPC UA and OPC are discussed.

To utilize either of the OPC interfaces, the OPC branch needs to be merged to ¢_runtime. UA Server is linked
to the simulation executable by adding -IOPCregistry -lua_server at the end of the compiling script. OPC DA
server is linked to the simulation executable by adding -IOPCregistry -IOPCK:it at the end of the compiling
script. At the moment there is no option in the OMC to do this automatically.

103

5.2.2.1 OPCUA

After an OPC UA client has established a connection to an OpenMaodelica simulation, the following features
can be utilized. In Figure 5-3 UA Expert connected to an OpenModelica simulation (‘dcmotor’) with the OPC UA
server included, a view of the UA Expert test client is shown. The client is connected to an example
OpenModelica simulation, namely the ‘dcmotor’ [OPC_4]. In the following, all the examples use Figure 5-3
UA Expert connected to an OpenModelica simulation (‘dcmotor’) with the OPC UA server included to explain the
concepts.

Unified Automation LUaExpert - The OPC Unified Architecture Client - NewProject*

File Server Document Settings Help
N & A : ¢ w4 |: B |
DePPE:+ Wy B K| e
Project & X|| Default DA Yiew 0 Reference Window g X
= [EEIDjBCt Server Mode Id Display Mame | Yalue A7 o5l 80 |Forward v
= SErvers 0 i
; pentModelicalla... load.] J 1 Reference Target DisplayMarme
fag OpenModelic... || OpenMaodelicalla... load.der(phi) der(phi) 0,0096 3037548385 HasTvneDefinition D tht Tp c
= D Dacurnents OpenModelicala... load.der(w) der{w) 0,0530424314117 asTypelefinition - LiataltemBype
D Default DA Wi OpenModelicalla... load.Flange_a.phi - phi 0000653776263, ..
~ ||| OpenModelicalla... load.flange_atau tau 0,0530405700099
OpenModelicalla... load.Flange_b.phi phi 0000653776263,
Address Space 8 X OpenModelicalla... load.flange_b.tau tau 1]
120 Pt OpenModelicalla... load.w "W 0.00963053627271
=0 Chijects
g Server
= @i Simulation
+ =4 Start Attribute Window g x
S Step 3
- =% Stop
B b emfl Attribute Value
i g = Modeld Modeld
< ;"4 i Mamespa... 2
| Identifier.. String
= o load Identifier load.a
+ - ModeClass Variable
e BrowseMame 2, "a"
; DisplayMame ™, "a"
+- @ der(phi) Dsaiia e
@ der(w) WriteMask 0
+- i Flange_a UserwriteMask 0
+- % flange_b Salue 0.0830409
+- @ phi = DataType BaseDataType
- Mamespa... 0
i " Identifier... Numeric
g rl Identifier 24
+ _‘v" W WalueRank -1
F3 0 Types ArrayDimensi... P.rr.ay af Ink3z
153 Views Accesslevel Wrikeable
UserfceessL... writeabls
Minimum3am... 0
< > Histarizing False
Log Windaw 4
® D
10:20:35. 266 Attribute Plugin Read succeeded. A
1002058, 266 Reference Plugin - Browse succesded,
10,20:56, 752 Dé Plugin item [0]: Revised3amplingInteryal=50, RevisedQueweSize=1, MonitoredItemld=2
10020036, 782 D& Plugin CreateMonitoredItens succeeded. B
RNy Ui TS)= 1 Oloaic itara [0 Sornlicalotorual—_1 CncucSisa—1 MNiccardifildack—1 TlianbH andla— 76,
S S

Figure 5-3 UA Expert connected to an OpenModelica simulation (‘dcmotor’) with the OPC UA server
included

Browse

The data structure (in OPC UA terminology: address space) of the OpenModelica simulation can be browsed.
The address space consists of nodes and references between them. The part of the address space in which all
the elements of the simulation are is a tree under the ‘Simulation’ node. This is shown in the left plane in
Figure 5-3. In addition, the three methods are there as nodes as well; these methods are discussed later.

104

Read

Values of variables and parameters can be read through OPC UA after each simulation step. In addition to that,
OPC UA offers some metadata, the majority of which is not utilized, though. The value and the metadata can
be found on the right plane in Figure 5-3.

Write

Values of attributes and parameters can also be altered during the simulation between the simulation steps.
When a value has been changed, the simulation is initialized with the new values and continued. This is needed
if variables are wished to be changed, however a parameter change would not require this. Hence the
implementation should be fixed on this matter.

Subscribe

Variable (and parameter) values can be subscribed. There are two alternative types of subscription: The first
option is that the OPC UA server sends the value of the subscribed variable to the client each time after a
defined time interval has passed (real time). The other one is that the value is sent to the client after each
simulation step. In UA Expert, variables can be subscribed by dragging them to the middle plane.

Start, Stop, Step

The simulation can be controlled by the three methods: start(), stop(), and step(). With the OPC UA server
included, the OpenModelica simulation starts in a stopped state. With start() and stop() methods this state can
be changed. The simulation can also be run one step at a time with step().

5.2.2.2 OPC DA and Simulation Control (SC)

The OPC DA server offers roughly the same functionality than the OPC UA server. The biggest conceptual
difference between the two specifications is groups: Before variables and parameters can be used in any way
they have to be grouped. A group is an entity consisting of items. A group can contain any variables and
parameters as items. The other major differences between the two interfaces are described in the following.

Browse

The data structure of OPC DA is a tree consisting of branches and leaves. The leaves correspond to variables
and parameters whereas the branches form the tree-like structure (e.g. ‘load’ and ‘flange_a’ are shown as
branches in the dcmotor example).

Read

Reading values doesn’t differ much from OPC UA, except that the items read have to be grouped. There is also
almost no metadata available through the OPC DA.

Write
There are no major differences.
Subscribe

The biggest difference in OPC DA is that single items cannot be subscribed. Instead, a subscription can be
made for a group.

Start, Stop, Step

OPC DA interface doesn’t enable methods as such. Thus a proprietary interface, Simulation Control (SC), is
used. In practice this means that in addition to the OPC DA client an SC client must be run alongside.

105

5.2.3 Test clients

There are free test clients available in the Internet to test the OPC and OPC UA interfaces. One test client for
each interface is shortly presented below. In addition, a test client for the SC interface is published as part of
OpenModelica.

UA Expert by Unified Automation is an OPC UA test client with a GUI. It supports all the functionalities
provided by the OPC UA in OpenModelica. The latest version of UA Expert can be downloaded for free from
the Unified Automation homepage [OPC_5].

For OPC DA there are numerous test clients available. The one which was most used for testing the OPC server
is MatrikonOPC Explorer. It supports all the OPC DA functionalities needed to access data in OpenModelica.
As well as UA Expert, this test client has a graphical user interface. The latest version of MatrikonOPC
Explorer can be downloaded for free from the MatrikonOPC homepage [OPC_6].

As the SC interface is a non-standard interface, there are no clients for it in the Internet. SimpleOPCClient is a
small test client for OPC and SC interfaces published with OpenModelica. Besides some basic OPC features,
this test client allows the simulation to be controlled, i.e. start(), stop(), and step() functions can be used with it.
Unlike the commercial products above, SimpleOPCClient is published in source code format.

5.2.4 References

[OPC 1] OPC Interfaces in OpenModelica — Technical Specification (Task 5.3); Online:
https://openmodelica.org/svn/OpenModelica/trunk/doc/opc/
OPC_Interfaces_in_OpenModelica.pdf (Accessed 10 June 2011).

[OPC 2] OPC DA 3.00 Specification; Online:
http://opcfoundation.org/DownloadFile.aspx?CM=3&RI=67&CN=KEY &CI|=283&CU=6
(Accessed 9 June 2011).

[OPC 3] The OPC Foundation — The Interoperability Standard for a Connected World; Online:
http://opcfoundation.org/ (Accessed 8 June 2011).

[OPC 4] OpenModelica: DC Motor model; Online: https://openmodelica.ida.liu.se/svn/
OpenModelica/tags/fOPENMODELICA 1 5 0/Examples/dcmotor.mo (Accessed 10 June
2011).

[OPC 5] Unified Automation GmbH | OPC UA Clients; Online: http://www.unified-
automation.com/opc-ua-clients/ (Accessed 9 June 2011).

[OPC_6] MatrikonOPC: Free OPC Downloads; Online: http://www.matrikonopc.com/downloads/
(Accessed 9 June 2011).

107

Chapter 6

Model Import and Export with FMI 1.0

The new standard for model exchange with Functional Mockup Interface (FMI) 1.0 allows export of pre-
compiled models, i.e., C-code or binary code, from a tool for import in another tool, and vice versa. The FMI
model exchange standard is Modelica independent. Import and export works both between different Modelica
tools, or between certain non-Modelica tools and Modelica tools. OpenModelica supports FMI 1.0 import as
well as FMI 1.0 export.

6.1 FMI Import

To import the FMU package use the OpenModelica command importFMU(“fmufile”,
“outputdirectory”) from command line interface, OMShell, OMNotebook or MDT. The importFMU
command is also integrated with OMEdit. Select FMI > Import FMI the FMU package is extracted in the
directory specified by outputdirectory, since the outputdirectory parameter is optional so if its not
specified then the current directory of omc is used. You can use the cd() command to see the current location.

The FMI Import is currently a prototype. It was implemented on the Windows 7 x64 platform under the
MiInGW environment. The prototype has been tested in OpenModelica 1.8.1 (revision-10129) with several
examples. A more fullfleged version for FMI Import will be released in the near future. The present version can
be used as a stand-alone FMU import for Modelica simulators.

108

azi OMEdit - OpenModelica Connection Editor

[
=t -

Componenis g X
Muodelica Files Il
= [E FMUImport_bouncingBall

- frmuModellnst

friuLoadDll

- fmuFunctions
friuCallbackFuns
- fmuSetTime

- friusetContStates
[] fmuSetRealvR

o fmuSetintegerVR
[] fmuSetStringVR

- friusetBooleanVR
- fmuGetContStates
[F] fmuGetRealVR

- fmuGetintegerVR
[F] fmuGetstringVR

m

B # 20020 WwoeROEN[E &

FMUBlock (£

‘I.-l b—ﬁ -I B ‘Writeable Block | Modelica Text View | C:/OpenModel
block FMUBlock "bouncingBall model”™

annotation (experiment (StartTime = 0.0, S5topTime

output Real y[2]:

constant S5tring dl1Path = "C:
\\CpenModelical.7.0\\fmu\\frusdk bouncingBalli\bin
11m

constant 35tring instName = "bouncingBall"™;

constant S5tring guid = "{8c4e810f-3df3-4a00-8276

T
parameter Boolean logFlag = false;

parameter Boolean tolControl = true;

Integer nx = 2;
REeal der x[nx]:

parameter

Real out_x[nx]:
out_der x[nx];
replaceable EReal x[nx]:
parameter

Eeal

Integer nz = 1;
RBeal =z[nz];
Real prez[nz]:

—m fmuGetBooleanVR 2
Modelica Library Modelica Files

Model Browser g X

Qutline

FMUBlock

Messages

General | Info I Warning I Error |

OMEdit, Version: 1.7.0
OpenModelica, Version: "1.7.07

Figure 6-1: Example of FMU Import in OpenModelica where a bouncing ball model is imported.

6.2 FMI Export

To export the FMU use the OpenModelica command translateMode IFMU(Mode IName) from command
line interface, OMShell, OMNotebook or MDT. The export FMU command is also integrated with OMEdit.
Select FM1 > Export FMI the FMU package is generated in the current directory of omc. You can use the

cd() command to see the current location.

After the command execution is complete you will see that a file Mode IName . fmu has been created. As
depicted in Figure 6-2, we first changed the current directory to C:/0OpenModelical.7.0/bin , then we
loaded a Modelica file with BouncingBall example model and finally created an FMU for it using the

translateModelFMU call.

109

& OMShell - OpenModelica Shell e=micag_x
File Edit View Help
P EB & 2 O

[oMShell 1.1 Copyright Linkdping University 2002-2011
| Distributed under CMSC-PL and GPL, see www.openmodelica.org

| Connected to OpenModelica 1.7.0
| To get help on using CMShell and OpenModelica, type "help()" and press enter.

| > cd("c:/openModelical.7.0/bin")
"C:/OpenModelical.7.0/bin"

:>> loadFile ("BouncingBallz.mo")
| true

:>> translateModelFMU (BouncingBall)
"SimCode: The model BouncingBall has been translated to FMU"

| ==

Figure 6-2: OMShell screenshot for creating an FMU

A log file for FMU creation is also generated named Mode IName_FMU . log. If there are some errors while
creating FMU they will be shown in the command line window and logged in this log file as well.

110

Chapter 7

OMOptim — Optimization with OpenModelica

7.1 Introduction

OMOptim is a tool dedicated to optimization of Modelica models. By optimization, one should understand a
procedure which minimizes/maximizes one or more objectives by adjusting one or more parameters.

OMOptim 0.9 contains meta-heuristic optimization algorithms which allow optimizing all sorts of models
with following functionalities:

e One or several objectives optimized simultaneously
e One or several parameters (integer or real variables)

However, the user must be aware of the large number of simulations an optimization might require.

7.2 Preparing the Model

Before launching OMOptim, one must prepare the model in order to optimize it.

7.2.1 Parameters

An optimization parameter is picked up from all model variables. The choice of parameters can be done using
the OMOptim interface.
For all intended parameters, please note that:

e The corresponding variable is constant during all simulations. The OMOptim optimization in version
0.9 only concerns static parameters’ optimization i.e. values found for these parameters will be constant
during all simulation time.

e The corresponding variable should play an input role in the model i.e. its modification influences model
simulation results.

7.2.2 Constraints

If some constraints should be respected during optimization, they must be defined in the Modelica model itself.
For instance, if mechanical stress must be less than 5 N.m™, one should write in the model:

assert(mechanicalStress < 5, “Mechanical stress too high™);

111

If during simulation, the variable mechanicalStress exceeds 5 N.m?, the simulation will stop and be considered
as a failure.

7.2.3 Objectives

As parameters, objectives are picked up from model variables. Objectives’ values are considered by the
optimizer at the final time.

7.3 Set problem in OMOptim

7.3.1 Launch OMOptim

OMOptim can be launched using the executable placed in OpenModelicalnstallationDirectory/bin/
OMOptim/OMOptim.exe. Alternately, choose OpenModelica > OMOptim from the start menu.

7.3.2 Create a new project

To create a new project, click on menu File -> New project
Then set a name to the project and save it in a dedicated folder. The created file created has a .min
extension. It will contain information regarding model, problems, and results loaded.

7.3.3 Load models

First, you need to load the model(s) you want to optimize. To do so, click on Add .mo button on main window
or select menu Model -> Load Mo file...

When selecting a model, the file will be loaded in OpenModelica which runs in the background.

While OpenModelica is loading the model, you could have a frozen interface. This is due to multi-threading
limitation but the delay should be short (few seconds).

You can load as many models as you want.

If an error occurs (indicated in log window), this might be because:

o Dependencies have not been loaded before (e.g. modelica library)
e Model use syntax incompatible with OpenModelica.
7.3.3.1 Dependencies

OMOptim should detect dependencies and load corresponding files. However, it some errors occur, please load
by yourself dependencies. You can also load Modelica library using Model->Load Modelica library.

When the model correctly loaded, you should see a window similar to Figure 7-1.

112

File Models Prablem Display Tools nbwt -]
: : .' Project | Optimization | OptCooling | Optimization result (3) | Optimizationresult | OptCoolingresul | OptCodlr P

Project name : testLinearActuator
Project file : C:/Documents and Settings/SayahfMes documents/Mines/ModOpt) TestLinearActuator testLinearActuatormin

Ci/Documents and Settings/SayahfMes documents/Mines/ModOptfModelicaTotal. mo
Loaded .mo files : C:fDocuments and Settings/Sayah/Mes documents/MinesiModOpt{ TestLinearActuator/Linearactuator.mo

Loading propct (C:/Documents and Settings/Sayah/Mes do:umentsWes!ModOptITesﬂ.imarAduator;‘testLheunctuator miny ..
Loading file : C:fDocuments and Settings(SayahfMes documents/Mines/ModOpt fModelicaTotal, mo

Model loaded successfully"C: /Documents and Settings/SavahfMes documents/Mines/MadOpt/ModelicaTotal. mo”

Loading file : C:/Documents and Settings/SayahiMes documents/Mines/ModOptjTestLinearActuator fLinearactuator.mo

Model loaded successfully"C:/Documents and Settings/SayahfMes documents/Mines/ModOpt/ TestLinearActuatorfLinearactuator mo®

Loading model file (C: fDocuments and Setthgs,l‘Saya‘u'Mes documentsfMinesModOpt TestLinearActuator/Madels/LinearActuator/LinearActuator.mmo) ...
Loading model file (C:fDocuments and SettingsfSayahMes

documentsMines/MadOpt TestLinear Actuator (Models/Modelica, Thermal, FluidHe atFlow. Examples. SimpleCooling/testLinear Actuator.mma) ...

Problem "Optimization” added to project
Prublem. ‘OEtCt:»oh;' agq.ed&tgnmmact

Y Mo | OMC | Debug |

|l m——— Y 1

By TS 1Y FOPRE TV TR T YR - ST PSR S iSrab iy

Figure 7-1. OMOptim window after having loaded model.

7.3.4 Create a new optimization problem

Problem->Add Problem->0Optimization

A dialog should appear. Select the model you want to optimize. Only Model can be selected (no Package,
Component, Block...).

A new form will be displayed. This form has two tabs. One is called Variables, the other is called
Optimization.

113

e Ex]

| Optimzationrest_|_OpiCooingresut | _OptCooing resu 2) |

i
!

i

3
i

| 3

Description Draka &

|E Narme T Veue |
Il 4o . 3
| wmuuwunﬂd.n I 'u
< I 12

Scanned variables .@

lam ™ | value | Description | Datatype ScanMinimum | Scan M

)

'

{

;

1

] | [>

e ——nlo
Name > Description Direction (| " -
e Deiotion - Miiize ol Selected objectives

e . 1D

H
B

FEFEEEEeY RSN EERER

i

g
-]

slwlsle e[z l=l=l= === l=l=

Loui'\g project (C:/Documents and Setti Opt) TestLinearAc I inearfc
Lus\:i'q Fle 1 C foucuwuard Sd.tn;s.l‘Savalu'Has ducmwmdomm&amd mo

Loading file : C:/D and hh /Modapk Testl A i mo

Model loaded successfully™C:/Documents and Setts \Mes de Opt T i

Loading model file (C:/Documents and Sd:lngsfSay&\fMes doc [MiriesModOpt) TestLi IModelsfLinearfctuator [LinearActusbonmma) ...

Figure 7-2. Forms for defining a new optimization problem.

7.3.4.1 List of Variables is Empty

If variables are not displayed, right click on model name in model hierarchy, and select Read variables.

W LaVSII ap
Thermal H_thmmmmc

Utli | open folder
o Reload model
Lei Recompile model Read functions
| Read variables
Read connections

iner Set parameters. ..

tor¢

|
stey v Dymola f— Select simulator
ref OpenModelica e

SUMoe
| I | LinearActuate

Figure 7-3. Selecting read variables, set parameters, and selecting simulator.

Set parameters (e.g. finalTime, solver)

L
&
+
@
- iner
i+
i+
@

7.3.5 Select Optimized Variables

To set optimization, we first have to define the variables the optimizer will consider as free i.e. those that it
should find best values of. To do this, select in the left list, the variables concerned. Then, add them to
Optimized variables by clicking on corresponding button (+).

114

For each variable, you must set minimum and maximum values it can take. This can be done in the
Optimized variables table.

7.3.6 Select objectives

Obijectives correspond to the final values of chosen variables. To select these last, select in left list variables
concerned and click #+ button of Optimization objectives table.
For each objective, you must:

e Set minimum and maximum values it can take. If a configuration does not respect these values, this
configuration won’t be considered. You also can set minimum and maximum equals to “-* : it will then
o Define whether objective should be minimized or maximized.

This can be done in the Optimized variables table.

7.3.7 Select and configure algorithm

After having selected variables and objectives, you should now select and configure optimization algorithm. To
do this, click on Optimization tab.

Here, you can select optimization algorithm you want to use. In version 0.9, OMOptim offers three different
genetic algorithms. Let’s for example choose SPEA2Adapt which is an auto-adaptative genetic algorithm.

By clicking on parameters... button, a dialog is opened allowing defining parameters. These are:

e Population size: this is the number of configurations kept after a generation. If it is set to 50, your final
result can’t contain more than 50 different points.

o Off spring rate: this is the number of children per adult obtained after combination process. If it is set to
3, each generation will contain 150 individual (considering population size is 50).

e Max generations: this number defines the number of generations after which optimization should stop.
In our case, each generation corresponds to 150 simulations. Note that you can still stop optimization
while it is running by clicking on stop button (which will appear once optimization is launched).
Therefore, you can set a really high number and still stop optimization when you want without losing
results obtained until there.

e Save frequency: during optimization, best configurations can be regularly saved. It allows to analyze
evolution of best configurations but also to restart an optimization from previously obtained results. A
Save Frequency parameter set to 3 means that after three generations, a file is automatically created
containing best configurations. These files are named iteraionl.sav, iteration2.sav and are store in Temp
directory, and moved to SolvedProblems directory when optimization is finished.

e ReinitStdDev: this is a specific parameter of EAAdaptl. It defines whether standard deviation of
variables should be reinitialized. It is used only if you start optimization from previously obtained
configurations (using Use start file option). Setting it to yes (1) will, in most of cases, lead to a spread
research of optimized configurations, forgetting parameters’ variations’ reduction obtained in previous
optimization.

7.3.7.1 Use start file

As indicated before, it is possible to pursue an optimization finished or stopped. To do this, you must enable
Use start file option and select file from which optimization should be started. This file is an iteration_.sav file

115

created in previous optimization. It is stored in corresponding SolvedProblems folder (iterationl10.sav
corresponds to the tenth generation of previous optimization).

Note that this functionality can only work with same variables and objectives. However, minimum,
maximum of variables and objectives can be changed before pursuing an optimization.

7.3.8 Launch

You can now launch Optimization by clicking Launch button.

7.3.9 Stopping Optimization

Optimization will be stopped when the generation counter will reach the generation number defined in
parameters. However, you can still stop the optimization while it is running without loosing obtained results.
To do this, click on Stop button. Note that this will not immediately stop optimization: it will first finish the
current generation.

This stop function is especially useful when optimum points do not vary any more between generations.
This can be easily observed since at each generation, the optimum objectives values and corresponding
parameters are displayed in log window.

7.4 Results

The result tab appear when the optimization is finished. It consists of two parts: a table where variables are
displayed and a plot region.

7.4.1 Obtaining all Variable Values

During optimization, the values of optimized variables and objectives are memorized. The others are not. To
get these last, you must recomputed corresponding points. To achieve this, select one or several points in
point’s list region and click on recompute.

For each point, it will simulate model setting input parameters to point corresponding values. All values of
this point (including those which are not optimization parameters neither objectives).

116

7.5 Window Regions in OMOptim GUI

esult vizuali

Model structure

Bisdont

tog

| —

 Loading project (CifDocuments and SetigsfSayshiMes documenks MinesiNodOR TestOsychalosyczka.n)...
Iog Loading fie : C:fDocuments and WW@WMM_ T

_:mwmmm r e o i e s

M :

I

Figure 7-4. Window regions in OMOptim GUI.

117

Chapter 8

MDT — The OpenModelica Development Tooling
Eclipse Plugin

8.1 Introduction

The Modelica Development Tooling (MDT) Eclipse Plug-In as part of OMDev — The OpenModelica
Development Environment integrates the OpenModelica compiler with Eclipse. MDT, together with the
OpenModelica compiler, provides an environment for working with Modelica development projects.

The following features are available:

Browsing support for Modelica projects, packages, and classes

Wizards for creating Modelica projects, packages, and classes

Syntax color highlighting

Syntax checking

Browsing of the Modelica Standard Library or other libraries

Code completion for class names and function argument lists.

Goto definition for classes, types, and functions.

Displaying type information when hovering the mouse over an identifier.

8.2 Installation

The installation of MDT is accomplished by following the below installation instructions. These
instructions assume that you have successfully downloaded and installed Eclipse (http://www.eclipse.org).

1.

agkrwn

©oo N

Start Eclipse

Select Help->Software Updates->Find and Install ... fromthe menu

Select ‘Search for new features to install’ and click ‘Next’

Select ‘New Remote Site...’

Enter ‘MDT’ as name and
‘http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT’ as URL and click ‘OK’
Make sure ‘MDT’ is selected and click ‘Finish’

In the updates dialog select the “MDT’ feature and click ‘Next’

Read through the license agreement, select ‘I accept...” and click ‘Next’

Click “Finish’ to install MDT

http://www.ida.liu.se/labs/pelab/OpenModelica/MDT

118

8.3 Getting Started

8.3.1 Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the compiler. It uses the environment variable
OPENMODELICAHOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is pointing to the folder
where the Open Modelica Compiler is installed. In other words, OPENMODELICAHOME must point to
the folder that contains the Open Modelica Compiler (OMC) binary. On the Windows platform it’s called
omc.exe and on Unix platforms it’s called omc.

8.3.2 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica perspective. To switch
to the Modelica perspective, choose the Window menu item, pick Open Perspective followed by
Other... Select the Model ica option from the dialog presented and click OK..

8.3.3 Selecting a Workspace Folder

Eclipse stores your projects in a folder called a workspace. You need to choose a workspace folder for this
session, see Figure 5-8-1

Figure 5-8-1. Eclipse Setup — Switching Workspace.

8.3.4 Creating one or more Modelica Projects

To start a new project, use the New Modelica Project Wizard. It is accessible through Fi le->New->
Modelica Project or by right-clicking in the Modelica Projects view and selecting New->Model ica
Project.

Figure 5-8-2. Eclipse Setup — creating a Modelica project in the workspace.

You need to disable automatic build for the project(s) (Figure 5-8-3).

Figure 5-8-3. Eclipse Setup — disable automatic build for the projects.

Repeat the procedure for all the projects you need, e.g. for the exercises described in the MetaModelica
users guide: 01_experiment, 02a_expl, 02b_exp2, 03_assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the others!

8.3.5 Building and Running a Project

After having created a project, you eventually need to build the project (Figure 8-4).

119

5 Modelca - Functions.me - Eclipse SO 1 ESY

Fie Bd1 Mefactor Hovgste Seach |Fropect Mn Windew Felo
| EO = A bt

fesrect truderitaton [| [modeicn]

1 B A il

B 05 scvarces
1 06 _CMCareionba
1 67 _pam

1 08_pomded

T C9_pamtrans

1 10 perrsl

e

Imm_fﬂ-:mo*&;'-yuwm_ Wiz @ -r3 - =0}
o |

la .

IE | | Wrisabie Ingert it

Figure 8-4. Eclipse MDT - Building a project.
There are several options: building, building from scratch (clean), running, see Figure 8-5.
??missing figure
Figure 8-5. Eclipse — building and running a project.
You may also open additional views, e.g as in Figure 8-6.
??missing figure

Figure 8-6. Eclipse — Opening views.

8.3.6 Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g. to the Java perspective for working
with an OpenModelica Java client as in Figure 8-7.

(€ Hotebee e s SLIES
Fir Edt Refacter Navgate Search Propect Rum Window Help
|l S e L S DR B e R BB 111 T modeicn -
[5 poceca., % NSl |
T 01_gxperment T Debug
1 028 el
B 0 _sapd

T 03_msgrment
11 04a_sssgritotyoe
L 04 ettty
1 05 _schearcent
(22} [05_DHCErdCrba
BT
5 2 ey
¥ clsspath
) projest
| README bt
T 07 pam
B 04 _pamded
T 9 _panirans
& 10 pewel
1B et

prtiers| D cao 72 Bror o e W] mit| 2@ -r-=0)

uL gmon.out maln main.exs Hain.s Types.s Funetions.s Hain.e Haln.h Types.c Types.h Funcilons.e |

120

Figure 8-7. Eclipse — Switching to another perspective —e.g. the Java Perspective.

8.3.7 Creating a Package

To create a new package inside a Modelica project, select Fi le->New->Modelica Package. Enter the
desired name of the package and a description of what it contains. Note: for the exercises we already have
existing packages.

|(New Modelica Package l?l
Modelica Package
Create a new Modelica package.
Source folder: [F’F’C 970 l [Browse...]
Name: [C ore]

Description: [This package contains the core stuff l

[[Jis encapsulated package

[Finish l [Cancel

Figure 8-8. Creating a new Modelica package.

8.3.8 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add your new class and
select File->New->Model ica Class. When creating a Modelica class you can add different restrictions
on what the class can contain. These can for example be model, connector, block, record, or
function. When you have selected your desired class type, you can select modifiers that add code blocks
to the generated code. ‘Include initial code block’ will for example add the line ‘initial
equation’ to the class.

121

New Modelica Class

Modelica Class

Create a new Modelica class.

Source folder: [PPCQ?WCore l [Br{mse...]
Name: |ALU |
Type

Modifiers: include initial equation block

[is partial class

O

l Einish H Cancel

Figure 8-9. Creating a new Modelica class.

8.3.9 Syntax Checking

Whenever a build command is given to the MDT environment, modified and saved Modelica (.mo) files
are checked for syntactical errors. Any errors that are found are added to the Problems view and also
marked in the source code editor. Errors are marked in the editor as a red circle with a white cross, a
squiggly red line under the problematic construct, and as a red marker in the right-hand side of the editor. If

you want to reach the problem, you can either click the item in the Problems view or select the red box in
the right-hand side of the editor.

Modelica - ALU.mo - Eclipse SDK
File Edit Mavigate Search Project SWT Hierarchy Run Window Help

seic|eeeany (ot -

¥p v

%® Modeli... 52 = O[S TE =0

~ 2 PPCY70 block ALU =
~ 1 Core

equation

B ALU.mo -

] package.mo D inital equation
.project
b =4 System Library

end ALU;
(4] [+]
Console | [£ Problems &3

=+ - 0
I =

2 errors, 0 wamings, 0 infos

‘ ‘ Description ‘ Resource ‘ In Folder Location
@ unexpected token ALU.mo PPCO970/Core line 5
(] unexpected token ALU.mo PPCO70/Core line 5

(] 1)) | | v

Figure 8-10. Syntax checking.

122

8.3.10 Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the Return (Enter) key, the next line is
indented correctly. You can also correct indentation of the current line or a range selection using CTRL+I
or “Correct Indentation” action on the toolbar or in the Edit menu.

8.3.11 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion when typing a dot after
a class (package) name, shows alternatives in a menu. Besides the alternatives, Modelica documentation
from comments is shown if is available. This makes the selection easyer.

< Modelica - DCEngine.mo - Eclipse SDK

File Edit Refactor Mavigate Search Run Project ‘Window Help

TETLDJ|=| ath %' ~.J;. ﬂ:""::"

[M] Modelica Projects 23 = 0O *OCERgine. ma o
- Iﬁ- EngineSimulation model DCEngine
+- M| DCEngine.mo import Modelica.|
=l project equation 3 Elacks
-z, Skandard Library
= Modelica end DCEngine: Hacmﬂ-ants
- £ Electrical
+--f4 Blacks
+-ff Constants £ 1cons
+- £ Electrical £ math
+H Icons 3 Mechanics
-4 Math B sTunits
+ acos £ Thermal
+ asin
+ atan
+ atang
baselconl

Figure 8-11. Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows the function signature (formal
parameter names and types) in a popup when typing the parenthesis after the function name, here the
signature Real sin(SI.Angle u) of the sin function:

= Modelica - DCEngine.mo - Eclipse SDK
File Edit Refactor Mavigake Search Run Project ‘window Help

|=j'L|:]_||=| a1h %* ~,,'IJ' ¥o oo

[H] Modelica Projects &3 = O *OCERGing. ma
=122 EngineSimulation model DCEngine
+ DCEngine . mo import Modelica.Math.*;
=] .project output EReal x:
-2, Standard Library egquation
-1 f Modelica Feal siniSI..ﬁ.néle ui
+ - Blacks % = sin{

+-H3 Constarts
+-H3 Electrical -
+- % Icons

Figure 8-12. Code completion at a function call when typing left parenthesis.

end DCEngine:

123

8.3.12 Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information about the identifier is
displayed. If the text is too long, the user can press F2 to focus the popup dialog and scroll up and down to
examine all the text. As one can see the information in the popup dialog is syntax-highlighted.

E——— I
orrect Indentation J 3 S - E | B modelica 22

Absyn.mo B Wainme: % N =0
23 | input String i ing; |

output

output
output Interactive.InteractiveSymbelTakle cutlnteractiveSymbolTable;

=lgorithm

,expmsg, debugstr;
ble isymb,newisymb;

case (str,isymb)
equation

true = Util.strnemp("gquiti}", str,

Figure 8-13. Displaying information for identifiers on hovering

8.3.13 Go to Definition Support

Besides hovering information the user can press CTRL+click to go to the definition of the identifier.
When pressing CTRL the identifier will be presented as a link and when pressing mouse click the editor will
go to the definition of the identifier.

8.3.14 Code Assistance on Writing Records

When writing records, the same functionality as for function calls is used. This is useful especially in
MetaModelica when writing cases in match constructs.

124

&- Modelica - Absyn.mo - Ecli

File Edit Navigate Search Project Run Window Help

Iti-EHelE -

| e | @ | il

- | Correct Indentation

[t Modelica Projects 53 n.mo.. X,

then equal;
""" 127 modeqTNG

[:I---Ig:ﬂ OpenModelica [trunk]

""" 12T org.modelica. mdt. core

""" 127 org.modelica. mdt.debug. core
""" 17 org.modelica. mdt.debug.ui

""" 1T org.modelica.mdt. feature then equal;

case (MATRIX{argsl) MRTRIH{argsZ))
local ComponentBef crefl, crefZ;

local CompconentRef crefl,crefi; list<Exp> argsl,srgsi; Boole
blst = Util_listThreaedMap{argsl, argsZ, expEqual);
equel = Util.kboolAndListi(blst);

list<list<Exp>> argsl,argsz;
blst = Util_listListThreadMap (argsl,argss, expEquel);
equal = Util_boolAndList({Util.listFlatteniblst]);

""" 1.7 org.modelica.mdt.ome
""" 12T org.modelica,mdt. site
""" 157 org.modelica, mdt. test

----- 127 org.modelica.mdt.ui ecquation

then equal;

egquation

1

RANG

E{Exp start, Option<Exp > step, Exp stop) |

o

bl = expEqual{ell,eZl);
ki = expEqual (el e2Z);
b3 = expEqual (el3, eZ3);
equel = Util.bool2ndlist({bl,bZ,b3});

bl = expEqualiell,eil);

case (RRNGE(ll, SCHE(elZ) .elS,R.BNGEieEl,SOPEdeZZJ ,E23))
local Exp ell,elz,el3, el ez, e23;
Boolean bl b2, b3;

case (RRNGE(ell, ,el3),RRNGE{eZl, ,e23))
local Exp ell,elZ,el3, el eiZ, e23;
Boolean bl b2 b3;

Figure 8-14. Code assistance when writing cases with records in MetaModelica.

8.3.15 Using the MDT Console for Plotting

& Modelica - demo/BouncingBall.mo - Edlipse SDK i =[O x|
File Edit Mavigate Search Project Run Field Assist Window Help
Jrte il o @ 50 [B| 4| |@ | B |cormtmeruon | #1555 &x T
[t Modelica Projects 53 S BouncingBallma B2 VanDerPal.mo] =0
) | B 1-model EBouncingBall =
o = demo 2 parameter Real
@ BouncingBall.ma ;
1 Hellowarld.ma i
[} vanDerral.ma 2 "
L[project & (start=true) "true, if ball is
e - £ " 3
1@, Libraries: C:\OpenModelical. 4. 4ivodelicall | | | | S001ean impact;
= H Modelica | S X RoEl
g extends Icons.Library: a discrete Integer n bounce (start=0):
2 Blocks 10 eqmation
8 Constants 11 | dmpack=
EE Electrical 12 der(v) if £ ng then -g else O;

B3 tcons i der(n) = v;
B Math

8 Mechanics
Stunits

3 Userscuide

when {h <= 0.0 and v <= 0.0,impact} then

=¥ pew > 0
B Modelicaadditions BiYs wimew),
n_bounce=pre (n_bounce) +1;
4| Sl b]
20 end when;
B outline 23 =][/ 21 end BouncingBali;

if edee(impact) them —s*pre(v) else 0;

i

S M Boundngsal B consale 3 [Bockmerks | & progress|

AEC S0

il INo consoles to display at this time.

1 Java Stack Trace Console

fiying

g

h

impact
n_bounce
v

0000000

v_new

E2cvs

3 Mew Console View

4MDT Console

E") 5 5uni Cansale
Ei 6 TclConsole

[|

| 7 e 7

Figure 8-15. Activate the MDT Console

125

=lol

s - [3-0-%- &+ |8 |9 |5 |coreindeniation | /] -l vt e e | odehca 8330
[Modelica Projects 53 = O |[[l Bouncing8all.mo 53 [l VanDerPol.mo W =B
| BE T 1model BouncingBall
B & demo 2 PaTahogel Soumcingell
[l BouncingBall.mo 3| P73 parameter Real e=0.7 "coefficient of resticution”;
B[Heloworld.mo 4 Reall rameter Real g=% myradity Aceelevarin
[vanDerPol.mo S Beall zei) nstart=1) "height of ball":
§ | Baoll peay v mvelocity of ball";
1B, Lbraries: C:\OpenModelical, 4, 4\Modelical 7 P2 siolesn flying(starc=trae) °
-8 Madelca 2| Reall zoo1can impace:
© extends lcons.Library; 2| 4259 pea) v news
3 Blocke eqUatl 4isorete Integer n bounce (stazt=0);
H Constants >
B3 Electrical der(v) = if flying then -g else 0;
4 Icons s R
B math
B Wecharics when {n <= 0.0 and v <= 0.0,impact} then
W s v_new = if edge(impact) then -e*pre(v) else 0;
B Userscuide flying S ncw o 07
-8 Modeicaadditions Toioinly, ¥ e
il] n_bounce=pre (n_bounce) +1;
end when;
BZ outline 53 = 0| 21 lend BouncingBall;

B2 NE"

il
T - s Ny

Bt B--=0

) Openiodelica Corsole
° g [felcome to Modelica Development Tooling (MID) Console =
°4g You can send commands to OMC from here.

Type !nelp for nelp
fome> simulate (3o

@ impact

o3

© n_bounce
L

record

ile = "BouncingBall res.plt”

o v_new

Figure 8-16. Simulation from MDT Console

126

Chapter 9

Modelica Performance Analyzer

A common problem when simulating models in an equation-based language like Modelica is that the model
may contain non-linear equation systems. These are solved in each time-step by extrapolating an initial
guess and running a non-linear system solver. If the simulation takes too long to simulate, it is useful to run
the performance analysis tool. The tool has around 5~25% overhead, which is very low compared to
instruction-level profilers (30x-100x overhead). Due to being based on a single simulation run, the report
may contain spikes in the charts.

When running a simulation for performance analysis, execution times of user-defined functions as well
as linear, non-linear and mixed equation systems are recorded.

To start a simulation in this mode, just use the measureTime flag of the simulate command.

simulate(modelname, measureTime = true)

The generated report is in HTML format (with images in the SVG format), stored in a file
mode Iname_prof.html, but the XML database and measured times that generated the report and graphs
are also available if you want to customize the report for comparison with other tools.
Below we use the performance profiler on the simple model A:
model A

function F
input Real r;

output Real o := sin(r);
end f;
String s = "abc";

Real x = f(x) "This is x";
Real y(start=1);
Real zl1 = cos(z2);
Real z2 = sin(zl);
equation
der(y) = time;
end A;

We simulate as usual, but set measureTime=true to activate the profiling:
simulate(A, measureTime = true)

127

// // record SimulationResult

// resultFile = "A res.mat",

// messages = "'Time measurements are stored in A _prof_html (human-readable)
and A prof.xml (for XSL transforms or more details)"

// end SimulationResult;

9.1 Example Report Generated for the A Model

9.1.1 Information

All times are measured using a real-time wall clock. This means context switching produces bad worst-case
execution times (max times) for blocks. If you want better results, use a CPU-time clock or run the
command using real-time priviliges (avoiding context switches).

Note that for blocks where the individual execution time is close to the accuracy of the real-time clock,
the maximum measured time may deviate a lot from the average.

For more details, see the generated file A_prof.xml, shown in Section 9.1.7 below.

9.1.2 Settings

The settings for the simulation are summarized in the table below:

Name Value
Integration method euler
Output format mat
Output name A_res.mat
Output size 24.0 kB
Profiling data A prof.data
Profiling size 27.3 kB

9.1.3 Summary

Execution times for different activities:

Task Time Fraction
Pre-Initialization 0.000401 19.17%
Initialization 0.000046 2.20%
Event-handling 0.000036 1.72%
Creating output file 0.000264 12.62%
Linearization 0.000000 0.00%
Time steps 0.001067 51.00%
Overhead 0.000273 13.05%
Unknown 0.000406 0.24%
Total simulation time 0.002092 100.00%

http://www.ida.liu.se/~marsj/A_prof4/A_prof.xml
http://www.ida.liu.se/~marsj/A_prof4/A_res.mat
http://www.ida.liu.se/~marsj/A_prof4/A_prof.data

128

9.1.4 Global Steps

Steps || Total Time

Fraction Average Time

Max Time || Deviation

1 : 499 0.001067

51.00% | 2.13827655310621e-06

0.000006611 2.09x

9.1.5 Measured Function Calls

Name || Calls

Time || Fraction

Max Time

Deviation

b | AF | 1506

0.000092990 4.45%

0.000000448

6.26x

9.1.6 Measured Blocks

Name

Calls Time

Fraction

Max Time

Deviation

l_._]_ residualFunc3

2018 || 0.000521137

24.91%

0.000035456

136.30x

I_u_l_ residualFuncl

1506 || 0.000393709

18.82%

0.000002735

9.46x

9.1.6.1 Equations

Name Variables
SES_ALGORITHM 0

SES_SIMPLE_ASSIGN 1 der(y)
residualFunc3 22,71
residualFuncl X

9.1.6.2 Variables

Name || Comment

y

der(y)

This is x

X<

http://www.ida.liu.se/~marsj/A_prof4/A_prof.999.svg
http://www.ida.liu.se/~marsj/A_prof4/A_prof.1006.svg
http://www.ida.liu.se/~marsj/A_prof4/A_prof.1006.svg
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=2
http://www.ida.liu.se/~marsj/A_prof4/A_prof.1009.svg
http://www.ida.liu.se/~marsj/A_prof4/A_prof.1009.svg
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1009
http://www.ida.liu.se/~marsj/A_prof4/A_prof.1010.svg
http://www.ida.liu.se/~marsj/A_prof4/A_prof.1010.svg
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1010
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1001
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1004
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1003
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1002
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=8
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=8
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=7
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=9
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=10

129

<IDOCTYPE doc (View Source for full doctype...)>

9.1.7 Genenerated XML for the Example

<simulation>

<model info>

<name>A</name>

<prefix>A</prefix>

<date>2011-03-07 12:55:53</date>
<method>euler</method>
<outputFormat>mat</outputFormat>
<outputFilename>A_res.mat</outputFilename>
<outputFilesize>24617</outputFilesize>
<overheadTime>0.000273</overheadTime>
<preinitTime>0.000401</preinitTime>
<initTime>0.000046</initTime>
<eventTime>0.000036</eventTime>
<outputTime>0.000264</outputTime>
<linearizeTime>0.000000</linearizeTime>
<totalTime>0.002092</total Time>
<totalStepsTime>0.001067</totalStepsTime>
<numStep>499</numStep>
<maxTime>0.000006611</maxTime>

</model info>

<profilingdataheader>
<filename>A_prof.data</filename>
<fFilesize>28000</fTilesize>

<format>

<uint32>step</uint32>
<double>time</double>

<double>cpu time</double>

<uint32>A.f (calls)</uint32>
<uint32>residualFunc3 (calls)</uint32>
<uint32>residualFuncl (calls)</uint32>
<double>A_.f (cpu time)</double>
<double>residualFunc3 (cpu time)</double>
<double>residualFuncl (cpu time)</double>
</format>

</profilingdataheader>

<variables>

<variable i1d="1000" name="y" comment=""">

<info filename="a.mo" startline="8" startcol="3"

readonly="writable" />

</variable>
<variable 1d="1001" name="der(y)" comment=""'>

endline=""8"

<info filename="a.mo" startline="8" startcol="3" endline="8"
readonly="writable" />

</variable>

<variable 1d="1002" name="'x"" comment=""This is x'>

<info filename="a.mo" startline="7" startcol="3" endline=""7"
readonly="writable" />

</variable>
<variable i1d="1003" name='"zl1" comment=""'>

<info filename="a.mo" startline="9" startcol="3" endline="9"
readonly="writable™ />

</variable>
<variable i1d="1004" name='z2" comment=""'>

<info filename="a.mo" startline="10" startcol="3" endline="10" endcol="20"

readonly="writable" />

</variable>

endcol="18"
endcol="18"
endcol="28"
endcol="20"

http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=6

130

- <variable 1d="1005" name="s" comment="""">
<info filename="a.mo" startline="6" startcol="3" endline="6" endcol="19"
readonly="writable" />
</variable>
</variables>
- <functions>
- <function i1d=""1006"">
<name>A. f</name>
<ncall>1506</ncall>
<time>0.000092990</time>
<maxTime>0.000000448</maxTime>
<info filename="a.mo" startline="2" startcol="3" endline="5" endcol="8"
readonly="writable" />
</function>
</functions>
- <equations>
- <equation id="1007" name=""SES_ALGORITHM 0">
<refs />
</equation>
- <equation id="1008" name=""SES_SIMPLE_ASSIGN 1'">
- <refs>
<ref refid="1001" />
</refs>
</equation>
- <equation id="1009" name="residualFunc3'">
- <refs>
<ref refid="1004" />
<ref refid="1003" />
</refs>
</equation>
- <equation id="1010" name="residualFuncl">
- <refs>
<ref refid="1002" />
</refs>
</equation>
</equations>
- <profileblocks>
- <profileblock>
<ref refid="1009" />
<ncall>2018</ncall>
<time>0.000521137</time>
<maxTime>0.000035456</maxTime>
</profileblock>
- <profileblock>
<ref refid="1010" />
<ncall>1506</ncall>
<time>0.000393709</time>
<maxTime>0.000002735</maxTime>
</profileblock>
</profileblocks>
</simulation>

131

Chapter 10

Modelica Algorithmic Subset Debugger

This chapter presents a comprehensive Modelica debugger for an extended algorithmic subset of the
Modelica language called MetaModelica. This replaces debugging of algorithmic code using primitive
means such as print statements or asserts which is complex, time-consuming and error- prone.

The debugger is portable since it is based on transparent source code instrumentation techniques that are
independent of the implementation platform.

The usual debugging functionality found in debuggers for procedural or traditional object-oriented
languages is supported, such as setting and removing breakpoints, stepping, inspecting variables, etc. The
debugger is integrated with Eclipse.

10.1 The Eclipse-based Debugging Environment

The debugging framework is based on the Eclipse environment and is implememented as a set of plugins
which are available from Modelica Development Tooling (MDT) environment. Some of the debugger
functionality is presented below. In the right part a variable value is explored. In the top-left part the stack
trace is presented. In the middle-left part the execution point is presented.

The debugger provides the following general functionalities:

Adding/Removing breakpoints.

Step Over — moves to the next line, skipping the function calls.

Step In — takes the user into the function call.

Step Return — complete the execution of the function and takes the user back to the point from
where the function is called.

e Suspend — interrupts the running program.

132

il
File Edit Mavigate Search Project Run Window Help
w - = | o9 J -0 -G - J - I J 5 5 =1 - J Correct Indentation | Build project =] ﬁ-DEhug >
ﬁDEbug 2 2 | 2T R | i ~ = O ||t9= Variables 2 % Breakpoints} = [0 | i ~ =0
% moT GoB [Modelica Developement Toaling (MDT) GDE] || _Name | Dedared Type | Value -
'ﬁ? MDT ¥ cache record<Env.Cache.CACHE> record<Env.Cache.CACHE
o Main Thread (stepping) ¥ re record<5Code Restriction.R... record<5Code Restriction.
= instClassdef? at Inst.mo: 3494 ¥ pre record<Prefix.Prefix NOPRE> | record<Prefix.Prefix, NOPR
= instClassdef at Inst.mo:3076 B % eqgs listzrecord<SCode.Equatio.. =2 items>
instClassIn__dispatch at Inst.mo: 2140 B % [1] record<5Code Equation.EQ... record<5Code Equation.EC
instClassIn at Inst.mo: 1813 H % efquation record<5Code EEquation.E... record<SCode EEquation.t
instClass at Inst. mo: 1233 Bl & expleft record<Absyn.Exp CREF> record< Absyn.Exp. CREF>
instProgram at Inst.mo: 1055 = El % componentRe record<Absyn.Compenent.. record<Absyn.Componen
instProgram at Inst.mo: 1085 % name String "rl"
instantiate at Inst.mo:227 @ subscripts list<Any> <0 item>
instantiate at Main.mo:693 ﬂ E @ expRight record<Absyn.Exp . CALL> record<Absyn.Exp. CALL>
e — % function_ record<Absyn.Compenent... record<Absyn.Compenen
Instme &3 Interactive.mo] QuotedFunction.mo " =g @ functionfrgs record<Absyn.FunctienArg... record<Absyn.FunctionAr
normalflgorithmlst = alg, initialAlgurithﬂL;‘ @ comment Option=Any= HONEQ)
re,vis, , ,inst dims,impl,callscope,graph,csets,instSingl ¥ info record < Absyn.InfoINFO= record< Absyn.InfoINFO=
equation - - - E % [2] record<5Code.Equation.EQ.. record<5Code.Equation.Et
false = Util.getStatefulBoolean(stoplnst): i E % eEquation record<5Code.EEquation.E.. record<5Code.EEquation.f
UnitParserExt.checkpoint () : @ expleft record<Absyn.Exp. CREF> record<Absyn.Exp.CREF> _|
//Debug.traceln (" Instclassdef for: " +& PrefixUtil.princ @ expRight record<Absyn.Exp.CALL> record<Absyn.Exp.CALL>
ci statel = ClassInf.trans(ci state, ClassInf.NEWDEF()): @ comment Option<Any> NONE(
els = ext.ractCnnstantFl'JsDeps_(e15,ins:SingleCrEf,{I—,Class E @ info record<Absyn.Info.INFO= record<Absyn.Info.INFO»
@ fileName String "Abs.mao”
/f split elements @ lineMumberSt Integer 12
(cdefelts, extendsclasselts, extendselts, compelts) = splitE @ columnNum Integer E
% lineNumberEr Integer 12
extendselts = 5CodeUtil.addRedeclarelsElementsToExtends (e @ columnhumt Integer i
- El % buildTimes record<Absyn.TimeStamp.... record<Absyn.TimeStamp
Al | v % lastBuildTi Real 0
~ @ lastEditTin Real 0
= Console 52 . ¥ Tesks| [Problems| &3 Exccutables| " Ol e e e list <record<SCode.Element... <2 tems>
MDT GDB [Modelica Developement Tooling (MDT) GDE] C:\OpenModelica\trunk\testsuite \bootstrapping\main.exe || = & ci_state record< ClassInf.State MOD... record<ClassInf.State. MOL
| 5 A ’E,E| = - [= E % path record<Absyn.PathIDENT> record<Absyn.Path.JIDENT
=] ¥ name String "Abs"
¥ csets record<Connect.Sets.SETS> record< Connect.Sets. SETS
= ¥ initalg list=Any> <0 item> -
i ;IJ A - | - _'l_I
J i | Writable Insert ‘ 3494: 27 | OpenModelica C....8.0 is Online J

Figure 10-1. Debugging functionality.

10.2 Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following steps:

e create a mos file

e setting the debug configuration
e setting breakpoints

e running the debug configuration

All these steps are presented below using images.

10.2.1 Create mos file

In order to debug Modelica code we need to load the Modelica files into the OpenModelica Compiler. For

this we can write a small script file like this,

setCommandLineOptions({"'+d=rml,noevalfunc","+g=MetaModelica'});
setEnvironmentVar ("'"MODEL ICAUSERCFLAGS",""-g"") ;

loadFile(*""HelloWorld.mo");
getErrorString();
HelloWor1d(120.0);
getErrorString();

So lets say that we want to debug Hel lowWorld.mo. For that we must load it into the compiler using the
script file. Put all the Modelica files there in the script file to be loaded. We should also initiate the
debugger by calling the starting function, in the above code Hel loWor1d(120.0);

133

10.2.2 Setting the debug configuration

While the Modelica perspective is activated the user should click on the bug icon on the toolbar and select
Debug in order to access the dialog for building debug configurations.

& Modelica - Eclipse SDK

File Edit Mavigate Search Project Run FieldAssist Window Help

Jei- B0 ar B2)@ 8@ [l G
T 110_petrol
'r,-" 2 09_pamtrans
W 3 08_pamded
5 ?’," 407_pam
an
[Functions.mo | (1 5 05 advanced
B[] Main.mo 7% 6 04b_modassigntwotype
& [M] Types.mo 7% 7 04a_assigntwotype
Bl project 7% 8 03_assignment
E Fumctons.c T8 9 01_ewperiment
- |£] Functions.h 0 e .
Bl Functions.o | 4512550
Functions.srz Debug As »
€| Main.c
- ma!n.exe Organize Favorites. ..
- €] Main.h
- (=] Main.o
- |Z] Main.srz
|y Make.mk
| @ Makefile
[El README. txt
N ECR-ToVRY, - 2o Gl
4]]
T =5
o= Outline 23
An outiine is not available. problems | B Console 2 . Baokmarks | Prngress|
<terminated > OMDev-MINGW [Program] C:'OMDev \toolsimsys'binimake .exe
compiling/linking in debug mode with LIBRML=rm 4
/e/CMDev/tenls/eml/ /bin/rml" -Zplain -fdebug -Cno-eps Types.mo

Figure 10-2. Accessing the debug configuration dialog.

To create the debug configuration, right click on the classification Modelica Development Tooling
(MDT) GDB and select New as in figure below. Then give a hame to the configuration, select the debugging
executable to be executed and give it command line parameters. There are several tabs in which the user
can select additional debug configuration settings like the environment in which the executable should be
run.

Note that we require Gnu Debugger (GDB) for debugging session. We must specify the GDB location,
also we must pass our script file as an argument to OMC.

134

&= Modelica - HelloWorld fScript.mos - Eclipse SDK - |E||5|
Filz Edt MNavigate Search Project Run window Help
|- @ |#-@-@Q- |- |5 -7 <% &+ - | corectindentation | Buid project E %% Debug D
(1 Modelica Projects &2 = ﬁ](HelloWorld.mo m =0
i |
-
& Debug Configurations _I
1 00_sim N R
BT 01 ex Create. manage. and run configurations
L1 02a_e Runor Debug a MetaModelica program
T 02b_e:
ﬁ 03_syr
= = -
7 04_ast Ij S| ® | H 5~ Name: INew,ooﬂﬁguraﬁon
g g:_ﬁl pre Alter text Main . Sour:ﬂ = Commorq) Enmronmenﬂ
_m
. el Cfe++ lication
g 06 _ad % C’rfg++ ?th to Application Program: |C:\DpeﬂModella\h’uﬂk\bul\d\bm\omc.exe Waorkspace,.. | File System...
07_0Om
j gg;;m El C/C++ Postmortem Debugger Work directory: | C:\Jsers\adeas 31 workspaceMDT Hellowiorld Workspace... | File System...
11 09_par [£] c/c++ Remate Appiication GDBpath: | ${eny_var:OMDEV} \tools\mingw bin'gdb.exe Workspace.., | File System...
T 10_pai ¥ DSF PDA Application
T 11_pe ¥ Edipse Application)
ﬁ Hellot E GDB Hardware Debugging O Debug € source Files
@ He B Java Applet
o 71 Java Application Arguments:
[He | U it SCRIPT.mos]
B He | JU unitPlug+n Test
[He - Launch Group
@ He ?ﬁ Modelica Developement Tooling (MDT)
He = % Modelica Developement Tooling (MOT) GDB
[€] He %7 vor Debugger Test LILI
2 He '”t',n New_configuration
He i Standard Modelica Test - =8
1 - 0SGI Framework
o p—— % Push Down Automata
of Outline & @, Remote Java Application
{28 Snapshot Album
Apply. Revert
Filter matched 21 of 21 items —I
@ Debug I Close |
0 ‘ Writable | Insert | 11:1 OpenModelica C....8.0 is Online J

Figure 10-3. Creating the Debug Configuration.

10.2.3 Setting/Deleting Breakpoints

The Eclipse interface allows to add/remove breakpoints. At the moment only line number based
breakpoints are supported. Other alternative to set the breakpoints is; function breakpoints.

135

& Modehica - Mainmo - Edipse SOK

Fle Edt Navgete Seach Project Run Fedassst Wandon e
Ird=iieslla | -0 Q- |G| & [8 | @ |- - G-

=181
« | comect ndentation I | I3 Modeica e
=0

H Mainm = function main
® 8 man 7 | imput list<Bsrings arg;
- B Types.zo : aiporitm
- e matchcontime arg
i8] Functions.c e ML e
(& Funcsons b M 20an T
Functons.o

Inseger i, n;
Etring str, n_str;
sqaation

-
|] »

2 outne 33 EatwE-=0

ng {Functions. tent ("2
ngiFunctions. cens ("two™])i

na®))}

N

B Man

« R wiilB-r-70

B manft<srng> wg)

et e AL L
Double click on the
ruler to set/delete
breakpoints
- |wenae (e {10 | ¥R opersiodeica Conpler 1431 Orive I &

Figure 10-4. Setting/deleting breakpoints.

10.2.4 Starting the debugging session and enabling the debug perspective

& Modehica - Mainmo - Edipse SOK

[=181 x|
Fle Edt Ravigste Sewch Project Run Feidissst Window Heb
Irde i el a | v Q@ |G| e | 4| @ | o G - comeindetn | [0 Modelea =
e o pr Gl
m package Hain |
e 61 mperment 820
1_expenmenit a0 impart Types;
2 externaT gﬂ Aimport Functions;
- i Functors.ma 507,
M Manme TR60 functicn main
©- 8 Man mre —_— input 1ist<String> arg;
- b Types.m0 algorithe
Theo
é;‘;"':_-:’“ R 903 _ssegrme Ratshcontimue arg
] Funcions. o2 case (n_
] Funcaons.h iﬂ = logal
3| Punctons.o Debug s » Intager i, n:
5 Aunctonsier GLring STE, n_soE;
e o .
& man.exe = g
] My L
Man.o
| Msnsr
i Make.mk
i Maketie 5
1 e I] L) ngifunctions. test (“ona”i))i
4 2 +5 Functions.veati®iva™l)h;

8 outne 13 L L -

-

& Man
B-F manft<syng> wg)
& proortFunctons;

« W mbl @70

Toging (MOT]] C: " 101,

. exe -dgCmdPorte796 chuRiephPort=2757 <gEventPer1a2 758 ~hgSignalorta279 10

Click and select the
debug configuration.
The debugging will start.

L]

| writatle | Trgerr [P

Figure 10-5. Starting the debugging session.

| B8 Oneniodeica Conpiler 1.4.378 Orine

136

File Edit Mavigate Search Project Run Fieldassist Window Help

Jti- ol $-0-@- B |5 |c-]8]|@] -t G - ot

[t Modelica Projects 5N = | [E———
| BE T
R 01_experiment
Tl O2a_expl
-1 02b_exp2

{00 03_assignment S\ function main
""" 127 04a_assigntwotype

""" 120 04b_modassigntwotype
""" 17 05_advanced

----- 127 06_OMCANdCorba

input list<String> arg;
algorithm

matchocontinue arg
case (n_str::_)

""" 121 07_pam local B
120 08_pamded Integer i, n; n - =
12 09_pamtrans String str, n_str; & Confirm Perspective Switch x|
S td e ol ot oot the Deb h
_____) is kind of launch is configured to open the Debug perspective when it
g dtocumentahon : _?/ EEe
..... etc \
This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management,
Do you want to open this perspective now?
] [~ Remember my decision
o= Qutline 23 B wyrw ¥ Y50 A
Yes Mo
=] EE Main problems | B Console &2 Bookmarl
B - mainfist<String> arg) 01_experiment [Modelica Developement - RN EAC AR MARSEE Milian T e -

i @ import Functions;

Figure 10-6. Eclipse will ask if the user wants to switch to the debugging perspective.

10.3 Debugging OpenModelica

o Compile and create OpenModelica executable as usual.

e Go to /trunk/testsuite/bootstrapping and run command ../../build/bin/omc.exe
MainTest.mos

e Now run make —F LinkMain.makefile.mingw (choose the right make file depending on your
platform), this will create main.exe in the same directory.

e Now in the debug configuration as explained in Section 10.2.2 choose main .exe as the program.

10.4 The Debugging Perspective

The debug view primarily consists of two main views:

e Stack Frames View
e Variables View

The stack frame view, shown in the figure below, shows a list of frames that indicates how the flow had
moved from one function to another or from one file to another. This allows backtracing of the code. It is
very much possible to select the previous frame in the stack and inspect the values of the variables in that
frame. However, it is not possible to select any of the previous frame and start debugging from there. Each
frame is shown as <function_name at file_name:line_number>.

The Variables view shows the list of variables at a certain point in the program, containing four colums:

e Name — the variable name.

o Declared Type — the Modelica type of the variable.
e Value — the variable value.

e Actual Type — the mapped C type.

137

By preserving the stack frames and variables it is possible to keep track of the variables values. If the value
of any variable is changed while stepping then that variable will be highlighted yellow (the standard
Eclipse way of showing the change).

& Debug - Hain.mo - Edipse SOK -
Fie it Refactor Nevgate Sedrch Promct Run FeidAssst Window Help

Jrd-leala | e O = Que |5 | o= || @] o] er (i e | cumctidentation 0| 45 Debug B
5 Debug 1 a2 RR] T T O] e vassis 5 presoons| 'S L " TR
= 3 01_experment [Modeics Developement Toolng (MOT]] - || aarme | vaie |

=58 moT EEXT swring st
ol Main Sread {staooing) XY sig
= Wsiniman fine: 17, 5957} |
¥ Cronormnhomeac Wi_eperimantimain.exe <bgEmePort ~dogeptyPogf 3051 chgEvenPort=3052 Al
| =

Kl — | 0 25

(2 a0 3 N 1 = 0| [outne | 1 Mocescaprojecss 52 T 0
Iopackage Main =l | =
i) P | 5 & o1 mperment
i import 8 0Za_expl
5 B 0_so2

function main 150 03 _sssagrment
1 0sa_sssgrtiatyoe
1B 0%_modassgntnotipe
& 05 _scvanced
1 05 OMCAnaCorba
&7 07_pam
101 08 pamdest
T o9_pamirans
B 10 petral
1B doamentaton
et
;IJ

L]
© corase £ oz | roriog]| / - L)
01 _experment [Tooing 40T]] C: T ~dhgCndFort=2050 doll

Browse variables here. =
Use the buttons to step. Alsothere (v tab with
breakpoints.

1 laziar | BB Comviodetes Comoler 1,438 Orive i | T
Figure 10-7. The debugging perspective.
& Debug - Mainmo - Edipse SO =lg]x]
Fie £t Refacor Nrvgele Search Propct Run FeldAmsst VWincow Hep
| | e Qe Ry Qe | O[S L[| O B s e e e S | % Detug »
(45 Debng 51 A BB eS| BT 0|k st 5 preskoonn)|
1 88 01_experment [Modelka Develooement Tosing (VO] e [i s FRaCrope:
o 18 wor B % ag sirng st M
=5 Man thread (steoping) B @ nstr sng
= Main =an (ine: 17,5 7] |
#il Colbnieygen home iadra MetaModeben) _sxpermentiman.exe -cgd T yPortw1051 dogEventort -
|
q | 24
B Manmo 82N
uncticne:

fungtion xain
T | input lisseStrings axgi
¢ algorithm

B Console 5 Toss| Erver Loa)
01_swperment [Modekca Deveiopement Toolng (MOTY] Ciseygmn fose oo Metaodeicn 01 excd

Switch between Debug
and Modelica Perspective

lwpE| e B-r5-20

Figure 10-8. Switching between perspectives.

139

Chapter 11

Interoperability — C, Java, and Python

Below is information and examples about the OpenModelica external C and Java interfaces, as well as
examples of Python interoperability.

11.1 Calling External C functions

The following is a small example (ExternalLibraries.mo) to show the use of external C functions:

model ExternallLibraries
Real x(start=1.0),y(start=2.0);

equation
der(x)=-ExternalFuncl(x);
der(y)=-ExternalFunc2(y);

end ExternalLibraries;

function ExternalFuncl
input Real Xx;
output Real y;
external
y=ExternalFuncl_ext(x) annotation(Library="libExternalFuncl_ext.o",
Include="#include \"ExternalFuncl_ext_h\""");
end ExternalFuncl;

function ExternalFunc2
input Real Xx;
output Real y;
external "C" annotation(Library="libExternalFunc2.a",
Include="#include \"ExternalFunc2_.h\""");
end ExternalFunc?2;

These C (.c) files and header files (.h) are needed:

/* file: ExternalFuncl.c */
double ExternalFuncl_ext(double x)

double res;
res = x+2.0*x*Xx;
return res;

}

/* Header file ExternalFuncl_ext.h for ExternalFuncl function */
double ExternalFuncl_ext(double);

/* file: ExternalFunc2.c */
double ExternalFunc2(double x)

double res;
res = (x-1.0)*(x+2.0);
return res;

140

}

/* Header file ExternalFunc2.h for ExternalFunc2 */
double ExternalFunc2(double);

The following script file ExternalLibraries.mos will perform everything that is needed, provided you
have gcc installed in your path:

loadFile("ExternalLibraries.mo™);

system(*'gcc -c -0 libExternalFuncl_ext.o ExternalFuncl.c™);
system(‘'gcc -c -o libExternalFunc2.a ExternalFunc2.c™);
simulate(ExternalLibraries);

We run the script:

>> runScript(“ExternalLibraries.mos™);
and plot the results:

>> plot({x,y});

< tmpPlot. plt

File Edit Special

Plot by OpenModelica

ek T T T T T T 1y m
‘5".
1481 7
100 7
05l 4

0o 01 n 03 04 05 068 07 08 089 1.0

11.2 Calling External Java Functions

There exists a bidirectional OpenModelica-Java CORBA interface, which is capable of passing both
standard Modelica data types, as well as abstract syntax trees and list structures to and from Java and
process them in either Java or the OpenModelica Compiler.

The following is a small example (ExternalJavaLib.mo) to show the use of external Java function
calls in Modelica, i.e., only the case calling Java from Modelica:

model ExternalJavalib

Real x(start=1.0);
equation

der(x)=- ExternalJavalLog(x);
end ExternalJavalLib;

141

function ExternalJavalog

input Real Xx;

output Real y;
external "Java" y=7java.lang.Math.log”(x) annotation(JavaMapping = "'simple');
end ExternalJavalog;

The datatypes are mapped according to the tables below. There is one mapping for interacting with
existing Java code (simple), and a default mapping that handles all OpenModelica datatypes. The
definitions of the default datatypes exist in the Java package org.openmodelica (see SOPENMODELICA-
HOME/share/java/modelica_java.jar).

For more complete examples on how to use the Java interface, download the OpenModelica source code
and view the examples in testsuite/java.

Modelica Default Mapping JavaMapping = "'simple**
Real ModelicaReal double
Integer Modelicalnteger int
Boolean ModelicaBoolean bool
String ModelicaString String
Record ModelicaRecord

T[] ModelicaArray<T>

MetaModelica Default Mapping

list<T> ModelicaArray<T>

tuple<T1, ..., Tn> ModelicaTuple

Option<T> ModelicaOption<T>

Uniontype IModelicaRecord

11.3 Python Interoperability

The interaction with Python can be perfomed in four different ways whereas one is illustrated below.
Assume that we have the following Modelica code (Cal ledbyPython.mo):

model CalledbyPython
Real x(start=1.0),y(start=2.0);
parameter Real b = 2.0;
equation
der(x) -b*y;
der(y) = x;
end CalledbyPython;

In the following Python (.py) files the above Modelica model is simulated via the OpenModelica scripting
interface.

file: PythonCaller.py

#1/usr/bin/python

import sys,os

global newb = 0.5

os.chdir(r*C:\Users\Documents\python*)

execTile("CreateMosFile.py™)
os.popen(r'C:\OpenModelical.-4_.5\bin\omc.exe CalledbyPython.mos™).read()

142

execfile("RetrResult.py"”)

file: CreateMosFile.py

#1/usr/bin/python

mos_Ffile = open("CalledbyPython.mos",’w”,1)

mos_Ffile.write("loadFile(\"Cal ledbyPython_mo\");\n"")

mos_Tile.write('setComponentModifierValue(CalledbyPython,b,Code(="+str(newb)+")
);s\n"™)

mos_TFTile.write("simulate(Cal ledbyPython,stopTime=10);\n"")

mos_Ffile.close()

file: RetrResult.py

#1/usr/bin/python

def zeros(n): #
vec = [0.0]
for i in range(int(n)-1): vec = vec + [0.0]
return vec

res_file = open(*'CalledbyPython_res.plt”,"r",1)

line = res_file.readline()
size = int(res_Ffile.readlineQQ.-split("=")[1D
time = zeros(size)

y zeros(size)

while line != ["DataSet: time\n"]: line = res_file.readline(Q).split(",")[0:1]
for j in range(int(size)): time[j]=Float(res_file.readline().split(",")[0]D
while line != ["DataSet: y\n"]: line=res_file.readline().split(",")[0:1]

for j in range(int(size)): y[j]=Float(res_file.readline(Q).split(",")[1D
res_file.close()

A second option of simulating the above Modelica model is to use the command bui IdModel instead of
the simulate command and setting the parameter value in the initial parameter file,
CalledbyPython_init.txt instead of using the command setComponentModifiervalue. Then the
file CalledbyPython.exe is just executed.

The third option is to use the Corba interface for invoking the compiler and then just use the scripting
interface to send commands to the compiler via this interface.

The fourth variant is to use external function calls to directly communicate with the executing
simulation process.

143

Chapter 12

OMPython — OpenModelica Python Interface

12.1 About OMPython

OMPython — OpenModelica Python API is a free, open source, highly portable Python based interactive
session handler for Modelica scripting. It provides the modeler with components for creating a complete
Modelica modeling, compilation and simulation environment based on the latest OpenModelica library
standard available. OMPython is architectured to combine both the solving strategy and model building. So
domain experts (people writing the models) and computational engineers (people writing the solver code)
can work on one unified tool that is industrially viable for optimization of Modelica models, while offering
a flexible platform for algorithm development and research. OMPython v1.0 is not a standalone package, it
depends upon the OpenModelica installation.

OMPython v1.0 is implemented in Python using the OmniORB and OmniORBpy — high performance
CORBA ORB:s for Python and it supports the Modelica Standard Library version 3.2 that is included in the
latest OpenModelica (version 1.8.1) installation.

12.2 Features of OMPython

OMPython provides user friendly features like,

e Interactive session handling, parsing, interpretation of commands and Modelica expressions for
evaluation, simulation, plotting, etc.

o Interface to the latest OpenModelica API calls.

e Optimized parser results that give control over every element of the output.

o Helper functions to allow manipulation on Nested dictionaries.

e Easy access to the library and testing of OpenModelica commands.

12.3 Using OMPython

The third party library of OMPython can be created by changing directory to,
OpenModelicalnstallationDirectory/share/omc/scripts/Pythonlnterface/

And running the command,

python setup.py install

This will install the OMPython library into your Python’s third party libraries directory. Now OMPython
can be imported and used within Python.

144

12.3.1 Test Commands

To test the command outputs, simply import the OMPython library from Python and execute the run()
method of OMPython. The module allows you to interactively send commands to the OMC server and
display their output.

For example:

C:\>python
>>> import OMPython
>>> OMPython.run()

Full example:

C:\>python

>>> import OMPython
>>> OMPython.run()
>>loadModel (Modelica)
True

12.3.2Import As Library

To use the module from within another python program, simply import OMPython from within the using
program. Make use of the execute() function of the OMPython library to send commands to the OMC
server.

For example:
answer = OMPython.execute(cmd)

Full example:

test.py

import OMPython

cmds =
[*loadModel (Modelica)",
"model test end test;",
"loadFile(\"'C:/0OpenModelical.8.1/testmodels/BouncingBall._mo\")",
""getlconAnnotation(Modelica.Electrical.Analog.Basic.Resistor)",
""getElementsInfo(Modelica.Electrical .Analog.Basic.Resistor)",
"simulate(BouncingBall)",
“plot(h)”]

for cmd in cmds:
answer = OMPython.execute(cmd)
print "\nResult:\n%s"%answer

12.3.3 Retrieve results from nested dictionaries

Once the result is available from the OMPython.execute(), the OMPython.get() method can be used
to retrieve and use specific values inside the dictionaries by simply querying the result dictionary with a
string of nested dictionary names (keys).

The query should define the complete nested structure of the dictionary starting from its root.

Syntax:
OMPython.get(dict, "dotted.dict.structure')
For example:
OMPython.execute(""loadModel (Modelica)'™)
result=

OMPython.execute("'getlconAnnotation(Modelica.Electrical .Analog.Basic.Resistor)'™)

145

inner = OMPython.get(result, "SET2_.Elements._Linel._Properties”)

Full example:

#test.py

import OMPython
OMPython.execute(""loadModel (Modelica)'™)
result=

OMPython.execute("'getlconAnnotation(Modelica.Electrical .Analog.Basic.Resistor)')
inner = OMPython.get(result, "SET2_Elements._Linel.Properties”)
print "result of get is \n%s" %inner

12.3.4 Set values to nested dictionaries

New dictionaries can be added to the existing nested dictionary by using the OMPyhton.set() method.
Syntax:

OMPython.set(dict, "new.dotted.dict.structure”, new_value)
Note: new_value can be any of the Python supported datatypes.

For example:

OMPython.execute(""loadModel (Modelica)'™)

result=

OMPython.execute("'getlconAnnotation(Modelica.Electrical .Analog.Basic.Resistor)'™)
value = OMPython.set(result,”SET2_Elements.Linel.Properties.NEW", 1le-05)

The OMPython.set() method does not append dictionaries to the existing nest but creates new ones
inside the existing. Design your query such that you don't overwrite the dictionaries if you don’t intend to.

Full example:

#test.py

import OMPython

OMPython.execute(""loadModel (Modelica)'™)

result =

OMPython.execute("'getlconAnnotation(Modelica.Electrical .Analog.Basic.Resistor)')
inner = OMPython.get(result, "SET2_Elements._Linel.Properties”)

print "result of get is \n%s" %inner

value = OMPython.set(result,”SET2_Elements.Linel.Properties.NEW", [1,2,3])

print "Result:: \n%s"™ % OMPython.get(value,"SET2_Elements.Linel_Properties.NEW")

146

12.3.5 Example

-
Fé test.py - CifTest/test.py | = |6 _EE_I

File Edit Format Run Options Windows Help

ftesc.py J

CMPBython

OMPython.execute {"loadModel (Modeli el
result = OMPython.execute ("getlc 1iotation (Modelica.Electrical .Analog.Basic.Resistor) ™)
result
line3 walues = OMPython.get (result, 'SET2.Elements.Line3.Properties.Values')
""nis" % line3 wvalues
result = OMPython.set {result, 'SET2 . Elements.Line3.Properties.Values', "Hello OpenModelica!™)
value = OMPython.get (result, 'SETZ2.Elements.Line3.Properties.Values"')

"\n%s" % wvalue

CMPvthon.execute ("guit ()} ")

2

Ln: 17|Cok 0

EX Command Prompt |£|E|&]

Microsoft Windows [Uersion 6.1.76611
Copyright <(c? 28087? Microsoft Copporation. All rights resevrved.

C:sUszerssgananb42>cd C:\Test

C:“Test>python test.py
OMC Server is up and running at file://Ac:i“usersgananb4Z2-appdata~local-~temp“~ope
nmodelica.ohjid.201203216103561666000

L*S8ET1* = {'Setl1’': [18A.A, —18A.A, 1688_.A, 18A.A, True, B.1,. 2.8, 2_81>, *S5ET2’:
£'Elements’': {'Line3’': {'Properties’: {'Ualues’: [False, B, ‘LinePattern.Dot’, B
.25, 3, ‘Smooth.Mone’ 1. ‘Subsetl’: {’'Setli’: [B, —1881, *'Set2’: [B, —-381}. ‘Setl’
: [8.8, A.A1, 'Set2’: [127. B, A1, 'Set3d’: [’'Arrow.Mone’, "Arrow.Mone’ 133, ’'Line
2': {'Properties’': {'Values’': [True, B, ’‘LinePattern.5o0lid’,. B.25,. 3. ‘Smooth.Mo
ne’ 1, ‘Subsetl’: {‘Setl’: [YA,. A1, ‘'Set2’': [?8, B1>, "Setl’: [B.8, B.8]1, ’'Set?’':
[B, B, 2551, 'Set3’': ["Arrow.None’,. ‘Arrow._Mone’ 1>*_ ‘Linel’: {’'Properties’: {’
Walues’: [True. B, ‘LinePattern.Solid’. A.25. 3. ‘Smooth.Mone’]. ‘Subsetl’: {’Se
t1': [-98, B, ‘Set2’: [-78,. A1, 'Setl’: [B.8, B.8]1,. ‘Set2’: [B, B, 2551, *'Setd

‘: [*'Arrow._None’, ‘Arrow._Mone’ 12, *'Text2': {'Propertiez’: {‘Ualues’: [True, B,
'LinePattern.S0lid’ . *FillPattern.Mone’,. BA.25, ' "2name'’ . A, *‘TextAlignment.Cent
er’ 1, ‘Subsetl’: {‘Setl’: [-1%2, 871, ’'Set2’': [148, 471>, 'Setl’: [B.A, BA.81, '5
et2’: [B, B, 2551, ‘Set3’: [B, @, A1>>, 'Textl': {'Properties’: {'Ualues’: [True
., B, 'LinePattern.80lid’,. *FillPattern_-None’,. B.25, A, ‘TextAlignment.Center']1,
‘Subsetl’: {’'Setl’: [-144., -48]1. "Set2’: [142, 721}, ‘Setl’: [B.8. B.A]1. ‘Set2’
‘Results’z {'"R': *'«R'"™3>¥. "Rectanglel’: {’'Properties’: {"Ualues’:

-, B, 'LinePattern.%0lid’, *FillPattern.Solid’, 8.25_ ’'BorderPattern_.MNone’.,
‘Subsetl’: {’'Setl’': [-78,. 381, "Set2’: [A,. —3A1>. ‘Setl’: [B.8. A.A]1, ‘'Set

[B, B, 25%1, "Set3’: [255,. 255, 2G5 133333

[False, B, 'LinePattern.Dot’, A.25. 3, ‘Smooth.Hone’]

Hello OpenModelicat

OMC has been Shutdown

C:~Test>

147

12.4 Implementation

12.4.1 Client
The OpenModelica Python API Interface — OMPython, attempts to mimic the OMShell's style of
operations.

OMPython is designed to,

e Initialize the CORBA communication.

e Send commands to the Omc server via the CORBA interface.
e Receive the string results.

e Use the Parser module to format the results.

e Return or display the results.

12.4.2 Parser

Since the results of OMC are retrieved in a String format over CORBA, some housekeeping has to be done
to make sure the results are usable in Python easily.
The Parser is designed to do the following,

e Analyze the result string for categorical data.

e Group each category under a category name.

e Type cast the data within these categories.

e Build a suitable data structure to hold these data so that the results can be easily accessed and used.

12.4.2.1 Understanding the Parsed output

Each command in OpenModelica produces a result that can be categorized according to the statistics of the
pattern of data presented in the text. Grammar based parsers were found to be tedious to use because of the
complexity of the patterns of data.

The parser just type casts the data without "curly brackets" to the appropriate data type and displays it as
the result.

For example:

>> getVectorizationLimit()

<< 20

>> getNthlnheritedClass(Modelica.Electrical.Analog.Basic.Resistor,1)
<< Modelica.Electrical .Analog. Interfaces.OnePort

However, multiple data types packed within a pair of quotations is always treated as a full string.

For example:

>> getModelicaPath()
<< "C:/OpenModelical.8.0/lib/omlibrary™

12.4.2.2 The Dictionary data type in Python

Dictionaries are found to be a useful datatype to pack data with different datatypes. Dictionaries in Python
are indexed by Keys unlike the sequences, which are indexed by a range of numbers.

It is best to think of dictionaries as an unordered set of key:value pairs, with the requirement that the
keys are always unique. The common operation on dictionaries is to store a value associated with a key and
retrieve the value using the key. This provides us the flexibility of creating keys at runtime and accessing

148

these values using their keys later. All data within the dictionary are stored inside a named dictionary. An
empty dictionary is represented by a pair of braces {}.

From the reply of the OMC, the complicated result strings are usually the ones found within the curly
braces, in order to make a meaningful categorization of the data within these brackets and to avoid the
potential complexities due to creating Dynamic variables, we introduce the following notations that can be
used within dictionaries,

e SET

e Set

e Subset

e Element

e Results

e Values
12.4.2.2.1 SET

A SET (note the capital letters) is used to group data that belong to the first set of balanced curly brackets.
According to the needed semantics of the results, a SET can contain Sets, Subsets, Elements, Values and
Results. A SET can also be empty, denoted by {}. The SETs are named with an increasing index starting
from 1(one). This feature was planned to eliminate the need for dynamic variable creation and having
duplicate Keys. The SET belongs within the dictionary, result.

For example:
>> strtok(""abcbdef",""b™)
<< {"SET1": {"Values": [*"a","c","def'"]1}}

The command strtok tokenizes the string "abcbdef" at every occurrence of b and produces a SET with
values "a", "c", "def".

12.4.2.2.2 Set

A set is used to group all data within the a SET that is enclosed within a pair of balanced {}s. A Set can
contain only Values and Elements. A set can also be empty, it can be depicted as {{}}, the outer brackets
compose a SET, the inner brackets are the Set within the SET.

12.4.2.2.3 Subset

A Subset is a two-level deep set that is found within a SET. A subset can contain multiple Sets within its
enclosure.

For example:
{SET1 {Subsetl{Setl},{Set2},{Set3}}}

12.4.2.2.4 Element

Elements are the data which are grouped within a pair of Parenthesis (). As observed from the results
string, elements have an element name that describes the data within them, so elements can be grouped by
their names. Also, many elements have the same names, so they are indexed by increasing numbers starting
from 1(one). Elements have the special property of having one or more Sets and Subsets within them.
However, they are in turn enclosed within the SET.

For example:

>> getClassAttributes(test.mymodel)

<< {"SET1": {"Elements™: {"recl”: {"Properties”: {"Results”: {"comment”: None,
“res

triction”: "MODEL", "startLine": 1, "partial”™: False, "name": ""mymodel"", "enca
psulated”: False, "startColumn®: 14, "readonly®: ""writable"", "endColumn®: 69,

149

"file": ""<interactive>"", "endLine": 1, "final": False}}}}}}

The result contains, a SET with a Element named recl which has Properties which are Results (see below)
of the element.

12.4.2.2.5 Results

Data that is related by the assignment operator "=", within the SETs are denoted as Results. These
assignments cannot be assigned to their actual values unless they are related by a Name = Value
relationship. So, they form the sub-dictionary called Results within the Element (for example). Then these
values can be related by the key:value pair relationship.
For example:

>> getClassAttributes(test.mymodel)

<< {"SET1": {"Elements™: {"recl”: {"Properties”: {"Results”: {"comment”: None,

“res

triction”: "MODEL", "startLine": 1, "partial™: False, "name": ""mymodel™", "enca

psulated”: False, "startColumn®: 14, "readonly®: ""writable"", "endColumn®: 69,
"file": ""<interactive>"", "endLine": 1, "final": False}}}}}}

12.4.2.2.6 Values

Data within any or all of SETs, Sets, Elements and Subsets that are not assignments and separated by
commas are grouped together into a list called "Values". The Values list may also be empty, due to
Python's representation of a null string " as {}. Although a Null string is still a Null value, sometimes it is
possible to observe data grouped into Values to look like Sets within the Values list.

For example:

>> getNthConnection(Modelica.Electrical .Analog.Examples.ChuaCircuit,?2)
<< {"SET1": {"Setl": ["G.n", “Nr.p", {}1}}

12.4.3 The Simulation Results

The simulate() command produces output that has no SET or Set data in it. Instead, for simplicity, it
has two dictionaries namely, SimulationResults and SimulationOptions within the result dictionary.

For example:
OMPython.execute("'simulate(BouncingBall)™)

150

BN Command Prompt |ﬂl-'§:_hj

Microsoft Windows [Uersion 6.1.76611
Copyright (c?> 2889 Microsoft Corporation. All rights reserved.

C:~Users~gananb42>cd G:xTest

C:s\Testrpython testl.py

OMC Server is up and running at file:///c:i“usersgananb42sappdata“~local“~temp“ope

nmode lica.obhjid.-281283216821522473008

{’SimulationOptions®: {‘options’: "*'", ’'storelnTemp’: False. ‘cflags’:z "', ‘fu

ariabhleFilter’': "' .#'"_ ‘poClean’: False, ‘outputFormat’: ""'mat’",. ‘method’:= '"'d
‘measureTime’ : False, ‘stoplime’: 1.8, ‘startTime’: B.0, ‘numberOfInterv

1 -

‘tolerance’ : 1le-B6, ‘fileMamePrefix’: "' BouncingBall’' "}, 'SimulationR

E’timeﬂumpile’: 1.1888448472586,. ‘timeBackend’: B.80829341377297273. '
‘2 Mone, ‘timeFrontend’: ﬂ.37ﬂ313§7ﬂ9247ﬂ2, ‘timeSimulation’ = @.143377433
i

- "timeTemplates’: B.B0B6568088086
'timeTotal’ = 1.7166893818657, ‘result

829, 'timeSimCode’: B.00464566515281839
le’: '"C:r/TestsBouncingBall_wres.mat'’' >3

OMC has bheen Shutdouwn

C:“Test>

12.4.4 Record Construction

The OpenModelica commands that produce output with Record constructs also do not have SET or Set data
within them. The results of the output are packed within the RecordResults dictionary.

For example:
OMPython.execute(*'checkSettings()")

T T L

-

Bl Command Prompt |ﬂ|i"]

1 0 D E 0 D D
AA9 :

=

m

=
=
=

-
-

D 2
-

-

-

151

12.5 Examples

12.5.1 Import As Library

& testlpy - C\Test\testLl.py | =-| = i:?'-J
File Edit Format Run Options Windows Help

ftest.py _J

CHMEvython

CHMPython.execute ("1
CHMPyvthon.execute ("1 C
result = OMPython.execute ("simnul
OMPython.execute [("plot (h) ")

print result

filename = OMPython.get {result, "SimulationResults.resultFile’)
print filename

2im option tolerance = OMPython.get (result, 'Simulationfptions.tolerance’)
print =" % 3im option_ tolerance
= 3" % t_ppia im option_tolerance)

OMPython.execute ("guitc () ™)

=

Ln: 17 (Col: 0

EX Command Prompt |ﬂ‘_§:_;-,|

Microsoft Windows [Uersion 6.1.76811
Copyright <(c) 2009 Microsoft Corporation. All rights reserwved.

C:Uszserssgananb42>cd C:~Test

G: \Te*t)pythun testl.py
OMC Server iz up and running at file:-~///c:iusersgananb42-appdataslocal-tempope
nmode lica. thld 2312.321@3414371533@

LLY I 1] LI T Ll
=

gAa {’uptlnn“’: 'storelnTemp’: False, ‘cflags’: -

¥ ‘poClean’: False. ‘outputFormat®: "'mat’', ‘method’: ''d

meaauPeTlme’: False,. *‘stopTime’: 1.0, ‘startTime’: A.A. ‘numberOfInterv

‘tolerance’: le-86, ‘fileMamePrefix’: "'BouncingBall’'">, ‘SimulationR

euultP" {'timeCnmpile‘: 1.45518238574149, 'timeBackend’: B.88813173377226215,.

meszages’ @ Mone,. ‘timeFrontend’: B.36754695725958%7,. ‘timefSimulation’: B.897654643

83437193, ‘timeTemplates’': A_AABEE?3200A355388,. 'timeSimCode’: B.0A45793733458673

B, "timeTotal’: 1.9429373559315, ’'resultFile’: *"C:/TestsBouncingBall_res._mat''}
>

"C:rTest-BouncingBall_res._.mat"

Tolerance = 1e—86

Type<Tolerance» = <type ‘float’>
OMC hasz been Shutdown

C:~Test>_

152

;
£2 OMPlot - OpenModelica Plot = B
File Options
ﬂ Plot1 - x(t) |

Pan FitinView Sawve Print Log X Log ¥
Plot by OpenModelica

153

12.5.2 Test Commands

BN Command Prompt

>»» dmport OMPython

»>>»» OMPython.run¢?
True
>rgetlUersiond

"1.8.1 (r114742"

Frod()
"C:sUsers/gananb42"

Frgudt ()

C:xUzserssgananb42 > _

Type “help',. “copyright",

Microsoft Windows [Uerszion 6.1.76811]
Copyright <c? 200? Microsoft Corporation. All rights reserved.

C:“Userssgananbt42 >python
Python 2.7.2 <(default, Jun 12 2811, 15:88:5%9> [M5C v.1580 32 hit <Intel>] on win
32

OMC Server is up and running at file:~/sc:suserssganan642~appdata~local~temp*ope
nmodelica.objid.2812A3210A38028548008

>*loadModel1{Modelical

OMC hasz heen Shutdoun

"credits'" or "license" for more information.

=Eh

12.6 List of Commands

The following table contains brief descriptions about the commands that are available in the OpenModelica

environment.

Command

Description

simulate

Simulates a model.
Interface:

function simulate

input
input
input
input
input
input
dopri5,
input
empty}
input
input
input
input
ouput

end simulate;
SimulationResult:

Record SimulationResult

TypeName className;

Real startTime=0;

Real stopTime=1;

Integer numberOfintervals=500;

Real tolerance=le-4;

String method="dassl”; {euler, rungekutta,
inline-euler, inline-rungekutta}

String outputFormat="mat”; {mat, plt, csv,

String fileNamePrefix=""";
String variableFilter="";
String cflags=""";

String simflags="";
SimulationResult simRes;

154

String resultFile;
String simulationOptions;
String messages;
Real timeFrontend;
Real timeBackend;
Real timeSimCode;
Real timeTemplates;
Real timeCompile;
Real timeSimulation;
Real timeTotal;

End SimulationResult;

appendEnvironmentVar

Appends a variable to the environment variables list
Interface:

function appendEnvironmentVar
input String var;
input String value;
output String result "returns \"error\" if the
variable could not be appended';
end appendEnvironmentVar;

basename

Returns the base name (file part) of a file path. Similar to basename(3), but
with the safety of Modelica strings.
Interface:

function basename
input String path;
output String basename;
end basename;

cd

change directory to the given path (which may be either relative or absolute)
returns the new working directory on success or a message on failure if the
given path is the empty string, the function simply returns the current
working directory.

Interface:

function cd
input String newWorkingDirectory = "';
output String workingDirectory;

end cd;

checkAllModelsRecursive

Checks all models recursively and returns number of variables and equations.
Interface:

function checkAlIModelsRecursive

input TypeName className;

input Boolean checkProtected = false "Checks also
protected classes if true';

output String result;
end checkAllModelsRecursive;

checkModel

Checks a model and returns number of variables and equations.
Interface:

function checkModel
input TypeName className;
output String result;

end checkModel ;

checkSettings

Display some diagnostics.
Interface:

function checkSettings
output CheckSettingsResult result;
end checkSettings;

http://linux.die.net/man/3/basename

155

CheckSettingsResult:

String OPENMODEL ICAHOME , OPENMODEL ICALIBRARY,OMC_PATH;
Boolean OMC_FOUND;
String MODELICAUSERCFLAGS,WORKING_DIRECTORY;
Boolean CREATE_FILE_WORKS,REMOVE_FILE_WORKS;
String 0S, SYSTEM_INFO,SENDDATALIBS,C_ COMPILER;
Boolean C_COMPILER_RESPONDING;
String CONFIGURE_CMDLINE;

end CheckSettingsResult;

clear

Clears everything: symboltable and variables.
Interface:

function clear
output Boolean success;
end clear;

clearMessages

Clears the error buffer.
Interface:

function clearMessages
output Boolean success;
end clearMessages;

clearVariables

Clear all user defined variables.
Interface:

function clearVariables
output Boolean success;
end clearVariables;

closeSimulationResultFile

Closes the current simulation result file. Only needed by Windows. Windows
cannot handle reading and writing to the same file from different processes.
To allow OMEdit to make successful simulation again on the same file we
must close the file after reading the Simulation Result Variables. Even
OMEdit only use this API for Windows.

Interface:

function closeSimulationResultFile
output Boolean success;
end closeSimulationResultFile;

codeToString

Interface:

function codeToString
input Code className;
output String string;
end codeToString;

compareSimulationResults

Compares simulation results.
Interface:

function compareSimulationResults
input String filename;
input String reffilename;
input String logfilename;
input Real refTol;
input Real absTol;
input String[:] vars;
output String result;

end compareSimulationResults;

deleteFile

Deletes a file with the given name.
Interface:

function deleteFile

156

input String fileName;
output Boolean success;
end deleteFile;

dirname

Returns the directory name of a file path. Similar to dirname(3), but with the
safety of Modelica strings.
Interface:

function dirname
input String path;
output String dirname;
end dirname;

dumpXMLDAE

Outputs the DAE system corresponding to a specific model.
Interface:

function dumpXMLDAE
input TypeName className;
input String translationLevel = "flat";
input Boolean addOriginallncidenceMatrix = false;
input Boolean addSolvinglnfo = false;
input Boolean addMathMLCode = false;
input Boolean dumpResiduals = false;
input String fileNamePrefix = '<default>" "this is
the className in string form by default";
input Boolean storelnTemp = false;
output String result[2] ""Contents,
Message/Filename; why 1is this an array and not 2
output arguments?";
end dumpXMLDAE;

echo

echo(false) disables Interactive output, echo(true) enables it again.
Interface:

function echo
input Boolean setEcho;
output Boolean newEcho;
end echo;

generateCode

The input is a function name for which C-code is generated and compiled
into a dll/so.
Interface:

function generateCode
input TypeName className;
output Boolean success;
end generateCode;

generateHeader

Interface:

function generateHeader
input String fileName;
output Boolean success;
end generateHeader;

generateSeparateCode

Interface:

function generateSeparateCode
output Boolean success;
end generateSeparateCode;

getAlgorithmCount

Counts the number of Algorithm sections in a class.
Interface:

function getAlgorithmCount
input TypeName class_;
output Integer count;

http://linux.die.net/man/3/dirname

157

end getAlgorithmCount;

getAlgorithmltemsCount

Counts the number of Algorithm items in a class.
Interface:

function getAlgorithmltemsCount
input TypeName class_;
output Integer count;

end getAlgorithmltemsCount;

getAnnotationCount

Counts the number of Annotation sections in a class.
Interface:

function getAnnotationCount
input TypeName class_;
output Integer count;
end getAnnotationCount;

getAnnotationVersion

Returns the current annotation version.
Interface:

function getAnnotationVersion
output String annotationVersion;
end getAnnotationVersion;

getAstAsCorbaString

Print the whole AST on the CORBA format for records, e.g.

record Absyn.PROGRAM
classes = ...,
within_ = .__,
globalBuildTimes = ...
end Absyn.PROGRAM;
Interface:

function getAstAsCorbaString

input String fileName = "<interactive>";

output String result "returns the string if
fileName is interactive; else it returns ok or error
depending on if writing the file succeeded";
end getAstAsCorbaString;

getClassComment

Returns the class comment.
Interface:

function getClassComment
input TypeName cl;
output String comment;
end getClassComment;

getClassNames

Returns the list of class names defined in the class.
Interface:

function getClassNames
input TypeName class_ = Code(AllLoadedClasses);
input Boolean recursive = false;
input Boolean qualified = false;
input Boolean sort = false;

input Boolean builtin = false "List also builtin
classes if true";
input Boolean showProtected = false 'List also

protected classes if true';
output TypeName classNames[:];
end getClassNames;

getClassesIinModelicaPath

Interface:

function getClasseslnModelicaPath
output String classeslnModelicaPath;

158

end getClasseslInModel icaPath;

getCompileCommand

Interface:

function getCompileCommand
output String compileCommand;
end getCompileCommand;

getDocumentationAnnotation

Returns the documentaiton annotation defined in the class.
Interface:

function getDocumentationAnnotation

input TypeName cl;

output String out[2] "{info,revision}";
end getDocumentationAnnotation;

getEnvironmentVar

Returns the value of the environment variable.
Interface:

function getEnvironmentVar
input String var;
output String value ‘'returns empty string
failure™;
end getEnvironmentVar;

on

getEquationCount

Counts the number of Equation sections in a class.
Interface:

function getEquationCount
input TypeName class_;
output Integer count;
end getEquationCount;

getEquationltemsCount

Counts the number of Equation items in a class.
Interface:

function getEquationltemsCount
input TypeName class_;
output Integer count;

end getEquationltemsCount;

getErrorString

Returns the current error message. [file.mo:n:n-n:zn:b] Error:
message
Interface:

function getErrorString
output String errorString;
end getErrorString;

getimportCount

Counts the number of Import sections in a class.
Interface:

function getlmportCount
input TypeName class_;
output Integer count;
end getlmportCount;

getlnitial AlgorithmCount

Counts the number of Initial Algorithm sections in a class.
Interface:

function getlnitialAlgorithmCount
input TypeName class_;
output Integer count;

end getlnitialAlgorithmCount;

getlnitial AlgorithmltemsCount

Counts the number of Initial Algorithm items in a class.
Interface:

function getlnitialAlgorithmltemsCount

159

input TypeName class_;
output Integer count;
end getlnitialAlgorithmltemsCount;

getInitialEquationCount

Counts the number of Initial Equation sections in a class.
Interface:

function getlnitialEquationCount
input TypeName class_;
output Integer count;

end getlnitialEquationCount;

getInitialEquationltemsCount

Counts the number of Initial Equation items in a class.
Interface:

function getlnitialEquationltemsCount
input TypeName class_;
output Integer count;

end getlnitialEquationltemsCount;

getInstallationDirectoryPath

This returns OPENMODEL I CAHOME if it is set; on some platforms the default
path is returned if it is not set.
Interface:

function getinstallationDirectoryPath
output String installationDirectoryPath;
end getlnstallationDirectoryPath;

getLanguageStandard

Returns the current Modelica Language Standard in use.
Interface:

function getlLanguageStandard
output String outVersion;
end getlLanguageStandard;

getMessagesString

see getErrorString()
Interface:

function getMessagesString
output String messagesString;
end getMessagesString;

getMessagesStringInternal

{{[Ffile.mo:n:n-n:n:b] Error: message, TRANSLATION,
Error, code}}
Interface:

function getMessagesStringlnternal
output ErrorMessage[:] messagesString;
end getMessagesStringlnternal;

getModelicaPath

Get the Modelica Library Path.
Interface:

function getModelicaPath
output String modelicaPath;
end getModelicaPath;

getNoSimplify

Returns true if noSimplify flag is set.
Interface:

function getNoSimplify
output Boolean noSimplify;
end getNoSimplify;

getNthAlgorithm

Returns the Nth Algorithm section.
Interface:

function getNthAlgorithm
input TypeName class_;

160

input Integer index;
output String result;
end getNthAlgorithm;

getNthAlgorithmltem

Returns the Nth Algorithm Item.
Interface:

function getNthAlgorithmltem
input TypeName class_;
input Integer index;
output String result;
end getNthAlgorithmltem;

getNthAnnotationString

Returns the Nth Annotation section as string.
Interface:

function getNthAnnotationString
input TypeName class_;
input Integer index;
output String result;

end getNthAnnotationString;

getNthEquation

Returns the Nth Equation section.
Interface:

function getNthEquation
input TypeName class_;
input Integer index;
output String result;
end getNthEquation;

getNthEquationltem

Returns the Nth Equation Item.
Interface:

function getNthEquationltem
input TypeName class_;
input Integer index;
output String result;
end getNthEquationltem;

getNthImport

Returns the Nth Import as string.
Interface:

function getNthimport

input TypeName class_;

input Integer index;

output String out[3] "{\"Path\" ,\"1d\",\"Kind\"}";
end getNthlmport;

getNthInitial Algorithm

Returns the Nth Initial Algorithm section.
Interface:

function getNthilnitialAlgorithm
input TypeName class_;
input Integer index;
output String result;

end getNthinitialAlgorithm;

getNthInitial Algorithmltem

Returns the Nth Initial Algorithm Item.
Interface:

function getNthinitialAlgorithmltem
input TypeName class_;
input Integer index;
output String result;

end getNthinitialAlgorithmltem;

getNthInitialEquation

Returns the Nth Initial Equation section.

161

Interface:

function getNthlnitialEquation
input TypeName class_;
input Integer index;
output String result;

end getNthlnitialEquation;

getNthInitialEquationltem

Returns the Nth Initial Equation Item.
Interface:

function getNthlnitialEquationltem
input TypeName class_;
input Integer index;
output String result;

end getNthlnitialEquationltem;

getOrderConnections

Returns true if orderConnections flag is set.
Interface:

function getOrderConnections
output Boolean orderConnections;
end getOrderConnections;

getPackages

Returns the list of packages defined in the class.
Interface:

function getPackages
input TypeName class_ = Code(AllLoadedClasses);
output TypeName classNames[:];

end getPackages;

getPlotSilent

Returns true if plotSilent flag is set.
Interface:

function getPlotSilent
output Boolean plotSilent;
end getPlotSilent;

getSettings

Interface:

function getSettings
output String settings;
end getSettings;

getShowAnnotations

Interface:

function getShowAnnotations
output Boolean show;
end getShowAnnotations;

getSourceFile

Returns the filename of the class.
Interface:

function getSourceFile

input TypeName class_;

output String filename "empty on failure';
end getSourceFile;

getTempDirectoryPath

Returns the current user temporary directory location.
Interface:

function getTempDirectoryPath
output String tempDirectoryPath;
end getTempDirectoryPath;

getVectorizationLimit

Interface:

function getVectorizationLimit

162

output Integer vectorizationLimit;
end getVectorizationLimit;

getVersion Returns the version of the Modelica compiler.
Interface:
function getVersion
input TypeName cl = Code(OpenModelica);
output String version;
end getVersion;
help Display the OpenModelica help text.
Interface:
function help
output String helpText;
end help;
iconv The iconv () function converts one multibyte characters from one character
set to another.
See man(3) iconv for more information.
Interface:
function iconv
input String string;
input String from;
input String to = "UTF-8";
output String result;
end iconv;
importFMU Imports the Functional Mockup Unit.

Example command:
importFMU(C"A.fmu'™) ;
Interface:

function importFMU
input String filename '""the fmu file name";
input String workdir = "_./" "The output directory
for imported FMU files. <default> will put the files
to current working directory.";
output Boolean success "Returns true on success';
end importFmU;

instantiateModel

Instantiates the class and returns the flat Modelica code.
Interface:

function instantiateModel
input TypeName className;
output String result;

end instantiateModel;

isModel

Returns true if the given class has restriction model.
Interface:

function isModel
input TypeName cl;
output Boolean b;
end isModel;

isPackage

Returns true if the given class is a package.
Interface:

function isPackage
input TypeName cl;
output Boolean b;
end isPackage;

163

isPartial

Returns true if the given class is partial.
Interface:

function isPartial
input TypeName cl;
output Boolean b;
end isPartial;

list

Lists the contents of the given class, or all loaded classes.
Pretty-prints a class definition.

Syntax

list(Modelica.Math.sin)
list(Modelica.Math.sin, interfaceOnly=true)
Interface:

function list
input TypeName class_ = Code(AllLoadedClasses);
input Boolean interfaceOnly = false;
input Boolean shortOnly = false "only short class
definitions";
output String contents;
end list;

listVariables

Lists the names of the active variables in the scripting environment.
Interface:

function listvVariables
output TypeName variables[:];
end listVariables;

loadFile

load file (*.mo) and merge it with the loaded AST.
Interface:

function loadFile
input String fileName;
output Boolean success;
end loadFile;

loadFilelnteractive

Interface:

function loadFilelnteractive
input String filename;
output TypeName names[:];
end loadFilelnteractive;

loadFilelnteractiveQualified

Interface:

function loadFilelnteractiveQualified
input String filename;
output TypeName names[:];

end loadFilelnteractiveQualified;

loadModel Loads a Modelica library.
Syntax
loadModel (Modelica)
loadModel (Modelica,{"3.2"})
Interface:
function loadModel
input TypeName className;
input String[:] priorityVersion = {"default"};
output Boolean success;
end loadModel;
loadString Parses the data and merges the resulting AST with the loaded AST. If a

filename is given, it is used to provide error-messages as if the string was
read in binary format from a file with the same name. The file is converted to

164

UTF-8 from the given character set.
Interface:

function loadString
input String data;
input String filename
input String encoding
output Boolean success;
end loadString;

"'<interactive>"';
"“"UTF-8";

parseFile

Interface:

function parseFile
input String filename;
output TypeName names[:];
end parseFile;

parseString

Interface:

function parseString
input String data;
input String filename = "<interactive>";
output TypeName names[:];

end parseString;

plot

Launches a plot window using OMPIot. Returns true on success. Don't
require sendData support.

Example command sequences:

simulate(A);plot({x,y,z});

simulate(A);plot(x, externalWindow=true);
simulate(A, fileNamePrefix="B");
simulate(C);plot(z,"B.mat", legend=false);
Interface:

function plot
input VariableNames vars "The variables you want

to plot";

input Boolean externalWindow = false "Opens the
plot in a new plot window";

input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";

input String title = "Plot by OpenModelica™ "This
text will be used as the diagram title.";

input Boolean legend = true "Determines whether or
not the variable legend is shown.';

input Boolean grid = true '"Determines whether or
not a grid is shown in the diagram.";

input Boolean logX = false "Determines whether or
not the horizontal axis is logarithmically scaled.";

input Boolean logY = false "Determines whether or
not the vertical axis is logarithmically scaled.";

input String xLabel = "time"™ "This text will be
used as the horizontal label in the diagram.";
input String yLabel = """ "This text will be used

as the vertical label in the diagram.";

input Real xRange[2] = {0.0,0.0} "Determines the
horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.';

input Real yRange[2] = {0.0,0.0} "Determines the
vertical interval that 1is visible in the diagram.
{0,0} will select a suitable range.';

output Boolean success "Returns true on success';

output String[:] result "Returns list i.e

165

{\"_omc_PlotResult\", \"<FileName>\"", \"<title>\",
\"<legend>\"", \"<grid>\", \"<PlotType>\"", \"<logX>\",
\"<logY>\", \"<xLabel>\", \'"<ylLabel>\", \"<xRange>\",
\"<yRange>\"", \"<PlotVariables>\"}";

end plot;
plot2 Uses the Java-based plot window (ptplot.jar) to launch a plot, similar to the
plot() command. This command accepts fewer options, but works even when
OpenModelica was not compiled with sendData support.
Example command sequences:
simulate(A);plot2({x,y});
simulate(A, fileNamePrefix="B");
simulate(C);plot2(x,"B.mat");
Interface:
function plot2
input VariableNames vars;
input String fileName = "<default>";
output Boolean success "Returns true on success';
end plot2;
plotAll Works in the same way as plot(), but does not accept any variable names as

input. Instead, all variables are part of the plot window.

Example command sequences:
simulate(A);
plotAllI();
simulate(A);
plotAll(externalWindow=true);
simulate(A, fileNamePrefix="B");

simulate(C);
plotAll(Xx,"B.mat");
Interface:
function plotAll
input Boolean externalWindow = false "Opens the
plot in a new plot window";
input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";

input String title = "Plot by OpenModelica™ "This
text will be used as the diagram title.";

input Boolean legend = true "Determines whether or
not the variable legend is shown.';

input Boolean grid = true '"Determines whether or
not a grid is shown in the diagram.";

input Boolean logX = false "Determines whether or
not the horizontal axis is logarithmically scaled.";

input Boolean logY = false "Determines whether or
not the vertical axis is logarithmically scaled.";

input String xLabel = "time"™ "This text will be
used as the horizontal label in the diagram.";
input String yLabel = """ "This text will be used

as the vertical label in the diagram.";

input Real xRange[2] = {0.0,0.0} "Determines the
horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.';

input Real yRange[2] = {0.0,0.0} "Determines the
vertical interval that 1is visible in the diagram.
{0,0} will select a suitable range.';

output Boolean success "Returns true on success';

166

output String[:] result "Returns list i.e
{\"_omc_PlotResult\", \"<FileName>\"", \"<title>\",
\"<legend>\"", \"<grid>\", \"<PlotType>\"", \"<logX>\",
\"<logY>\", \"<xLabel>\", \'"<ylLabel>\", \"<xRange>\",
\"<yRange>\"", \"<PlotVariables>\"}";

end plotAll;

plotParametric

Launches a plotParametric window using OMPIot. Returns true on success.

Example command sequences:
simulate(A);plotParametric2(x,y);
simulate(A);plotParametric2(x,y,

externalWindow=true);

Interface:

function plotParametric
input VariableName xVariable;
input VariableName yVariable;

input Boolean externalWindow = false "Opens the
plot in a new plot window";
input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";

input String title = "Plot by OpenModelica™ "This
text will be used as the diagram title.";

input Boolean legend = true "Determines whether or
not the variable legend is shown.';

input Boolean grid = true '"Determines whether or
not a grid is shown in the diagram.";

input Boolean logX = false "Determines whether or
not the horizontal axis is logarithmically scaled.";

input Boolean logY = false "Determines whether or
not the vertical axis is logarithmically scaled.";

input String xLabel = "time"™ "This text will be
used as the horizontal label in the diagram.";
input String yLabel = """ "This text will be used

as the vertical label in the diagram.";

input Real xRange[2] = {0.0,0.0} "Determines the
horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.';

input Real yRange[2] = {0.0,0.0} "Determines the
vertical interval that 1is visible in the diagram.
{0,0} will select a suitable range.';

output Boolean success "Returns true on success';

output String[:] result "Returns list i.e
{\"_omc_PlotResult\", \"<FileName>\"", \"<title>\",
\"<legend>\"", \"<grid>\", \"<PlotType>\"", \"<logX>\",
\"<logY>\", \"<xLabel>\", \'"<ylLabel>\", \"<xRange>\",
\"<yRange>\", \"<PlotvVariables>\"}";
end plotParametric;

plotParametric2

Plots the y-variables as a function of the x-variable.
Example command sequences:
simulate(A);
plotParametric2(x,y);
simulate(A, fileNamePrefix="B");
simulate(C);
plotParametric2(x,{yl,y2,y3},"B.mat");
Interface:

function plotParametric2
input VariableName xVariable;
input VariableNames yVariables;
input String fileName = "<default>";

167

output Boolean success "Returns true on success';
end plotParametric2;

readFile

The contents of the given file are returned. Note that if the function fails, the
error message is returned as a string instead of multiple output or similar.
Interface:

function readFile
input String fileName;
output String contents;
end readFile;

readFileNoNumeric

Returns the contents of the file, with anything resembling a (real) number
stripped out, and at the end adding:

Filter count from number domain: n.

This should probably be changed to multiple outputs; the filtered string and
an integer.

Does anyone use this API call?
Interface:

function readFileNoNumeric
input String fileName;
output String contents;
end readFileNoNumeric;

readFilePostprocessLineDirective

Searches lines for the #modelicaLine directive. If it is found, all lines up until
the next #modelicaLine or #endModelicaLine are put on a single file,
following a #line linenumber "filename™ line. This causes GCC to output an
executable that we can set breakpoints in and debug.

Note: You could use a stack to keep track of start/end of #modelicaLine and
match them up. But this is not really desirable since that will cause extra
breakpoints for the same line (you would get breakpoints before and after
each case if you break on a match-expression, etc).

Interface:

function readFilePostprocessLineDirective
input String fileName;
output String out;

end readFilePostprocessLineDirective;

readFileShowLineNumbers

Prefixes each line in the file with <n>:, where n is the line number.
Note: Scales O(n"2)
Interface:

function readFileShowLineNumbers
input String fileName;
output String out;

end readFileShowLineNumbers;

readSimulationResult

Reads a result file, returning a matrix corresponding to the variables and size
given.
Interface:

function readSimulationResult

input String filename;
input VariableNames variables;

input Integer size = 0 "O=read any size... If the
size is not the same as the result-file, this function
fails'';

output Real result[:,:];
end readSimulationResult;

readSimulationResultSize

The number of intervals that are present in the output file.
Interface:

168

function readSimulationResultSize
input String fileName;
output Integer sz;

end readSimulationResultSize;

readSimulationResultVars

Returns the variables in the simulation file; you can use val() and plot()
commands using these names.
Interface:

function readSimulationResultvVars
input String fileName;
output String[:] vars;

end readSimulationResultVars;

Regex Sets the error buffer and returns -1 if the regex does not compile.

The returned result is the same as POSIX regex():

The first value is the complete matched string

The rest are the substrings that you wanted.

For example:

regex(lorem," \(A-Za-z]*\) \([A-Za-z]*\) ",maxMatches=3)

=>{" ipsum dolor ","ipsum","dolor"}

This means if you have n groups, you want maxMatches=n+1

Interface:

function regex
input String str;
input String re;
input Integer maxMatches = 1 "The maximum number

of matches that will be returned”;
input Boolean extended = true "Use POSIX extended

or regular syntax';
input Boolean caselnsensitive = false;
output Integer numMatches -1 is an error, 0 means

no match, else returns a number 1._maxMatches";
output String matchedSubstrings[maxMatches]

"unmatched strings are returned as empty";

end regex;

regexBool Returns true if the string matches the regular expression.

Interface:

function regexBool

input String str;

input String re;

input Boolean extended = true "Use POSIX extended
or regular syntax';

input Boolean caselnsensitive = false;

output Boolean matches;
end regexBool;

regularFileExists

The contents of the given file are returned.

Note that if the function fails, the error message is returned as a string instead
of multiple output or similar.

Interface:

function regularFileExists
input String fileName;
output Boolean exists;
end regularFileExists;

reopenStandardStream

Interface:

function reopenStandardStream

169

input StandardStream _stream;
input String filename;
output Boolean success;

end reopenStandardStream;

runScript

Runs the mos-script specified by the filename.
Interface:

function runScript
input String fileName "*._mos";
output String result;

end runScript;

Save

Interface:

function save
input TypeName className;
output Boolean success;
end save;

saveAll

Save the entire loaded AST to file.
Interface:

function saveAll
input String fileName;
output Boolean success;
end saveAll;

saveModel

Save class definition in a file.
Interface:

function saveModel
input String fileName;
input TypeName className;
output Boolean success;
end saveModel;

saveTotalModel

Save total class definition into file of a class.

Inputs: String fileName; TypeName className
Outputs: Boolean res;

Interface:

function saveTotalModel
input String fileName;
input TypeName className;
output Boolean success;
end saveTotalModel;

saveTotalSCode

Interface:

function saveTotalSCode
input String fileName;
input TypeName className;
output Boolean success;
end saveTotalSCode;

setAnnotationVersion

Sets the annotation version.
Interface:

function setAnnotationVersion
input String annotationVersion;
output Boolean success;

end setAnnotationVersion;

setCXXCompiler

Interface:

function setCXXCompiler
input String compiler;

170

output Boolean success;
end setCXXCompiler;

setClassComment Sets the class comment.
Interface:

function setClassComment
input TypeName class_;
input String filename;
output Boolean success;
end setClassComment;

setCommandLineOptions The input is a regular command-line flag given to OMC, e.g. +d=failtrace or
+g=MetaModelica.
Interface:

function setCommandLineOptions
input String option;
output Boolean success;
end setCommandLineOptions;

setCompileCommand Interface:

function setCompileCommand
input String compileCommand;
output Boolean success;

end setCompileCommand;

setCompiler Interface:

function setCompiler
input String compiler;
output Boolean success;
end setCompiler;

setCompilerFlags Interface:

function setCompilerFlags
input String compilerFlags;
output Boolean success;

end setCompilerFlags;

setCompilerPath Interface:

function setCompilerPath
input String compilerPath;
output Boolean success;
end setCompilerPath;

setDebugFlags example input: failtrace,-noevalfunc
Interface:

function setDebugFlags
input String debugFlags;
output Boolean success;
end setDebugFlags;

setEnvironmentVar Interface:

function setEnvironmentVar
input String var;
input String value;
output Boolean success;
end setEnvironmentVar;

setIndexReductionMethod example input: dummyDerivative
Interface:

function setlndexReductionMethod

171

input String method;
output Boolean success;
end setlndexReductionMethod;

setInstallationDirectoryPath

Sets the OPENMODEL I CAHOME environment variable. Use this method
instead of setEnvironmentVar.
Interface:

function setlnstallationDirectoryPath
input String installationDirectoryPath;
output Boolean success;

end setlnstallationDirectoryPath;

setLanguageStandard

Sets the Modelica Language Standard.
Interface:

function setlLanguageStandard
input String inVersion;
output Boolean success;
end setlLanguageStandard;

setLinker

Interface:

function setLinker
input String linker;
output Boolean success;
end setLinker;

setLinkerFlags

Interface:

function setLinkerFlags
input String linkerFlags;
output Boolean success;
end setLinkerFlags;

setModelicaPath

See loadModel () for a description of what the MODEL I CAPATH is used
for.
Interface:

function setModelicaPath
input String modelicaPath;
output Boolean success;
end setModelicaPath;

setNoSimplify

Sets the noSimplify flag.
Interface:

function setNoSimplify
input Boolean noSimplify;
output Boolean success;
end setNoSimplify;

setOrderConnections

Sets the orderConnection flag.
Interface:

function setOrderConnections
input Boolean orderConnections;
output Boolean success;

end setOrderConnections;

setPastOptModules

example input: latelnline inlineArrayEqn,removeSimpleEquations
Interface:

function setPastOptModules
input String modules;
output Boolean success;
end setPastOptModules;

172

setPlotCommand

Interface:

function setPlotCommand
input String plotCommand;
output Boolean success;
end setPlotCommand;

setPlotSilent

Sets the plotSilent flag.
Interface:

function setPlotSilent
input Boolean silent;
output Boolean success;
end setPlotSilent;

setPreOptModules

example input:
removeFinalParameters,removeSimpleEquations,expandDerOperator
Interface:

function setPreOptModules
input String modules;
output Boolean success;
end setPreOptModules;

setShowAnnotations

Interface:

function setShowAnnotations
input Boolean show;
output Boolean success;
end setShowAnnotations;

setSourceFile

Interface:

function setSourceFile
input TypeName class_;
input String filename;
output Boolean success;
end setSourceFile;

setTempDirectoryPath

Interface:

function setTempDirectoryPath
input String tempDirectoryPath;
output Boolean success;

end setTempDirectoryPath;

setVectorizationLimit

Interface:

function setVectorizationLimit
input Integer vectorizationLimit;
output Boolean success;

end setVectorizationLimit;

solveLinearSystem

Solve A*X = B, using dgesv or Ip_solve (if any variable in X is integer).
Returns for solver dgesv: info>0: Singular for element i. info<0: Bad input.
Interface:

function solvelLinearSystem
input Real[size(B, 1),size(B, 1)] A;
input Real[:] B;

input LinearSystemSolver solver =
LinearSystemSolver.dgesv;
input Integer[:] isInt = {-1} "list of indices

that are integers';
output Real[size(B, 1)] X;
output Integer info;
end solvelLinearSystem;

173

strictRMLCheck

Checks if any loaded function.
Interface:

function strictRMLCheck

output String message "empty if there was no
problem™;
end strictRMLCheck;

stringReplace

Interface:

function stringReplace
input String str;
input String source;
input String target;
output String res;
end stringReplace;

Strtok

Splits the strings at the places given by the token, for example:
strtok("'abcbdef*,"b") => {"a","c","def"}
Interface:

function strtok
input String string;
input String token;
output String[:] strings;
end strtok;

System

Similar to system(3). Executes the given command in the system shell.
Interface:

function system
input String callStr "String to call: bash -c
$callsStr';
output Integer retval "Return value of the system
call; usually 0 on success'";
end system;

translateGraphics

Interface:

function translateGraphics
input TypeName className;
output String result;

end translateGraphics;

typeNameString

Interface:

function typeNameString
input TypeName cl;
output String out;
end typeNameString;

typeNameStrings

Interface:

function typeNameStrings
input TypeName cl;
output String out[:];
end typeNameStrings;

typeOf

Interface:

function typeOf
input VariableName variableName;
output String result;

end typeOf;

uriToFilename

Handles modelica:// and file:// URI's. The result is an absolute path on the
local system. The result depends on the current MODELICAPATH. Returns
the empty string on failure.

174

Interface:

function uriToFilename
input String uri;
output String filename;
end uriToFilename;

val

Works on the filename pointed to by the scripting variable
currentSimulationResult. The result is the value of the variable at a certain
time point. For parameters, any time may be given. For variables the
startTime<=time<=stopTime needs to hold. On error, nan (Not a Number) is
returned and the error buffer contains the message.

Interface:

function val
input VariableName var;
input Real time;
output Real valAtTime;
end val;

verifyCompiler

Interface:

function verifyCompiler
output Boolean compilerWorks;
end verifyCompiler;

visualize Uses the 3D visualization package, SimpleVisual.mo, to visualize the model.
See chapter 3.4 (3D Animation) of the OpenModelica System Documentation
for more details. Writes the visulizations objects into the file
"model_name.visualize".
Example command sequence:
simulate(A,outputFormat="mat");
visualize(A);
visualize(A,"B.mat");
visualize(A,"B.mat", true);
Interface:
function visualize
input TypeName className;
input Boolean externalWindow = false "Opens the
visualize in a new window";
input String fileName = "<default>" "The filename
containing the variables. <default> will read the last
simulation result";
output Boolean success "Returns true on success';
end visualize;
writeFile Write the data to file. Returns true on success.

Interface:

function writeFile
input String fileName;
input String data;
input Boolean append = false;
output Boolean success;
end writeFile;

175

Chapter 13

Frequently Asked Questions (FAQ)

Below are some frequently asked questions in three areas, with associated answers.

13.1 OpenModelica General

Q: Why are not the Media and Fluid libraries included in the OpenModelica distribution.

A: These libraries need special features in the Modelica language which are not yet implemented in
OpenModelica. We are working on it, but it will take some time.

Q: OpenModelica does not read the MODELICAPATH environment variable, even though this is
part of the Modelica Language Specification.

A: Use the OPENMODELICALIBRARY environment variable instead. We have temporarily
switched to this variable, in order not to interfere with other Modelica tools which might be
installed on the same system. In the future, we might switch to a solution with a settings file, that
also allows the user to turn on the MODELICAPATH functionality if desired.

Q: How do I enter multi-line models into OMShell since it evaluates when typing the Enter/Return
key?

A: There are basically three methods: 1) load the model from a file using the pull-down menu or the
loadModel command. 2) Enter the model/function as one (possibly long) line. 3) Type in the model
in another editor, where using multiple lines is no problem, and copy/paste the model into OMShell
as one operation, then push Enter. Another option is to use OMNotebook instead to enter and
evaluate models.

13.2 OMNotebook

Q: OMNotebook hangs, what to do?

A: It is probably waiting for the omc.exe (compiler) process. (Under windows): Kill the processes
omc.exe, g++.exe (C-compiler), as.exe (assembler), if present. If OMNotebook then asks whether
to restart OMC, answer yes. If not, kill the process OMNotebook.exe and restart manually.

Q: I always get simulation failed, and plotting does not work..

A: This is cause by problems compiling and linking the generated simulation code with the
MINGW (Gnu) C compiler under Windows. You probably have some Logitech software installed

176

that prevents Corba communication to start the compilation. There is a known bug/incompatibility
in Logitech products. For example, if Ivprcsrv.exe is running, Kill it and/or prevent it to start again
at reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

Q: After a previous session, when starting OMNotebook again, | get a strange message.

A: You probably quit the previous OpenModelica session in the wrong way, which left the process
omc.exe running. Kill that process, and try starting OMNotebook again.

Q: I copy and paste a graphic figure from Word or some other application into OMNotebook, but
the graphic does not appear. What is wrong?

A: OMNotebook supports the graphic picture formats supported by Qt 4, including the .png, .bmp
(bitmap) formats, but not for example the gif format. Try to convert your picture into one of the
supported formats, (e.g. in Word, first do paste as bitmap format), and then copy the converted
version into a text cell in OMNotebook.

Q: Plotting does not work in OMNotebook.

A: You probably have an old version of Java installed. Update your installation, and try again.
(Another known problem, soon to be fixed, is that plotting of parameters and constants does not yet
work).

Q: I select a cell, copy it (e.g. Ctrl-C), and try to paste it at another place in the notebook. However,
this does not work. Instead some other text that | earlier put on the clipboard is pasted into the
nearest text cell.

A: The problem is wrong choice of cursor mode, which can be text insertion or cell insertion. If you
click inside a cell, the cursor become vertical, and OMNotebook expects you to paste text inside the
cell. To paste a cell, you must be in cell insertion mode, i.e., click between two cells (or after a
cell), you will get a vertical line. Place the cursor carefully on that vertical line until you see a small
horizontal cursor. Then you should past the cell.

Q: lam trying to click in cells to place the vertical character cursor, but it does not seem to react.

A: This seems to be a Qt feature. You have probably made a selection (e.g. for copying) in the
output section of an evaluation cell. This seems to block cursor position. Click again in the output
section to disable the selection. After that it will work normally.

Q: | have copied a text cell and start writing at the beginning of the cell. Strangely enough, the font
becomes much smaller than it should be.

A: This seems to be a Qt feature. Keep some of the old text and start writing the new stuff inside the

text, i.e., at least one character position to the right. Afterwards, delete the old text at the beginning
of the cell.

13.3 OMDev - OpenModelica Development Environment

Q: | get problems compiling and linking some files when using OMDev with the MINGW (Gnu) C
compiler under Windows.

A: You probably have some Logitech software installed. There is a known bug/incompatibility in
Logitech products. For example, if lvprcsrv.exe is running, kill it and/or prevent it to start again at
reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

177

Appendix A

Major OpenModelica Releases

This Appendix lists the most important OpenModelica releases and a brief description of their contents.
Right now the versions from 1.3.1 to 1.8.1 are described.

A.1 OpenModelica 1.8.1, March 2012

The OpenModelica 1.8.1 release has a faster and more stable OMC model compiler. It flattens and
simulates more models than the previous 1.8.0 version. Significant flattening speedup of the compiler has
been achieved for certain large models. It also contains a New ModelicaML version with support for value
bindings in requirements-driven modeling and importing Modelica library models into ModelicaML
models. A beta version of the new OpenModelica Python scripting is also included.

A.1.1 OpenModelica Compiler (OMC)

This release includes bug fixes and improvements of the flattening frontend part of the OpenModelica
Compiler (OMC) and several improvements of the backend, including, but not restricted to:

A faster and more stable OMC model compiler. The 1.8.1 version flattens and simulates more
models than the previous 1.8.0 version.

Support for operator overloading (except Complex numbers).

New ModelicaML version with support for value bindings in requirements-driven modeling and
importing Modelica library models into ModelicaML models.

Faster plotting in OMNotebook. The feature sendData has been removed from OpenModelica. As a
result, the kernel no longer depends on Qt. The plot3() family of functions have now replaced to
plot(), which in turn have been removed. The non-standard visualize() command has been removed
in favour of more recent alternatives.

Store OpenModelica documentation as Modelica Documentation annotations.

Re-implementation of the simulation runtime using C instead of C++ (this was needed to export
FMI source-based packages).

FMI import/export bug fixes.

Changed the internal representation of various structures to share more memory. This significantly
improved the performance for very large models that use records.

Faster model flattening, Improved simulation, some graphical API bug fixes.

More robust and general initialization, but currently time-consuming.

New initialization flags to omc and options to simulate(), to control whether fast or robust
initialization is selected, or initialization from an external (.mat) data file.

New options to API calls list, loadFile, and more.

Enforce the restriction that input arguments of functions may not be assigned to.

Improved the scripting environment. cl := $TypeName(Modelica);getClassComment(cl); now
works as expected. As does looping over lists of typenames and using reduction expressions.

Beta version of Python scripting.

Various bugfixes.

178

o NOTE: interactive simulation is not operational in this release. It will be put back again in the near
future, first available as a nightly build. It is also available in the previous 1.8.0 release.

A.1.2 OpenModelica Notebook (OMNotebook)

Faster and more stable plottning.

A.1.3 OpenModelica Shell (OMShell)

No changes.

A.1.4 OpenModelica Eclipse Plug-in (MDT)

Small fixes and improvements.

A.1.5 OpenModelica Development Environment (OMDev)

No changes.

A.1.6 Graphic Editor OMEdit

Bug fixes.

A.1.7 New OMOptim Optimization Subsystem

Bug fixes.

A.1.8 FMI Support

Bug fixes.

A.2 OpenModelica 1.8, November 2011

The OpenModelica 1.8 release contains OMC flattening improvements for the Media library — it now
flattens the whole library and simulates about 20% of its example models. Moreover, about half of the
Fluid library models also flatten. This release also includes two new tool functionalities — the FMI for
model exchange import and export, and a new efficient Eclipse-based debugger for
Modelica/MetaModelica algorithmic code.

A.2.1 OpenModelica Compiler (OMC)

This release includes bug fixes and improvements of the flattening frontend part of the OpenModelica
Compiler (OMC) and several improvements of the backend, including, but not restricted to:

o A faster and more stable OMC model compiler. The 1.8.1 version flattens and simulates more
models than the previous 1.7.0 version.

e Flattening of the whole Media library, and about half of the Fluid library. Simulation of
approximately 20% of the Media library example models.

e Functional Mockup Interface FMI 1.0 for model exchange, export and import, for the Windows
platform.

e Bug fixes in the OpenModelica graphical model connection editor OMEdit, supporting easy-to-use
graphical drag-and-drop modeling and MSL 3.1.

e Bug fixes in the OMOptim optimization subsystem.

179

e Beta version of compiler support for a new Eclipse-based very efficient algorithmic code debugger
for functions in MetaModelica/Modelica, available in the development environment when using the
bootstrapped OpenModelica compiler.

e Improvements in initialization of simulations.
e Improved index reduction with dynamic state selection, which improves simulation.

e Better error messages from several parts of the compiler, including a new API call for giving better
error messages.

e Automatic partitioning of equation systems and multi-core parallel simulation of independent parts
based on the shared-memory OpenMP model. This version is a preliminary experimental version
without load balancing.

A.2.2 OpenModelica Notebook (OMNotebook)

No changes.

A.2.3 OpenModelica Shell (OMShell)

Small performance improvements.

A.2.4 OpenModelica Eclipse Plug-in (MDT)
Small fixes and improvements. MDT now also includes a beta version of a new Eclipse-based very
efficient algorithmic code debugger for functions in MetaModelica/Modelica.

A.2.5 OpenModelica Development Environment (OMDev)
Third party binaries, including Qt libraries and executable Qt clients, are now part of the OMDev package.
Also, now uses GCC 4.4.0 instead of the earlier GCC 3.4.5.

A.2.6 Graphic Editor OMEdit

Bug fixes. Access to FMI Import/Export through a pull-down menu. Improved configuration of library
loading. A function to go to a specific line number. A button to cancel an on-going simulation. Support for
some updated OMC API calls.

A.2.7 New OMOptim Optimization Subsystem

Bug fixes, especially in the Linux version.

A.2.8 FMI Support

The Functional Mockup Interface FMI 1.0 for model exchange import and export is supported by this
release. The functionality is accessible via API calls as well as via pull-down menu commands in OMEdit.

A.3 OpenModelica 1.7, April 2011

The OpenModelica 1.7 release contains OMC flattening improvements for the Media library, better and
faster event handling and simulation, and fast MetaModelica support in the compiler, enabling it to
compiler itself. This release also includes two interesting new tools — the OMOpttim optimization
subsystem, and a new performance profiler for equation-based Modelica models.

A.3.1 OpenModelica Compiler (OMC)

180

This release includes bug fixes and performance improvements of the flattening frontend part of the
OpenModelica Compiler (OMC) and several improvements of the backend, including, but not restricted to:
e Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.
e Progress in supporting the Media library, some models now flatten.

e Much faster simulation of many models through more efficient handling of alias variables, binary
output format, and faster event handling.

o Faster and more stable simulation through new improved event handling, which is now default.
e Simulation result storage in binary .mat files, and plotting from such files.
e Support for Unicode characters in quoted Modelica identifiers, including Japanese and Chinese.

e Preliminary MetaModelica 2.0 support. (use setCommandLineOptions({"+g=MetaModelica"})).
Execution is as fast as MetaModelica 1.0, except for garbage collection.

e Preliminary bootstrapped OpenModelica compiler: OMC now compiles itself, and the bootstrapped
compiler passes the test suite. A garbage collector is still missing.

e Many bug fixes.
A.3.2 OpenModelica Notebook (OMNotebook)

Improved much faster and more stable 2D plotting through the new OMPIot module. Plotting from binary
.mat files. Better integration between OMEdit and OMNotebook, copy/paste between them.

A.3.3 OpenModelica Shell (OMShell)
Same as previously, except the improved 2D plotting through OMPIot.

A.3.4 OpenModelica Eclipse Plug-in (MDT)

Same as previously.

A.3.5 OpenModelica Development Environment (OMDev)

No changes.

A.3.6 Graphic Editor OMEdit

Several enhancements of OMEdit are included in this release. Support for Icon editing is now available.
There is also an improved much faster 2D plotting through the new OMPIlot module. Better integration
between OMEdit and OMNotebook, with copy/paste between them. Interactive on-line simulation is
available in an easy-to-use way.

A.3.7 New OMOptim Optimization Subsystem

A new optimization subsystem called OMOptim has been added to OpenModelica. Currently, parameter
optimization using genetic algorithms is supported in this version 0.9. Pareto front optimization is also
supported.

A.3.8 New Performance Profiler

A new, low overhead, performance profiler for Modelica models has been developed.

A.4 OpenModelica 1.6, November 2010

The OpenModelica 1.6 release primarily contains flattening, simulation, and performance improvements
regarding Modelica Standard Library 3.1 support, but also has an interesting new tool — the OMEdit

181

graphic connection editor, and a new educational material called DrControl, and an improved ModelicaML
UML/Modelica profile with better support for modeling and requirement handling.

A.4.1 OpenModelica Compiler (OMC)

This release includes bug fix and performance improvemetns of the flattening frontend part of the
OpenModelica Compiler (OMC) and some improvements of the backend, including, but not restricted to:

e Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.

e Improved flattening speed of a factor of 5-20 compared to OpenModelica 1.5 for a number of
models, especially in the MultiBody library.

e Reduced memory consumption by the OpenModelica compiler frontend, for certain large models a
reduction of a factor 50.

e Reorganized, more modular OpenModelica compiler backend, can now handle approximately
30 000 equations, compared to previously approximately 10 000 equations.

e Better error messages from the compiler, especially regarding functions.

e Improved simulation coverage of MSL 3.1. Many models that did not simulate before are now
simulating. However, there are still many models in certain sublibraries that do not simulate.

e Progress in supporting the Media library, but simulation is not yet possible.
e Improved support for enumerations, both in the frontend and the backend.
e Implementation of stream connectors.
e Support for linearization through symbolic Jacobians.
e Many bug fixes.

A.4.2 OpenModelica Notebook (OMNotebook)

A new DrControl electronic notebook for teaching control and modeling with Modelica.

A.4.3 OpenModelica Shell (OMShell)

Same as previously.

A.4.4 OpenModelica Eclipse Plug-in (MDT)

Same as previously.

A.45 OpenModelica Development Environment (OMDev)

Several enhancements. Support for match-expressions in addition to matchcontinue. Support for real if-
then-else. Support for if-then without else-branches. Modelica Development Tooling 0.7.7 with small
improvements such as more settings, improved error detection in console, etc.

A.4.6 New Graphic Editor OMEdit

A new improved open source graphic model connection editor called OMEdit, supporting 3.1 graphical
annotations, which makes it possible to move models back and forth to other tools without problems. The
editor has been implemented by students at Linkdping University and is based on the C++ Qt library.

A.5 OpenModelica 1.5, July 2010

This OpenModelica 1.5 release has major improvements in the OpenModelica compiler frontend and some
in the backend. A major improvement of this release is full flattening support for the MultiBody library as
well as limited simulation support for MultiBody. Interesting new facilities are the interactive simulation
and the integrated UML-Modelica modeling with ModelicaML. Approximately 4 person-years of

182

additional effort have been invested in the compiler compared to the 1.4.5 version, e.g., in order to have a
more complete coverage of Modelica 3.0, mainly focusing on improved flattening in the compiler frontend.

A.5.1 OpenModelica Compiler (OMC)

This release includes major improvements of the flattening frontend part of the OpenModelica Compiler
(OMC) and some improvements of the backend, including, but not restricted to:

o Improved flattening speed of at least a factor of 10 or more compared to the 1.4.5 release, primarily
for larger models with inner-outer, but also speedup for other models, e.g. the robot model flattens
in approximately 2 seconds.

o Flattening of all MultiBody models, including all elementary models, breaking connection graphs,
world object, etc. Moreover, simulation is now possible for at least five MultiBody models:
Pendulum, DoublePendulum, InitSpringConstant, World, PointGravityWithPointMasses.

e Progress in supporting the Media library, but simulation is not yet possible.

e Support for enumerations, both in the frontend and the backend.

e Support for expandable connectors.

e Support for the inline and late inline annotations in functions.

o Complete support for record constructors, also for records containing other records.
o Full support for iterators, including nested ones.

e Support for inferred iterator and for-loop ranges.

e Support for the function derivative annotation.

e Prototype of interactive simulation.

e Prototype of integrated UML-Modelica modeling and simulation with ModelicaML.

e A new bidirectional external Java interface for calling external Java functions, or for calling
Modelica functions from Java.

o Complete implementation of replaceable model extends.

e Fixed problems involving arrays of unknown dimensions.

e Limited support for tearing.

e Improved error handling at division by zero.

e Support for Modelica 3.1 annotations.

e Support for all MetaModelica language constructs inside OpenModelica.
e OpenModelica works also under 64-bit Linux and Mac 64-bit OSX.

o Parallel builds and running test suites in parallel on multi-core platforms.

¢ New OpenModelica text template language for easier implementation of code generators, XML
generators, etc.

¢ New OpenModelica code generators to C and C# using the text template language.
e Faster simulation result data file output optionally as comma-separated values.
e Many bug fixes.

It is now possible to graphically edit models using parts from the Modelica Standard Library 3.1, since the
simForge graphical editor (from Politecnico di Milano) that is used together with OpenModelica has been
updated to version 0.9.0 with a important new functionality, including support for Modelica 3.1 and 3.0
annotations. The 1.6 and 2.2.1 Modelica graphical annotation versions are still supported.

A.5.2 OpenModelica Notebook (OMNotebook)

Improvements in platform availability.
e Support for 64-bit Linux.

183

e Support for Windows 7.
e Better support for MacOS, including 64-bit OSX.
A.5.3 OpenModelica Shell (OMShell)

Same as previously.

A.5.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.5.5 OpenModelica Development Environment (OMDev)

Minor bug fixes.

A.6 OpenModelica 1.4.5, January 2009
This release has several improvements, especially platform availability, less compiler memory usage, and
supporting more aspects of Modelica 3.0.

A.6.1 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Less memory consumption and better memory management over time. This also includes a better
API supporting automatic memory management when calling C functions from within the compiler.

e Modelica 3.0 parsing support.

o Export of DAE to XML and MATLAB.

e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

e Support for record and strings as function arguments.

e Many bug fixes.

e (Not part of OMC): Additional free graphic editor SimForge can be used with OpenModelica.

A.6.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the plotting functionality and platform availability.
e A number of improvements in the plotting functionality: scalable plots, zooming, logarithmic plots,
grids, etc.
e Programmable plotting accessible through a Modelica API.
e Simple 3D visualization.
e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

A.6.3 OpenModelica Shell (OMShell)

Same as previously.

A.6.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.6.5 OpenModelica Development Environment (OMDev)

Same as previously.

A.1 OpenModelica 1.4.4, Feb 2008

184

This release is primarily a bug fix release, except for a preliminary version of new plotting functionality
available both from the OMNotebook and separately through a Modelica API. This is also the first release
under the open source license OSMC-PL (Open Source Modelica Consortium Public License), with
support from the recently created Open Source Modelica Consortium. An integrated version handler, bug-,
and issue tracker has also been added.

A.6.6 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Better support for if-equations, also inside when.
e Better support for calling functions in parameter expressions and interactively through dynamic
loading of functions.

e Less memory consumtion during compilation and interactive evaluation.
e A number of bug-fixes.

A.6.7 OpenModelica Notebook (OMNotebook)

Test release of improvements, primarily in the plotting functionality and platform availability.

e Preliminary version of improvements in the plotting functionality: scalable plots, zooming,
logarithmic plots, grids, etc., currently available in a preliminary version through the plot2 function.

e Programmable plotting accessible through a Modelica API.

A.6.8 OpenModelica Shell (OMShell)

Same as previously.

A.6.9 OpenModelica Eclipse Plug-in (MDT)

This release includes minor bugfixes of MDT and the associated MetaModelica debugger:

A.6.10 OpenModelica Development Environment (OMDev)

Extended test suite with a better structure. Version handling, bug tracking, issue tracking, etc. now
available under the integrated Codebeamer

A.7 OpenModelica 1.4.3, June 2007

This release has a number of significant improvements of the OMC compiler, OMNotebook, the MDT
plugin and the OMDev. Increased platform availability now also for Linux and Macintosh, in addition to
Windows. OMShell is the same as previously, but now ported to Linux and Mac.

A.7.1 OpenModelica Compiler (OMC)
This release includes a number of improvements of the OpenModelica Compiler (OMC):

o Significantly increased compilation speed, especially with large models and many packages.
e Now available also for Linux and Macintosh platforms.

e Support for when-equations in algorithm sections, including elsewhen.

e Support for inner/outer prefixes of components (but without type error checking).

e Improved solution of nonlinear systems.

e Added ability to compile generated simulation code using Visual Studio compiler.

e Added "smart setting of fixed attribute to false. If initial equations, OMC instead has fixed=true as
default for states due to allowing overdetermined initial equation systems.

185

Better state select heuristics.

New function getincidenceMatrix(ClassName) for dumping the incidence matrix.

Builtin functions String(), product(), ndims(), implemented.

Support for terminate() and assert() in equations.

In emitted flat form: protected variables are now prefixed with protected when printing flat class.
Some support for tables, using omcTableTimelni instead of dymTableTimelni2.

Better support for empty arrays, and support for matrix operations like a*[1,2;3,4].

Improved val() function can now evaluate array elements and record fields, e.g. val(x[n]), val(x.y) .
Support for reinit in algorithm sections.

String support in external functions.

Double precision floating point precision now also for interpreted expressions

Better simulation error messages.

Support for der(expressions).

Support for iterator expressions such as {3*i for i in 1..10}.

More test cases in the test suite.

A number of bug fixes, including sample and event handling bugs.

A.7.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the platform availability.

Available on the Linux and Macintosh platforms, in addition to Windows.
Fixed cell copying bugs, plotting of derivatives now works, etc.

A.7.3 OpenModelica Shell (OMShell)

Now available also on the Macintosh platform.

A.7.4 OpenModelica Eclipse Plug-in (MDT)

This release includes major improvements of MDT and the associated MetaModelica debugger:

Greatly improved browsing and code completion works both for standard Modelica and for
MetaModelica.

Hovering over identifiers displays type information.

A new and greatly improved implementation of the debugger for MetaModelica algorithmic code,
operational in Eclipse. Greatly improved performance — only approx 10% speed reduction even for
100 000 line programs. Greatly improved single stepping, step over, data structure browsing, etc.

Many bug fixes.

A.7.5 OpenModelica Development Environment (OMDev)

Increased compilation speed for MetaModelica. Better if-expression support in MetaModelica.

A.8 OpenModelica 1.4.2, October 2006

This release has improvements and bug fixes of the OMC compiler, OMNotebook, the MDT plugin and the
OMDev. OMShell is the same as previously.

A.8.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler (OMC):

186

e Improved initialization and index reduction.
e Support for integer arrays is now largely implemented.

e The val(variable,time) scripting function for accessing the value of a simulation result variable at a
certain point in the simulated time.

e Interactive evalution of for-loops, while-loops, if-statements, if-expressions, in the interactive
scripting mode.

e Improved documentation and examples of calling the Model Query and Manipulation API.
e Many bug fixes.
A.8.2 OpenModelica Notebook (OMNotebook)

Search and replace functions have been added. The DrModelica tutorial (all files) has been updated,
obsolete sections removed, and models which are not supported by the current implementation marked
clearly. Automatic recognition of the .onb suffix (e.g. when double-clicking) in Windows makes it even
more convenient to use.

A.8.3 OpenModelica Eclipse Plug-in (MDT)
Two major improvements are added in this release:

e Browsing and code completion works both for standard Modelica and for MetaModelica.

e The debugger for algorithmic code is now available and operational in Eclipse for debugging of
MetaModelica programs.

A.8.4 OpenModelica Development Environment (OMDev)

Mostly the same as previously.

A.9 OpenModelica 1.4.1, June 2006

This release has only improvements and bug fixes of the OMC compiler, the MDT plugin and the OMDev
components. The OMShell and OMNotebook are the same.

A.9.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler (OMC):
e Support for external objects.
e OMC now reports the version number (via command line switches or CORBA API getVersion()).
o Implemented caching for faster instantiation of large models.
e Many bug fixes.

A.9.2 OpenModelica Eclipse Plug-in (MDT)

Improvements of the error reporting when building the OMC compiler. The errors are now added to the
problems view. The latest MDT release is version 0.6.6 (2006-06-06).

A.9.3 OpenModelica Development Environment (OMDev)

Small fixes in the MetaModelica compiler. MetaModelica Users Guide is now part of the OMDev release.
The latest OMDev was release in 2006-06-06.

A.10 OpenModelica 1.4.0, May 2006

187

This release has a number of improvements described below. The most significant change is probably that
OMC has now been translated to an extended subset of Modelica (MetaModelica), and that all development
of the compiler is now done in this version..

A.10.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

e Partial support for mixed system of equations.

e New initialization routine, based on optimization (minimizing residuals of initial equations).

e Symbolic simplification of builtin operators for vectors and matrices.

e Improved code generation in simulation code to support e.g. Modelica functions.

e Support for classes extending basic types, e.g. connectors (support for MSL 2.2 block connectors).
e Support for parametric plotting via the plotParametric command.

e Many bug fixes.

A.10.2 OpenModelica Shell (OMShell)

Essentially the same OMShell as in 1.3.1. One difference is that now all error messages are sent to the
command window instead of to a separate log window.

A.10.3 OpenModelica Notebook (OMNotebook)

Many significant improvements and bug fixes. This version supports graphic plots within the cells in the
notebook. Improved cell handling and Modelica code syntax highlighting. Command completion of the
most common OMC commands is now supported. The notebook has been used in several courses.

A.10.4 OpenModelica Eclipse Plug-in (MDT)

This is the first really useful version of MDT. Full browsing of Modelica code, e.g. the MSL 2.2, is now
supported. (MetaModelica browsing is not yet fully supported). Full support for automatic indentation of
Modelica code, including the MetaModelica extensions. Many bug fixes. The Eclipse plug-in is now in use
for OpenModelica development at PELAB and MathCore Engineering AB since approximately one month.

A.10.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica development.
o A separate web page for OMDev (OpenModelica Development Environment).

e A pre-packaged OMDev zip-file with precompiled binaries for development under Windows using
the mingw Gnu compiler from the Eclipse MDT plug-in. (Development is also possible using
Visual Studio).

e All source code of the OpenModelica compiler has recently been translated to an extended subset of
Modelica, currently called MetaModelica. The current size of OMC is approximately 100 000 lines
All development is how done in this version.

e A new tutorial and users guide for development in MetaModelica.
e Successful builds and tests of OMC under Linux and Solaris.

A.11 OpenModelica 1.3.1, November 2005

This release has several important highlights.

188

This is also the first release for which the New BSD (Berkeley) open-source license applies to the source
code, including the whole compiler and run-time system. This makes is possible to use OpenModelica for
both academic and commercial purposes without restrictions.

A.11.1 OpenModelica Compiler (OMC)
This release includes a significantly improved OpenModelica Compiler (OMC):

e Support for hybrid and discrete-event simulation (if-equations, if-expressions, when-equations;
not yet if-statements and when-statements).

e Parsing of full Modelica 2.2
e Improved support for external functions.

e Vectorization of function arguments; each-modifiers, better implementation of replaceable, better
handling of structural parameters, better support for vector and array operations, and many other
improvements.

e Flattening of the Modelica Block library version 1.5 (except a few models), and simulation of most
of these.

e Automatic index reduction (present also in previous release).
e Updated User's Guide including examples of hybrid simulation and external functions.

A.11.2 OpenModelica Shell (OMShell)

An improved window-based interactive command shell, now including command completion and better
editing and font size support.

A.11.3 OpenModelica Notebook (OMNotebook)

A free implementation of an OpenModelica notebook (OMNOtebook), for electronic books with course
material, including the DrModelica interactive course material. It is possible to simulate and plot from this
notebook.

A.11.4 OpenModelica Eclipse Plug-in (MDT)

An early alpha version of the first Eclipse plug-in (called MDT for Modelica Development Tooling) for
Modelica Development. This version gives compilation support and partial support for browsing Modelica
package hierarchies and classes.

A.11.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica development.

e Bugzilla support for OpenModelica bug tracking, accessible to anybody.

e A system for automatic regression testing of the compiler and simulator, (+ other system parts)
usually run at check in time.

e Version handling is done using SVN, which is better than the previously used CVS system. For
example, name change of modules is now possible within the version handling system.

189

Appendix B

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, promotion, etc. The
individuals are listed for each year, from 1998 to the current year: the project leader and main author/editor
of this document followed by main contributors followed by contributors in alphabetical order.

B.1 OpenModelica Contributors 2012

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Adeel Asghar, PELAB, Linkoping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Per Ostlund, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.
Adeel Asghar, PELAB, Linkoping University, Linkdping, Sweden.
David Akhvlediani, PELAB, Linképing University, Linkdping, Sweden.
Mikael Axin, IEI, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkdping, Sweden.

David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Mahder Gebremedhin, PELAB, Linképing University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Zoheb Hossain, PELAB, Linkoping University, Linkdping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Petter Krus, IEI, Linképing University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Link6ping University, Linkdping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

190

Avriel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linkdping University, Linkdping, Sweden
Hékan Lundvall, PELAB, Linképing University, Linkoping, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linkdping University, Linkdping, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemist6, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkdping University, Linkdping, Sweden.

Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Karl Pettersson, IEI, Linkdping University, Link6ping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Jhansi Remala, PELAB, Linkdping University, Linkdping, Sweden.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wiladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linképing University, Linkoping, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Sonia Tariq, PELAB, Linkdping University, Linkdping, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkoping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.
Azam Zia, PELAB, Linkdping University, Linképing, Sweden.

B.2 OpenModelica Contributors 2011

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Per Ostlund, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.
David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Axin, IEI, Linkoping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkdping, Sweden.

David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Anand Ganeson, PELAB, Linkdping University, Linkdping, Sweden.

191

Mahder Gebremedhin, PELAB, Linkodping University, Linkoping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Zoheb Hossain, PELAB, Linkoping University, Linkdping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link&ping University, Linkdping, Sweden.
Petter Krus, IEI, Linképing University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linkdping University, Linkdping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Avriel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linkdping University, Linkdping, Sweden
Hakan Lundvall, PELAB, Link6ping University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linkdping University, Linkdping, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemist6, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkdping University, Linkdping, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Karl Pettersson, IEI, Linkdping University, Linkdping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linképing University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Sonia Tariq, PELAB, Linkdping University, Linkdping, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkdping, Sweden.

Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.
Azam Zia, PELAB, Linkdping University, Linképing, Sweden.

B.3 OpenModelica Contributors 2010

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

192

Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Per Ostlund, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.
Adeel Asghar, PELAB, Linkoping University, Linkdping, Sweden.
David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Simon Bjérklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkdping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Kim Jansson, PELAB, Linkdping University, Linképing, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link&ping University, Linkdping, Sweden.
Petter Krus, IEI, Linképing University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Magnus Leksell, Linképing, Sweden.

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.

Avriel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linkdping University, Linkdping, Sweden
Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkdping University, Linkdping, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Atanas Pavlov, Munich, Germany.

Karl Pettersson, IEI, Linkdping University, Linképing, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linképing University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linkdping, Sweden.

193

Sonia Tariq, PELAB, Linkdping University, Linkdping, Sweden.

Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkoping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.

B.4 OpenModelica Contributors 2009
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Bjérklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Vasteras, Sweden

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link&ping University, Linkdping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linképing, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Hakan Lundvall, PELAB, Link6ping University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemisto, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkdping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany

194

Robert Wotzlaw, Goettingen, Germany
Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden

B.5 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.6 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Ola Leifler, IDA, Linkdping University, Linkdping, Sweden.

Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

195

Bjorn Zachrisson, MathCore Engineering AB, Linkoping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.7 OpenModelica Contributors 2006

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Elmir Jagudin, PELAB, Linkdping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linképing University, Linkoping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linképing, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.

B.8 OpenModelica Contributors 2005
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, PELAB, Linkdping University and MathCore Engineering AB, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.

Ingemar Axelsson, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linképing, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

B.9 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.

Emma Larsdotter Nilsson, PELAB, Linkdping University, Linkdping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

B.10 OpenModelica Contributors 2003
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

196

Peter Aronsson, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, Linkdping University, Linkdping, Sweden.
Eva-Lena Lengquist-Sandelin, PELAB, Linkoping University, Linkping, Sweden.
Susanna Monemar, PELAB, Linkdping University, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Erik Svensson, MathCore Engineering AB, Linkdping, Sweden.
B.11 OpenModelica Contributors 2002

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linkdping University, Linkdping, Sweden.
Henrik Johansson, PELAB, Linképing University, Linképing, Sweden
Andreas Karstrom, PELAB, Linkdping University, Linkdping, Sweden

B.12 OpenModelica Contributors 2001
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

B.13 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

B.14 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden

Peter Ronnquist, PELAB, Linkdping University, Linkdping, Sweden.

B.15 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
David Kagedal, PELAB, Linkdping University, Linkoping, Sweden.
Vadim Engelson, PELAB, Linkoping University, Linkdping, Sweden.

Index

literate programming

	Table of Contents
	Preface
	Chapter 1 Introduction
	1.1 System Overview
	1.2 Interactive Session with Examples
	1.2.1 Starting the Interactive Session
	1.2.2 Using Compiler Debug Trace Flags in Interactive Mode
	1.2.3 Trying the Bubblesort Function
	1.2.4 Trying the system and cd Commands
	1.2.5 Modelica Library and DCMotor Model
	1.2.6 The val() function
	1.2.7 BouncingBall and Switch Models
	1.2.8 Clear All Models
	1.2.9 VanDerPol Model and Parametric Plot
	1.2.10 Using Japanese or Chinese Characters
	1.2.11 Scripting with For-Loops, While-Loops, and If-Statements
	1.2.12 Variables, Functions, and Types of Variables
	1.2.13 Getting Information about Error Cause
	1.2.14 Alternative Simulation Output Formats
	1.2.15 Using External Functions
	1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support
	1.2.17 Loading Specific Library Version
	1.2.18 Calling the Model Query and Manipulation API
	1.2.19 Quit OpenModelica
	1.2.20 Dump XML Representation
	1.2.21 Dump Matlab Representation

	1.3 Summary of Commands for the Interactive Session Handler
	1.4 References

	Chapter 2 OMEdit – The OpenModelica Connection Editor
	2.1 Starting OMEdit
	2.1.1 Microsoft Windows
	2.1.2 Linux
	2.1.3 Mac OS X

	2.2 Introductory Modeling in OMEdit
	2.2.1 Creating a New File
	2.2.2 Adding Component Models
	2.2.3 Making Connections
	2.2.4 Simulating the Model
	2.2.5 Plotting Variables from Simulated Models

	2.3 How to Create User Defined Shapes – Icons
	2.4 OMEdit Views
	2.4.1 Modeling View
	2.4.2 Plotting View
	2.4.3 Interactive Simulation View

	2.5 OMEdit Windows/Tabs
	2.5.1 Library Window
	2.5.1.1 Viewing Models Description
	2.5.1.2 Viewing Models Documentation
	2.5.1.3 How to Open an Existing Model?
	2.5.1.4 How to create a Copy of an Existing Model?
	2.5.1.5 How to Check a Model?
	2.5.1.6 How to Instantiate a Model?
	2.5.1.7 How to Rename a Model?
	2.5.1.8 How to Delete a Model?

	2.5.2 Designer Window
	2.5.3 Plot Variables Window
	2.5.4 Messages Window
	2.5.5 Documentation Window
	2.5.6 Model Browser Window

	2.6 Dialogs
	2.6.1 New Model Dialog
	2.6.2 Simulation Dialog
	2.6.3 Model Properties Dialog
	2.6.4 Model Attributes Dialog

	2.7 Interactive Simulation in OMEdit
	2.7.1 Invoking Interactive Simulation
	2.7.2 Interactive Simulation View

	Chapter 3 2D Plotting and 3D Animation
	3.1 Enhanced Qt-based 2D Plot Functionality
	3.2 Simple 2D Plot
	3.2.1 Plot Functions and Their Options
	3.2.2 Zooming
	3.2.3 Plotting all variables of a model
	3.2.4 Plotting During Simulation
	3.2.5 Programmable Drawing of 2D Graphics
	3.2.6 Plotting of Table Data

	3.3 Java-based PtPlot 2D plotting
	3.4 3D Animation
	3.4.1 Object Based Visualization
	3.4.2 BouncingBall
	3.4.2.1 Adding Visualization
	3.4.2.2 Running the Simulation and Starting Visualization

	3.4.3 Pendulum 3D Example
	3.4.3.1 Adding the Visualization

	3.5 References

	Chapter 4 OMNotebook with DrModelica and DrControl
	4.1 Interactive Notebooks with Literate Programming
	4.1.1 Mathematica Notebooks
	4.1.2 OMNotebook

	4.2 DrModelica Tutoring System – an Application of OMNotebook
	4.3 DrControl Tutorial for Teaching Control Theory
	4.3.1 Feedback Loop
	4.3.2 Mathematical Modeling with Characteristic Equations

	4.4 OpenModelica Notebook Commands
	4.4.1 Cells
	4.4.2 Cursors
	4.4.3 Selection of Text or Cells
	4.4.4 File Menu
	4.4.5 Edit Menu
	4.4.6 Cell Menu
	4.4.7 Format Menu
	4.4.8 Insert Menu
	4.4.9 Window Menu
	4.4.10 Help Menu
	4.4.11 Additional Features

	4.5 References

	Chapter 5 Interactive Simulation
	5.1 OpenModelica Interactive
	5.1.1 Interactively Changeable Parameters
	5.1.2 OpenModelica Interactive Components description
	5.1.3 Communication Interface
	5.1.4 Network configuration Settings
	5.1.4.1 Operation Messages

	5.1.5 Interactive Simulation general Procedure
	5.1.5.1 Initialize an Interactive Simulation Session

	5.1.6 Interactive Simulation Example
	5.1.6.1 How to get an example Modelica Model
	5.1.6.2 Create the simulation runtime
	5.1.6.3 Start an interactive Simulation Session

	5.2 OPC and OPC UA Interfaces
	5.2.1 Introduction to the OPC Interfaces
	5.2.2 Implemented Features
	5.2.2.1 OPC UA
	5.2.2.2 OPC DA and Simulation Control (SC)

	5.2.3 Test clients
	5.2.4 References

	Chapter 6 Model Import and Export with FMI 1.0
	6.1 FMI Import
	6.2 FMI Export

	Chapter 7 OMOptim – Optimization with OpenModelica
	7.1 Introduction
	7.2 Preparing the Model
	7.2.1 Parameters
	7.2.2 Constraints
	7.2.3 Objectives

	7.3 Set problem in OMOptim
	7.3.1 Launch OMOptim
	7.3.2 Create a new project
	7.3.3 Load models
	7.3.3.1 Dependencies

	7.3.4 Create a new optimization problem
	7.3.4.1 List of Variables is Empty

	7.3.5 Select Optimized Variables
	7.3.6 Select objectives
	7.3.7 Select and configure algorithm
	7.3.7.1 Use start file

	7.3.8 Launch
	7.3.9 Stopping Optimization

	7.4 Results
	7.4.1 Obtaining all Variable Values

	7.5 Window Regions in OMOptim GUI

	Chapter 8 MDT – The OpenModelica Development Tooling Eclipse Plugin
	8.1 Introduction
	8.2 Installation
	8.3 Getting Started
	8.3.1 Configuring the OpenModelica Compiler
	8.3.2 Using the Modelica Perspective
	8.3.3 Selecting a Workspace Folder
	8.3.4 Creating one or more Modelica Projects
	8.3.5 Building and Running a Project
	8.3.6 Switching to Another Perspective
	8.3.7 Creating a Package
	8.3.8 Creating a Class
	8.3.9 Syntax Checking
	8.3.10 Automatic Indentation Support
	8.3.11 Code Completion
	8.3.12 Code Assistance on Identifiers when Hovering
	8.3.13 Go to Definition Support
	8.3.14 Code Assistance on Writing Records
	8.3.15 Using the MDT Console for Plotting

	Chapter 9 Modelica Performance Analyzer
	9.1 Example Report Generated for the A Model
	9.1.1 Information
	9.1.2 Settings
	9.1.3 Summary
	9.1.4 Global Steps
	9.1.5 Measured Function Calls
	9.1.6 Measured Blocks
	9.1.6.1 Equations
	9.1.6.2 Variables

	9.1.7 Genenerated XML for the Example

	Chapter 10 Modelica Algorithmic Subset Debugger
	10.1 The Eclipse-based Debugging Environment
	10.2 Starting the Modelica Debugging Perspective
	10.2.1 Create mos file
	10.2.2 Setting the debug configuration
	10.2.3 Setting/Deleting Breakpoints
	10.2.4 Starting the debugging session and enabling the debug perspective

	10.3 Debugging OpenModelica
	10.4 The Debugging Perspective

	Chapter 11 Interoperability – C, Java, and Python
	11.1 Calling External C functions
	11.2 Calling External Java Functions
	11.3 Python Interoperability
	12.1 About OMPython
	12.2 Features of OMPython
	12.3 Using OMPython
	12.3.1 Test Commands
	12.3.2 Import As Library
	12.3.3 Retrieve results from nested dictionaries
	12.3.4 Set values to nested dictionaries
	12.3.5 Example

	12.4 Implementation
	12.4.1 Client
	12.4.2 Parser
	12.4.2.1 Understanding the Parsed output
	12.4.2.2 The Dictionary data type in Python
	12.4.2.2.1 SET
	12.4.2.2.2 Set
	12.4.2.2.3 Subset
	12.4.2.2.4 Element
	12.4.2.2.5 Results
	12.4.2.2.6 Values

	12.4.3 The Simulation Results
	12.4.4 Record Construction

	12.5 Examples
	12.5.1 Import As Library
	12.5.2 Test Commands

	12.6 List of Commands

	Chapter 13 Frequently Asked Questions (FAQ)
	13.1 OpenModelica General
	13.2 OMNotebook
	13.3 OMDev - OpenModelica Development Environment
	Index

