The Definition of RML
Version 2

Mikael Pettersson
Department of Computer and Information Science
Linkoping University, Sweden
and
INRIA Sophia Antipolis, France

1998-04-13

Contents

Preface to Version 2

This second version of the definition of Relational ML (RML) incorporates
a number of changes to Version 1 [?, Appendix A]. These changes are sum-
marised below.

Summary of changes

Minor syntactic changes: colon (:) is used in place of the interface key-
word; the user’s main module is now Main instead of main; the module
containing standard bindings is now RML instead of rml.

The default keyword has been added to allow users to specify default
rules to apply if all the previous rules in a relation fail. Although this makes
no difference either to the static or the dynamic semantics, it is important
from a stylistic point of view to ‘declare’ one’s intentions rather than silently
relying on the determinate proof search procedure.

The fail procedure has been replaced by the fail keyword, which is
placed syntactically in the result part of the conclusion of an inference rule.
This eliminates the need to introduce dummy return values for the benefit
of the type checker.

Logical variables are now separate objects with explicit types. The dy-
namic semantics has been simplified by eliminating all implicit dereferencing
operations. The type system does not use SML-style imperative types since
it already subsumes Wright’s [?] approach.

Equality types a la SML have been added, entailing significant changes
to the static semantics.

The limited form of polymorphic recursion for relations, available when
their declarations had explicit types, has been removed.

The old var = exp goal has been split into two separate constructs. The
new form let pat = exp is used for local bindings, while the original form
continues to express an equality constraint. Local variables in rules are now
allowed to shadow module-level variables.

Miscellaneous changes to the set of predefined types and operations:
built-in indexing relations 1ist_nth etc. are now 0-based; print now only
accepts strings instead of arbitrary values.

Type and value declarations may now be written in any order in module
interfaces and bodies. A dependency analysis is performed to recover a
suitable sequential ordering of the declarations. After this reordering, the
standard ML-style static elaboration phase is applied.

Sophia Antipolis, April 1998

ii

1 Introduction

This document formally defines RML — the Relational Meta-Language —
using Natural Semantics as the specification formalism.

RML is intended as an executable specification language for experiment-
ing with and implementing Natural Semantics. The rationale for the design
of the language, and hints on how it may be implemented, are not included
here, but may be found in the author’s thesis [?].

The style of this document was greatly influenced by the formal definition
of the Standard ML language and notation used in denotational semantics.
See [?, 7, ?] for further examples on the kind of Natural Semantics used
here.

1.1 Differences to SML

RML is heavily influenced by Standard ML, both in the language itself
and in its definition. Below we summarize some of the technical differences
between these languages.

RML’s relations are m-to-m-ary, not 1-to-1 as functions in SML are.
Also, RML’s datatype constructors are n-ary rather than just unary.

The withtype construct can introduce a number of type aliases together
with a datatype declaration. RML expands these sequentially instead of
simultaneously, which allows limited dependencies between aliases.

The RML module system is much simpler than that in SML. A module
is an environment of type and value bindings. At the top level of a module,
no type identifier, data constructor, or variable may be multiply bound, and
in a program, no module identifier may be multiply bound. For stand-alone
applications, RML defines the entry point to be module Main’s relation main,
which must be of type string list => ().

Both SML and RML introduce a unique tag to represent each user-level
datatype in the type system. Such a tag is known as a type name, but
is not the type identifier used in the datatype declaration. In RML, type
names are (essentially) pairs (module id, type id). Due to its simpler module
system, these pairs are guaranteed to be unique.

In several cases, the definition of RML uses explicit inference rules to
define features, where the definition of SML relies on comments in the ac-
companying text.

Like Haskell, but unlike SML, RML allows declarations to written in any
order. A reordering phase is used to recover, when possible, the correspond-
ing SML-style program with definitions before uses, and explicitly marked
groups of mutually dependent declarations.

2 Notation for Natural Semantics

2.1 Lexical definitions

Lexical definitions are made primarily using regular expressions. These are
written using the following notation', in which alternatives are listed in

decreasing order of precedence:

C

\t
\n
\ddd

\c
[...]
[~...1

C1=C2

llxll
{z}
(z)
€T%*
T+
T?

x{n}

denotes the character ¢, if ¢ is not one of .*x+?| (O {}\"[]1"
denotes a tab character (ASCII 9)

denotes a newline character (ASCII 10)

denotes the single character with number ddd, where ddd is a
3-digit decimal integer in the interval [0, 255]

denotes the character c

denotes the set of characters listed in . ..

denotes the complement of [...]

(within [...]) denotes the range of characters from c; to ¢y
denotes any character except newline

denotes the string of characters z

equals the expression bound to the identifier z

equals z

denotes the Kleene closure of z

denotes the positive closure of z

denotes an optional occurrence of z

denotes n repetitions of z, where n is a small integer

z{n1,n2} denotes between n; and ng repetitions of =

zy
zly

denotes the concatenation of z and y
denotes the disjunction of z and y

2.2 Syntax definitions

Syntax definitions are made using extended context-free grammars. The

following conventions apply:

e The brackets () enclose optional phrases.

Alternative forms for each phrase class are listed in decreasing order

of precedence.

¢ denotes an empty phrase.

e --- denotes repetition. It is never a literal token.

e Constraints on the applicability of a production may be added.

!This notation coincides with the one used by the ml-lex scanner generator.

e A production may be indicated as being left (right) (non) associative
by adding the letter L (R) (N) to its right.

e References to literal tokens are printed in this style.

e References to syntactic phrases or non-literal lexical items are printed
in this style.

2.3 Sets

If A is a set, then Fin A denotes the set of finite subsets of A.

2.4 Tuples

Tuples are ordered heterogeneous collections of fixed finite length.
(x1,--+,z,) a tuplet formed of 1 to z,, in that order
koft projection; equals xy if t = (1, -, 2k, -+, Tp)
Ty x -+ x T, the type {(z1,-+,2n) ; ;i € T; (1 <i<n)}

The notation &k of ¢ is sometimes extended to z of ¢, where z is a meta-
variable ranging over T}y, and ¢ is of type 17 X --- T} --- X T);. There must
be only one occurrence of the type Ty in T, ---,T,.

2.5 Finite Sequences

Sequences are ordered homogeneous collections of varying, but always finite,
length.
I the empty sequence

TS the sequence formed by prepending = to sequence s
s@s’ the concatenation of sequences s and s’

™ or [z1,---,x,] the sequence 1 :: -+ z, =2 []

¥ a sequence of 0 or more z’s

xT a sequence of 1 or more z’s

sk the k’th element of sequence s (1-based)

s\ k the sequence s with its £’th element removed
#s the length of sequence s

=3 the reversal of sequence s

TES membership test, Ik € [1,#s]:s | k=x
sCés Vke[l,#s]:slkes

Tk the type of all T-sequences of length &

T* or UkZOT"C the type of all finite T-sequences
T+ or L,I;.Cle’c the type of all non-empty finite T-sequences

2.6 Finite Maps

If A and B are sets, then A B8 B denotes the set of finite maps (partial
functions with finite domain) from A to B. The domain and range of a

finite map, f, are denoted Dom f and Ran f. A finite map can be written
explicitly in the form {ay — by, --,ax — bi},k > 0. The form {a — b; ¢}
stands for a finite map f whose domain is the set of values a which satisfy
the condition ¢, and whose value on this domain is given by f(a) =b. If f
and ¢ are finite maps, then f + g (f modified by g) is the finite map with
domain Dom f UDom ¢ and values

(f +g)(a) =if a € Dom g then g(a) else f(a).

2.7 Substitutions

If t is a term with variables V of type T', and f is a finite map of type V fiy T,
then f can be used as a substitution on t. The expression tf denotes the
effect of substituting free variables v; in ¢ by f(v;), when v; € Dom f. The
definition of ‘free’ variables depends on the type of the term ¢. Substitutions
are extended element-wise to finite sequences.

2.8 Disjoint Unions

The type T1 U --- U T, denotes the disjoint union of the types T1,...,T,.
Let = be a meta-variable ranging over a disjoint union type 7', and z; range
over its summands T;.

An z; is injected into T by the expression z; in T.

Membership test and projection are normally expressed using pattern-
matching syntax. Using a meta-variable z; in a binding position in a function
or relation, where the binding position is of type 7', constrains an argument
to be in the summand 7j; moreover, the formal parameter x; is bound to
the projected value in T;.

2.9 Relations

A relation is a (in general infinite) set of tuples, i.e. a subset of some product
Ty x --- xT,. It is characterized by a signature and is defined by a finite set
of inference rules.

2.9.1 Signatures

A signature is used to declare the form and type of a relation. It is written
as a non-empty sequence of meta-variables, with some auxiliary symbols
inserted between some of them. Let z1,...,z, be meta-variables for the
types 11, --,T,. Then a signature whose sequence of meta-variables is (),
declares a relation over T X --- X Tj,.

When a relation is seen as defining logical propositions, as is typical for
natural semantics, signatures are usually called judgements.

Occasionally, the place of a meta-variable will be replaced by a ‘proto-
type’ pattern of the form e/e’, which denotes an anonymous type T'U T,
where T' (T") is the type of e (¢').

The auxiliary symbols inserted in a signature have no semantic effect,
other than to make the signature easier to read, and to disambiguate differ-
ent relations having the same type.

Example: Let ME, TE, 0, and longtycon be the meta-variables for
the types ModEnv, TyEnv, TypeFcn, and longTyCon respectively. Then
ME,TE + longtycon = 6 is a signature for a relation over ModEnv x
TyEnv x longTyCon x TypeFcn.

2.9.2 Instances

An instance of a signature is formed by instantiating the meta-variables with
expressions (or patterns) of appropriate types.

Groups of relations are often viewed as defining a special-purpose logic.
In this case, instances are referred to as propositions or sequents.

2.9.3 Inference Rules

The contents (set of tuples) of a relation is specified using a finite set of

inference rules of the form:]
premises

(label)

conclusion

The conclusion is written as an instance of the signature of the relation. The
premises impose additional conditions, typically by checking that certain
values occur in other relations, that certain values are equal (or not equal),
or that certain values occur (or do not occur) in some set or sequence.
When the premises are true, the conclusion (the existence of an element in
the relation) can be inferred.

We additionally require relations to be determinate: for every element
in the relation, ezxactly one of the relation’s inference rules must hold.

We sometimes use _ in the place of a meta-variable. This syntax is used
to make it clear that a particular value is ignored.

Inference rules are often labelled, as indicated by the label written to
the right.

In the rules, phrases bracketed by () are optional. In an instance of
a rule, either all or none of the options must be present. This convention,
motivated by optional phrases in syntax definitions, allows a reduction in
the number of rules.

2.10 Example

These declarations are given for natural and binary numbers:

n € Nat natural numbers (primitive)
beBinu=0|1]0b0 | b1 binary numbers

Here is the specification for a relation expressing a mapping from binary
to natural numbers. By convention, we write the relation’s signature in a
box above and to the right of the rules. We also indicate the type of the
main object inspected by writing its name above and to the left of the rules.

Binary Numbers b=n
— (1)

1=1 2)

Siadl Q

eSS g

Relations are often used in a directed manner. For example, a query
b = n is typically used when b is known to compute n.

3 Lexical Structure

This section defines the lexical structure of RML.

3.1 Reserved Words

The following are the reserved words, including special symbols. The word
-- represents all words generated by the regular expression —(-)+ .

and as axiom datatype default end eqtype fail let
module not of relation rule type val with withtype
&) x , -— . = o= = [1 _ |

3.2 Whitespace and Comments

The blank, tab, linefeed, carriage return, and formfeed characters are treated
as whitespace characters. Whitespace characters between tokens serve as
separators, but are otherwise ignored.

white = [\ \t\n\013\012]

A comment is any character sequence within comment brackets (x *)
in which comment brackets are properly nested. It is an error for a com-
ment bracket to be unmatched. A comment is equivalent to a single blank
character.

comment = (* skiptoy

skiptoyy = * aftery

| Cafter(

| [(] skiptoyy
aftery =)

| * afters

| Cafter(

| [*)*(skiptoyy
after ::= * skiptoyy skiptoy)

| Cafter(

| [(] skiptoyy

3.3 Integer constants

The token class ICon, ranged over by icon, denotes integer constants. An
integer constant may be written in decimal or hexadecimal base, option-
ally preceded by a negation sign (- or ~). The precision of integers is
implementation-dependent. Examples: 34 0x22 -1 .

ddigit = [0-9]

decint = [-"17{ddigit}+

zdigit = [0-9a-fA-F]

hexint = [-"17"0x"{zdigit}+
icon = {decint}|{hexint}

3.4 Real constants

The token class RCon, ranged over by rcon, denotes real constants. A real
constant is written as a decimal integer constant, followed by a fraction and
an exponent. Either the fraction or the exponent, but not both, may be
omitted. The precision of reals is implementation-dependent. Examples:
0.7 3.2BE5 3E-7 .

fraction = "."{ddigit}+
exponent = [eE]l{decint}
rcon = {decint} ({fraction}{exponent}?|{exponent})

3.5 Character constants

The token class CCon, ranged over by ccon, denotes character constants.
An underlying alphabet of 256 distinct characters numbered 0 to 255 is
assumed, such that the characters numbered 0 to 127 coincide with the
ASCII character set. A character constant is written as #", followed by a
character descriptor, and terminated by ". A character descriptor is either
a single printing character, or \ followed by one of these escape sequences:

\ddd A sequence of three decimal digits, denoting a character number in
the interval [0, 255].

\"¢ The control character ¢, where ¢ may be any character with number
63-95. The number of \"¢ is 64 less than the number of ¢, modulo
128, mapping \"7? to 127 (delete), and \"A-\"_ to 0-31.

\c¢ A single escape character ¢, with the following interpretations:

\\ = 92 (backslash)

\" = 34 (double quote)

\n = 10 (linefeed)

\r = 13 (carriage return)

\t = 9 (tab)

\f = 12 (formfeed)

\a = 7 (alert)

\b = 8 (backspace)

\v = 11 (vertical tab)
echar = [\\"nrtfabv]

entrl = [7-_]
escseq = {ddigit}{3} 1"~ "{entrl} | {echar}
pchar = [\ =-'#-["-"\128-\255]|"]"
cdesc = {pchar}|\\{escseq}

ccon = "#\""{cdesc}\"

Examples of character constants: #"n" #"\n" #"\010" #"\~J"

3.6 String constants

The token class SCon, ranged over by scon, denotes string constants. A
string constant is written as a sequence of string items enclosed by a pair of
double quotes ". A string item is either a character descriptor, denoting
a single character, or a gap, denoting an empty sequence of characters.
Examples: "thirty-four is 3\ \4" "TAB is \t"

gap = \\{white}+\\
sitem = Hcdesc}|{gap}
scon = \"{sitem}x\"

3.7 Identifiers

The token class Id, ranged over by id, denotes identifiers. An identifier is
written as a non-empty sequence of ASCII letters, digits, primes, or under-
scores, starting with a letter. An instance of the regular expression for id
that coincides with a reserved word is interpreted as that reserved word, not
as an identifier. Examples: cons g4711’

alpha = [A-Za-z]
alnum = {alphal}|[_?0-9]
id = {alpha}{alnum}*

3.8 Type Variables

The token class TyVar, ranged over by tyvar, denotes type variables. A
type variable is written as an identifier, prefixed by one or more primes.
The subclass EtyVar of TyVar, the equality type variables, consists of those
which start with two or more primes. Examples: ’a ’’key

tyvar = "’ "+{alpha}{alnum}*

3.9 Lexical analysis

Lexical analysis maps a program to a sequence of items, in left to right
order. Each item is either a reserved word, an integer, real, character, or
string constant, an identifier, or a type variable. Whitespace and comments
separate items but are otherwise ignored — except within character and string
constants. At each stage, the longest recognizable item is taken.

4 Syntactic Structure

This section defines the syntax of RML.

4.1 Derived Forms, Full and Core Grammar

First the full (concrete) syntax is defined in figures ?? to ??. In these rules,
standard derived forms are marked with (*). Such forms are subject to
term-rewriting transformations specified in figures 7?7 to ??. The resulting
core syntax is defined in figures 7?7 to ??. Figure 7?7 defines the implicit
syntax of programs, i.e. sequences of modules.

The derived forms for with specifications and declarations use string
literals to indicate the names of the files in which the intended external
modules are located. In the core syntax, the interface of such an external
module is made explicit (figure 77).

4.2 Ambiguity

The full grammar as given is highly ambiguous: the reasons are that an
identifier may stand either for a (short) constructor or a variable binding in
a pattern, and in an expression it may stand for a constructor or a variable
reference. Environment information is in general necessary to determine the
meaning of an identifier in these contexts.

A parser could produce an ambiguous syntax tree where these possibil-
ities have been joined to a single ‘unknown identifier’ case. A type checker
could then construct an unambiguous syntax tree using the type information
it has access to.

The static semantics rules given later assume an unambiguous core syn-
tax tree, but also verify that the identifier classification was correct.

tycon € TyCon n=1id type constructor
con € Con =1id value constructor
var € Var =1d value variable
modid € Modld =1id module name
longtycon € longTyCon ::= (modid .)tycon long type constructor
longcon € longCon == (modid .)con long value constructor
longvar € longVar = (modid .)var long value variable
lit € Lit 1= ccon character constant

| icon integer constant

| rcon real constant

| scon string constant

Figure 1: Full grammar: Auxiliaries

10

tyvarseq € TyVarSeq ::= ¢ empty (*)

| tyvar singleton (*)

| (tyvary, ---, tyvar,) n>1

ty € Ty = tyvar variable

| (tyseq) longtycon construction (*)

| ty, * -+ * ty, tuple, n > 2

| tyseq, => tyseqs relation

| Cty) (*)

tyseq € TySeq n= 0 empty
| ty singleton (*)

| Ctyys --0y ty,) sequence, n > 1

Figure 2: Full grammar: Types

pat € Pat n=_ wildcard
| lit literal

| [paty, ---, pat,] list, n > 0 (*)

| longcon constant

| var variable (*)

| longcon patseq structure

| (paty, ---, pat,) tuple, n # 1

| pat, :: pat, cons, R (*)

| var as pat binding

| (pat) (*)

patseq € PatSeq ::= () empty
| pat singleton (*)

| (paty, ---, paty,) sequence, n > 1

Figure 3: Full grammar: Patterns

exp € Exp w= it literal
| Lezpy, ---,exp,] list, n > 0 (*)

| longcon constant

| longvar variable

| longcon expseq structure

| Cezpy, -+, exp,) tuple, n # 1

| expy :: expy cons, R (*)

| Cezp) (*)

expseq € ExpSeq == () empty
| exp singleton (*)

| Cexpy, -+-, exp,) sequence, n > 1

Figure 4: Full grammar: Expressions

11

goal € Goal ::= longvar (expseq) (=> (patseq)) call (*)

| var = exp equality

| let pat = exp binding

| not goal negation

| goal| & goaly sequence

| (goal) (*)

result € Result ::= (ezpseq) return (*)
| fail fail

clause € Clause ::= rule (goal) —— var (patseq) (=> result) rule (*)
| axiom var (patseq) (=> result) axiom (*)

| clause; clauses sequence

rule € Rule ::= clause (default clause) rules (*)

Figure 5: Full grammar: Goals, Clauses, and Rules

conbind € ConBind con (of ty, * --- * ty,) (n>1)
conbindy | conbinds

tyvarseq tycon = conbind

| datbind, and datbinds

tyvarseq tycon = ty

typbind, and typbind,

(withtype typbind)

datbind € DatBind

typbind € TypBind

withbind € WithBind ::

relbind € RelBind ::= var (: ty) = rule (*)
| relbind and relbinds
spec € Spec = with scon (*)

| type tyvarseq tycon
| eqtype tyvarseq tycon
| type typbind
| datatype datbind withbind
| val var : ty
| relation var : ty
| spec, spec,
dec € Dec = with scon (*)
| type typbind
| datatype datbind withbind
| val var = exp
| relation relbind

| decy deco
interface € Interface ::= module modid : spec end
module € Module ::= interface dec

Figure 6: Full grammar: Declarations

12

Derived Form Equivalent Form

Type Variable Sequences tyvarseq

€ O
tyvar (tyvar)
Types ty

| longtycon | O longtycon |

Type Sequences tyseq
|ty | (ty) |

Figure 7: Derived forms of Type Variable Sequences, Types, and Type Se-
quences

Derived Form Equivalent Form

Patterns pat

var var as _

paty :: paty RML.cons(pat,, paty)

(] RML.nil

[pat,, ---, pat,] | paty :: -+ 2t pat, :: [1|(n>1)
(pat) pat

Pattern Sequences patseq
| pat | (pat) |

Pattern Sequences (patseq)

B [O |

Figure 8: Derived forms of Patterns and Pattern Sequences

13

Derived Form Equivalent Form

Expressions ezp

erpy i expy RML. cons(exp,, erps)

(1 RML.nil

Lexzpy, -+, exp,] |expy :: -+ t:exp, :: [0 | (n>1)
(exp) exp

Expression Sequences ezpseq
| exp | Ceap) |

Expression Sequences (ezpseq)

E [O |

Figure 9: Derived forms of Expressions and Expression Sequences

Derived Form Equivalent Form
Goals goal
longvar (expseq) longvar (ezpseq) => ()
(goal) goal

Clauses clause

rule (goal) -= var (patseq) rule (goal) == var (patseq) => ()

axiom var (patseq) (=> result) | rule -- var (patseq) (=> result)

Rules rule Clauses clause

| clause; default clauses | clause; clauses

Figure 10: Derived forms of Goals, Clauses, and Rules

Derived Form Equivalent Form

Specifications spec
| with scon | with interface |

Declarations dec
| with scon | with interface |

Figure 11: Derived forms of Specifications and Declarations

14

tyvarseq € TyVarSeq ::= (tyvar,, ---, tyvar,) n >0

ty € Ty = tyvar variable

| tyseq longtycon construction

| by, * -+ * ty, tuple, n > 2

| tyseq, => tyseq, relation

tyseq € TySeq n= (tyy, -+, ty,) sequence, n > 0

Figure 12: Core grammar: Types

pat € Pat n= _ wildcard

| lit literal

| longcon constant

| longcon patseq structure

| (paty, -, pat,) tuple, n # 1

| var as pat binding

patseq € PatSeq ::= (pat,, ---, pat,) sequence, n > 0

Figure 13: Core grammar: Patterns

exp € Exp =it literal

| longcon constant

| longvar variable

| longcon expseq structure

| Cezpy, -+, exp,) tuple, n # 1

expseq € ExpSeq = (ezpy, ---, exp,) sequence, n > 0

Figure 14: Core grammar: Expressions

goal € Goal ::= longvar expseq => patseq call

| var = exp equality

| let pat = exp binding

| not goal negation

| goal, & goaly sequence

result € Result ::= expseq return
| fail fail

clause € Clause ::= rule (goal) —— var patseq => result rule
| clausey clauses sequence

Figure 15: Core grammar: Goals and Clauses

15

conbind € ConBind ::= con (of ty, * --- * ty,)
| conbind; | conbinds
= tyvarseq tycon = conbind
| datbind, and datbinds
tyvarseq tycon = ty
typbind, and typbind,
(withtype typbind)
var (: ty) = clause
relbind; and relbinds
with interface
| type tyvarseq tycon
| eqtype tyvarseq tycon
| type typbind
| datatype datbind withbind
| val var : ty
| relation var : ty
| spec, spec,
dec € Dec n= with interface
| type typbind
| datatype datbind withbind
| val var = exp
| relation relbind

datbind € DatBind

typbind € TypBind

withbind € WithBind ::
relbind € RelBind

spec € Spec

| decy decqy
interface € Interface ::= module modid : spec end
module € Module ::= interface dec

Figure 16: Core grammar: Declarations

modseq € ModSeq ::= module
| modseq; modseq,

Figure 17: Auxiliary grammar: Programs

16

5 Reordering Phase

This section describes the dependency analysis and reordering phase that
occurs between the parsing and static elaboration phases.

5.1 Background

The type system of RML, like those in many other languages, generally
requires the declaration of an object to lexically precede every use of that
object. This holds for declared types, global variables, relations, and vari-
ables local to some relation. We refer to this as the define-before-use rule.

In some cases, however, programs can be easier to read if this rule is
not enforced. For example, it can be desirable to write a main routine first,
followed by the subroutines used to implement the main routine.

Thus RML programs are subjected to a reordering phase after parsing
but before type checking?. This phase reorders top-level declarations of
types, variables, and relations, in such a way that the define-before-use rule
holds for the reordered program. The sections below describe the exact rules
that define when valid reorderings exist.

5.1.1 Terminology

A directed graph G = (V, E) is defined by a set V' (the vertices) and a binary
relation £ : V — V (the edges) as usual. When the vertices are syntactic
objects and the edges express dependencies between these objects, we call
the graph a dependency graph.

A dependency graph consists of a set of strongly connected components.
Taking these as equivalence classes over the graph results in a DAG of com-
ponents. The preorder components of a dependency graph is a topologically
ordered sequence Ci,...,C, of its components such that no C; has any
dependencies to any Cj, (k > j).

5.2 Type Declarations

The analysis and reordering of type declarations applies to all type aliases
typbind and datatypes datbind. The declarations in a module’s interface are
treated separately from those in the module’s body.

5.2.1 Dependency Analysis

Let the context be the set of all type declarations typbind and datbind in
the part of the module under consideration.

*Haskell [?, Section 4.5.1] is another language with a Hindley-Milner type system and
reordering of declarations.

17

With every type declaration is associated a type constructor tycon,; and
a set of immediate dependencies Dep,, defined as follows:

e A declaration tyvarseq tycon; = ty; defines Dep, as the set of non-
qualified type constructors occurring in ¢y, and being declared in the
current context. It is an error for tycon; to occur in Dep;.

e A declaration tyvarseq tycon; = conbind; defines Dep; as the set of non-
qualified type constructors occurring in conbind; and being declared
in the current context.

It is an error for any tycon to have more than one declaration in the
context.

Finally, Dep = {(tycon;, tycony,) ; tycon;, € Dep;} and T is the set of all
type constructors declared in the context.

5.2.2 Reordering

Now consider each of the preorder components C1, ..., C), of the dependency
graph (T, Dep):

e If C; contains a single type constructor from a typbind, then its defi-
nition is emitted as a single type declaration.

e If C; contains a number of type constructors, all from datbind dec-
larations, then their definitions are collected and emitted as a single
recursive datatype declaration.

e If C; contains several type constructors, some from datbind and some
from typbind declarations, then further processing is required.

Let Tj = TNCj, Dep; = Dep;NTy, Dep; = {(tycon;, tycony) ; tycon,, €
Dep!}, and consider the dependency graph (Tj, Dep;). This graph
must not have any cycles (i.e., every strongly connected component
must be a singleton). A depth-first traversal of (T}, Dep,) defines the
order in which the typbind declarations are collected.

Finally, the component Cj is emitted as a recursive datatype dec-
laration, consisting of the datbind declarations for the datbind type
constructors, and a withtype containing the typbind declarations or-
dered as described above.

5.3 Value Declarations

The analysis and reordering of value declarations applies to all val and
relbind declarations in module bodies.

18

5.3.1 Dependency Analysis

Let the context be the set of all val and relbind declarations in the module’s
body.

With every value declaration is associated a variable var; and a set of
immediate dependencies Dep,, defined as follows:

e A declaration val wvar; = ezp; defines Dep; as the set of non-qualified
variables occurring in ezp; and being declared in the current context.
It is an error for var; to occur in Dep;.

e A relbind declaration var; (: ty;) = clause; defines Dep, as the set of
free non-qualified variables in clause; and being defined in the current
context.

It is an error for any war to have more than one declaration in the
context.

Finally, Dep = {(var;,vary) ; varp € Dep;} and V is the set of all
variables declared in the context.

5.3.2 Reordering

Now consider each of the preorder components C1, ..., C), of the dependency
graph (V, Dep):

e If C; contains a single variable from a val declaration, then its defini-
tion is emitted as is.

e If C; contains a number of variables, all from relbind declarations,
then their definitions are collected and emitted as a single recursive
relation declaration.

e All other cases are illegal.

5.4 Modules

The declarations in a module’s interface are reordered separately from those
in the module’s body. Within each part, declarations are reordered so that
with-declarations precede type declarations, who in turn precede value dec-
larations.

19

6 Static Semantics

This section presents the rules for the static semantics of RML. First the
semantic objects involved are defined. Then inference rules (written in the
style of Natural Semantics) are given.

6.1 Simple Objects

All semantic objects in the static semantics are built from syntactic iden-
tifiers and two further kinds of simple objects: booleans and value binding
kinds. In the static semantics, we let a range over TyVar.

Bool = {true, false}
vk € ValKind = {con, var, rel}

Figure 18: Simple Semantic Objects

6.2 Compound Objects

The compound objects for the static semantics are shown in Figure ?7.
For notational convenience, we identify TyVarSeq with TyVar*, TySeq
with Ty*, PatSeq with Pat*, and ExpSeq with Exp*.

t € TyName = ModId x TyCon x Bool
7 € Type = TyVar U TupleType U RelType U ConsType
TypeSeq = Ug>oType
TupleType = TypeSeq
7 [=77') e RelType = TypeSeq x TypeSeq
k)¢ € ConsType = UkZO(Typek x TyName)
9 or Aa'®) .7 € TypeFcen = UkZO(TyVark x Type)
(k) 7 € TypeScheme = UkZO(TyVark x Type)
CE or VE € ValEnv = (Var U Con) fy (ValKind x TypeScheme)
(0, CEopt) € TyStr = TypeFen x ValEnv

TE € TyEnv = TyCon fin TyStr
ME € ModEnv = ModId 38 (TyEnv x ValEnv)

o or Vo

Figure 19: Compound Semantic Objects

Type names are constructed from module names and type constructors.
This is used to uniquely identify all constructed types, since modules may not
be redefined, and type constructors may not have multiple bindings within

20

modules. The only exception to this rule concerns abstract type specifica-
tions. However, their implementations are guaranteed to have type names
and type functions compatible with those inferred from their specifications.

Every type name ¢ also possesses a boolean equality attribute, which
determines whether or not it admits equality. As usual, the expression 71 =
T9 asserts the structural equality of the two types, but with the modification
that the equality attributes of all type names ¢ are ignored.

Value environments map variables and data constructors to type schemes
marked with value binding kinds. The kinds distinguish constructors from
non-constructors, since these classes behave differently in patterns. They
also distinguish variables arising from relation bindings from other variables.

Since the only polymorphic objects in RML are globally declared (rela-
tions, variables, and data constructors), type schemes bind either all or none
of their type variables. This subsumes Wright’s [?] approach for typing ref-
erences; hence RML does not use SML-style imperative types.

Type environments map type constructors to type structures: tuples
of type functions and optional constructor environments. An absent CE
signifies that the type is abstract, i.e. it is the skeletal type structure from an
abstract type specification. Abstract types must be rebound in the module’s
body, whereas other types may not be rebound.

6.3 Type Structures and Type Environments

A type structure (0, CEp) is well-formed if either CEop = €, or CEqpy =
{}, or @ is of the form Aa*.a*t, abbreviated as ¢t. (The latter case arises,
with CF ,p,; being a non-empty environment, in datatype specifications and
declarations.) All type structures occurring in elaborations are assumed to
be well-formed.

A type structure (¢, CE) is said to respect equality if, whenever ¢ admits
equality, then for each CE(con) of the form Ya®).(7*[=][a(*)]), the type
function Aa®) 7* also admits equality. (This ensures that the equality goal
= will be applicable to a constructed value (con,v*) of type (kg only when
it is applicable to the tuple v* itself, whose type is 7*{a; — 7; ; 1 <13 < k}.)
A type environment TE respects equality if all its type structures do so.

Let TE be a type environment, and let T be the set of type names ¢ such
that (¢, CE) occurs in TE for some CE # {}. Then TFE is said to mazimise
equality if (a) TFE respects equality, and also (b) if any larger subset of T
were to admit equality (without any change in the equality attribute of any
type names not in 7') then TE would cease to respect equality.

6.4 Initial Static Objects

The initial static environments MFE;uit, TEinit, VEinit, tYP€S Tehar, Tints Treals
Tstring, type name tjis;, and set MutTyName, are defined in Section ?7.

21

6.5 Equality

The notion of equality permeates every aspect of the type discipline. The
goal var = exp performs an equality test of the values of var and ezp at
runtime. Equality is defined for literals, nullary constructors, locations, and
values built out of such by tuple formation and constructor application.
Equality is not defined for relations, or aggregates thereof. However, muta-
ble aggregates (e.g. o lvar) are represented by their locations in the store,
and thus do admit equality, even if they reference values that do not.

Every type name ¢ has a boolean equality attribute, which determines
whether or not it admits equality. If ¢ admits equality, then a type 78t also
admits equality, but only if every 7; (1 < i < k) does so. Most built-in types,
such as int and ’a list, behave this way. The set MutTyName contains
the type names for the standard mutable types. When ¢ is in MutTyName,
then a type 7("¢ admits equality, even if some 7; does not. If ¢ does not
admit equality, then no type 7(F)¢ can do so. This is the case if (a) ¢ is the
type name for a datatype, some of whose constructors reference types that
do not admit equality, or (b) ¢ is the type name from a type rather than
eqtype specification in a module’s interface.

To permit polymorphism for relations that require equality types, type
variables are partitioned in two sets: those that admit equality (EtyVar)
and those that do not. When a bound type variable « in a type scheme is
instantiated to a type 7, if « is in EtyVar, then 7 is constrained to admit
equality.

When a set of new type names are constructed by a datatype declara-
tion, as many as possible are set to admit equality. This is expressed by the
mazimises equality property defined for type environments TFE.

6.6 Inference Rules

Types tyvars T = o

(1)

tyvars a = [a]

tyvars* ™™ = o

(2)

tyvars T = o*

tyvars™ 71 = o] tyvars® 75 = ab

tyvars T [=1]15 = of U ad

tyvars® ™ = o*

tyvars Tt = o*

22

tyvars® ™ = a*

tyvars i =af (1 <i<k) U] =a”

(5)

tyvars* 7(k) = o/*

Comment: For conciseness, we identify finite sets and non-repeating se-
quences.

(6)

a € EtyVar
a admitsEq

7" admitsEq

(7)

7* admitsEq

t admits equality t € MutTyName
7*t admitsEq

(8)

t admits equality T admitsEq
T*t admitsEq

(9)

Comment: Constructed types whose type names do not admit equality, as

well as relation types, never admit equality.
7 admitsEq

7; admitsEq (1 <i < k) (10)

7(k) admitsEq

!

Type Functions apply TypeFen (0, 7)) = 7

k=K t{aj—7;1<i<k}=1

11
apply TypeFen (Aalk) .1, 7(K)) = 7/ (11)

T{ai = of 5 of € BtyVar, 1 <i<k}=7" 1’ admitsEq
Aa®) .7 admitsEq

(12)

Comment: When determining if a type function admits equality, the equality
status of its bound type variables is ignored.

23

Type Schemes

tyvars T = o*

1
Close T =Va*.T (13)

Comment: This operation closes 7 by abstracting all of its type variables.

a>T
«a € BEtyVar 7 admitsEq (14)
a-T
a ¢ EtyVar
Tarr (15)
o-T
o =7 a7, 1<i<k}=r71" (16)

Valk) 1 = 7/

Comment: This operation instantiates a type scheme by substituting per-
missible types for the abstracted type variables.

Long Type Constructors ‘ME, TE F longtycon = 0‘
(TEinit + TE)(tycon) = (6, -) (17)
ME, TE \ tycon = 0
ME(modid) = (TE',.) TE'(tycon) = (0,.) (18)
ME, TE F modid . tycon = 0
Type Expressions ‘ME, TE(,a*) F ty = T‘
(o € ™) (19)
ME, TE(,o*) F a = «
ME, TE(,a*) & tyseq = 7 ME, TE + longtycon = 0
applyTypeFen (0, 7*) = T (20)
ME, TE(, a*) F tyseq longtycon = T
ME, TE(,a*) F ty®) = 7(*)
 TE(a") Fiy'™ = 7 (21)

ME, TE(,a*) - ty, * --- * ty, = 7(K) in Type

24

ME, TE(,a*) & tyseq, = 77 ME, TE(,a*) \- tyseqy = 75
ME, TE(,a*) - tyseq, => tyseqy = 71 [=|75

(22)

Comment: 77 When present, a* serves to constrain type expressions to
only have type variables in o*. This is used when elaborating typbinds and
datbinds. Tt does not suffice to elaborate a type expression to a type T,
and then check that tyvars 7 = o/* and o C o*, since type functions 6
may ‘forget’ some of their type variables. The following example does not
elaborate: type ’a t = int type tt = ’b t.

Type Expression Sequences ME, TE(,o*) I ty*) = 7(k)

ME, TE(,a*) Fty; = 7 (1 <i<k)
ME, TE(,a*) F ty®) = 7(8)

(23)

Type Variable Sequences

nodups || (24)

a ¢ o nodups of

(25)

nodups « :: o*

Comment: nodups o verifies that o* contains no duplicates, as required
when elaborating type specifications and declarations.

Type Bindings | ME, TE, TE - typbind = TE |

tycon ¢ Dom TE tycon ¢ Dom TE; nodups o*
ME,TE + TE,a* Fty =71 60=Aa*.7T

26

ME,TE, TE, + o* tycon = ty = TE1 + {tycon — (6,{})} (26)
ME, TE, TE: F typbind, = TEs

ME, TE, TEs - typbindy = TE3 o)

ME, TE, TE, \- typbind, and typbind, = TE3

| ME, TE - withbind = TE |

ME, TEF == () (28)

25

ME, TE,{} \ typbind = TE'
ME, TE + withtype typbind = TE'

(29)

Comment: As implied by the sequential elaboration of a typbind, the type
aliases after withtype are expanded sequentially. This is intensional.

Datatype Bindings TE, TEge1, modid = datbind = TE.,

(tycon ¢ Dom TE V TE(tycon) = (_,¢)) tycon ¢ Dom TEgkel
nodups o« t = (modid, tycon,eq) 6= Aa*.a*t

30

TE, TEgkel, modid = o* tycon = - = TEge + {tycon — (6,{})} (30)
TE, TEL ., modid - datbind, = TE%

TE, TE%.,, modid - datbindy = TE?, (31)

TE, TE\,., modid - datbind, and datbindy = TE3>,

Comments:

?? Normally, once an identifier has been bound in an environment, it may
not be rebound. This is the only place where this does not hold: an
abstract type declared in an interface can (indeed must) be rebound in
the module’s body by a datbind. This relies critically on the fact that
the datbind will produce a compatible type name and type function.
See also rules 7?7, 7?7, ??7, and ?7?.

?? The equality attribute of the new type name is determined by the
maximises equality condition in rule ?77.

Constructor Bindings | ME, TE, VE, CE,o*, 7 F conbind = CE'|
con ¢ Dom VE con ¢ Dom CE Close T =0 (32)
ME,TE, VE,CE,a*,7 F con = CE + {con — (con,o)}
con ¢ Dom VE con ¢ Dom CE ME, TE,o* - ty®) = 7/(k)
Close 7'®)[=][r] =0 CE' = CE + {con — (con,0)} (33)
ME, TE, VE, CE,a*, 7 F con of ty, * --- * ty, = CE'
ME,TE, VE,CE,a*, 7 conbind, = CE;
ME,TE, VE, CEq,a*, 7+ conbindy = CE, (34)

ME,TE, VE, CE,a*, 7t conbindy | conbindy = CE9

26

| ME, TE, VE - datbind = TE', VE'|

TE (tycon) = (0,-) applyTypeFen(0,a*) =71
ME,TE, VE,{},a*,7 & conbind = CE VE' = VE + CE

35

ME, TE, VE + a* tycon = conbind = {tycon — (0, CE)}, VE' (35)
ME, TE, VE + datbind, = TE,, VE,

ME, TE, VE, - datbindy = TEy, VEs 56)

ME, TE, VE - datbind, and datbinds = TE; + TE>, VE,

| ME, TE, VE, modid - datbind, withbind = TE, VE |

TE,{}, modid - datbind = TFE e
ME, TE 4+ TE e F withbind = TFE yitn
ME, TE + TEge + TEwith, VE F datbind = TFE 4a4a, VE'

TE 4ata mazimises equality
TE' = TE + TFE gata + TE witn

37
ME, TE, VE, modid + datbind, withbind = TE', VE' (37)
Variables ‘ VEouters VEinner - UCM“
var ¢ Dom VEinner
(var ¢ Dom VEouter V' VEouter(var) # (con, _))
(var ¢ Dom VEiniy V VEinit(var) # (con, _)) (38)

VEouters VEinner F var

Comment: This rule checks that a value identifier may be bound as a vari-
able, at a point where the visible value environment is VEi.it + VEuter +
VEinner- The first premiss prevents multiple bindings of the same identi-
fier in a given “scope.” The following premisses ensure that an identifier
cannot be bound as a variable if it already has a visible binding as a value
constructor.

Specifications | ME, TE, VE, modid - spec = ME, TE, VE |

ME = interface = _, TE', VE', modid’
ME' = ME + {modid' — (TE', VE')}

39

ME, TE, VE, modid + with interface = ME', TE, VE (39)
tycon ¢ Dom TE nodups o t = (modid, tycon, false)

TE' = TE + {tycon — (Aa*.a*t,)} (40)

ME, TE, VE, modid - type o* tycon = ME, TE', VE

27

tycon ¢ Dom TE nodups o t = (modid, tycon, true)
TE' = TE + {tycon — (Aa*.a*t,e)}

41
ME, TE, VE, modid - eqtype o* tycon = ME, TE', VE (41)
ME,{}, TE + typbind = TE' (42)
ME, TE, VE, modid + type typbind = ME, TE', VE
ME, TE, VE, modid + datbind, withbind = TE', VE' (43)
ME, TE, VE, modid + datatype datbind withbind = ME, TE', VE'
{}, VE+wvar ME,TEFty=r
Close T=0 VE' = VE + {var — (var,0)} (44)
ME, TE, VE, modid - val var : ty = ME, TE, VE'
{},/ VErwvar ME,TEVFty=r1
T=r17[=]r5 Close r=0 VE = VE + {var — (rel,0)} (45)
ME, TE, VE, modid - relation var : ty = ME, TE, VE'
ME,TE, VE, modid + specy = ME,, TE,, VE;
ME., TE, VE1, modid - specy = MEq, TE2, VE4 (46)
ME, TE, VE, modid & specy specg = MEy, TEy, VEo
Interfaces | ME \ interface = ME, TE, VE, modid |
modid ¢ Dom ME MEiyi, {}, {}, modid - spec = ME', TE, VE (47)
ME + module modid : spec end = ME', TE, VE, modid
Literals lit =1
_ 48
CCON = Tehar (48)
—_ 49
1CON = Tint (49)
_ 50
TCON = Treal (50)
(51)

$CON = Tgtring

28

Long Value Constructors ‘ME, VE | longcon = a‘

(VEqit + VE)(con) = (con, o)

2
ME,VE F con = o (52)
ME(modid) = (_, VE') VE'(con) = (con, o) (53)
ME, VE F modid .con = o
Patterns ME, VE, VE,a = pat = VEpat,
54
ME,VE, VE a1 = _ = VEp a0, T (54)
lit =
= (55)
ME, VE, VE a1 F lit = VE a4, T
ME, VE F longcon = o o = 7't (56)
ME, VE, VE a1 &= longcon = VE a, Tt
ME, VE &= longcon = o ME, VE, VE,; - patseq = VEpat,
o-T [zfl [7] (57)
ME, VE, VE 5 = longcon patseq = VEpat,
ME, VE, VEpy & pat® = VE! . 7(*) (58)
ME, VE, VEpa = (paty, -+ ,paty) = VE, .., 7 in Type
ME, VE, VE 5t & pat = VEpat,T VE, VE;at F var (59)

ME, VE, VEpa; = var as pat = VEL,, + {var — (var,V[].7)}, 7

Comment: VEp,; is the environment being built for the current pattern,
while VFE is the environment in which this is taking place. This split is used
to allow pattern variables to shadow previous bindings.

Pattern Sequences ME, VE, VEpy & pat® = VE! (%)
ME,VE, VEi,, \ pat; = VEil, 7 (1 <i<k) (60)

ME, VE, VEL,, pat®) = VEEL! 7(k)
Long Variables ‘ME, VE + longvar = a‘
(VEinit + VE)(var) = (vk,0) vk # con (61)

ME,VE - var = o

29

ME(modid) = (_, VE') VE'(var) = (vk,o) vk # con

62
ME, VE F modid .var = o (62)
Expressions ‘ME, VE + exp = T‘
it =71

ME, VE - lit =1 (63)
ME, VE F longcon = o o = 7't (64)

ME, VE F longcon = T*t
ME, VE & longvar =0 o > T (65)

ME, VE + longvar = 7
ME, VE I longcon = o ME, VE \- expseq = 7 o > 7%[=][7] (66)

ME, VE F longcon expseq = T
ME, VE + exp®) = 7 (k) (67)
ME, VE - (exzpy, -+ ,exp,) = 7*) in Type
Comment: 77 Non-constant data constructors are excluded here.

Expression Sequences ME, VE + exp®) = (k)
ME,VE F exp; = 7; (1 <i<k) (68)

ME, VE F expk) = 7(k)
Goals | ME, VE V goal = VE|

ME, VE \- longvar = o ME, VE & expseq = T{
ME, VE {} - patseq = VEa,75 o0 > 1{[=]|75 (69)
ME, VE I~ longvar expseq => patseq = VE + VE

ME,VE Vv exp =71 VE(var)=(.,0) o>=7 T admitsEq (70)

ME, VE F var = exp = VE
ME,VE+ exp =1 ME,VE,{} Fpat = VEpu, 7 7=1' (71)

ME, VE I~ 1et pat = exp = VE + VEpu

!/

ME, VE F goal = VE (72)

ME, VE F not goal = VE

30

ME, VE \- goal, = VE| ME,VE|F goaly = VE,
ME, VE F goal, & goaly, = VE4

(73)

Comment: 77 A negative goal produces no visible bindings.

ME, VE ¥ (goal) = VE

ME, VE & goal = VE'

- (74)

ME, VE + goal = VE'
- (75)

ME, VEFe= VE

Results ME, VE + result = 7*
ME, VE & expseq = T* (76)

ME, VE & expseq = 7*
(77)

ME, VE | fail = 7*

Comment: 7?7 The type sequence 7* is determined by the other clauses in
the relation being checked.

Clauses ‘ME, VE, vare, T F clause

ME, VE,{} - patseq = VEypa;, 77 ME, VE + VE; - (goal) = VE'
ME, VE' & result = 75 1 =r1{[=]1 wvar = var

ME, VE, varye, T - rule (goal) == var patseq => result

(78)
ME, VE, varye, 7 I clausey ME, VE, varye, T F clauses (79)
ME, VE, var,e, T F clause; clauses
Relation Bindings ME, VE + relbind |
VE(var) = (rel,V_.7) ME, VE, var, 7 clause (80)
ME, VE = var (: ty) = clause
ME, VE & relbindy ME, VE F relbindo (81)

ME, VE F relbind and relbindo

31

ME, TE, VE, VE,q + relbind = VE'

{, VE4+ VE,qtwvar (ME,TEFty=71) o=V[.7

82
ME, TE, VB, By F var (= tg) = = Vi + {var o (el o)} °2)
ME, TE, VE, VE! | \- relbind, = VE2,
ME, TE, VE, VE2 | I~ relbindy = VE3, (83)
ME, TE, VE, VE)| I relbind, and relbindy = VE3,
Variable Environments | Close VE = VE'|
VE' = {var; — (rel,0;) ; Close ; =0y, 1 <4<k} (84)
Close {var; = (,,V_1;) ; 1 <i<k}=VE'
Declarations | ME, TE, VE, modid + dec = ME, TE, VE|
ME v interface = _, TE', VE', modid’
ME' = ME + {modid' — (TE', VE')})
ME, TE, VE, modid - with interface = ME', TE, VE
ME,{}, TE + typbind = TE' (36)
ME, TE, VE, modid + type typbind = ME, TE', VE
ME, TE, VE, modid + datbind, withbind = TE', VE' (87)
ME, TE, VE, modid - datatype datbind withbind = ME, TE', VE'
{}, VErvar ME,VElF exp =171
Close =0 VE'= VE + {var + (var,o)} (88)
ME, TE, VE, modid + val var = exp = ME, TE, VE'
ME, TE, VE, {} F relbind = VEyq
ME, VE + VE,¢ F relbind Close VE. = VEL (89)
ME, TE, VE, modid - relation relbind = ME, TE, VE + VE.,
ME, TE, VE, modid - dec, = ME,, TE,, VE,
MEl, TEl, VEl, modid - decy = MEQ, TEQ, VE, (90)
ME, TE, VE, modid decy deco = MFEo, TEo, VE4
Specifications \ TE e, VEspecs VEdec F spec \
VEspec(var) = (var,V_.Tspec) VEqec(var) = (2, 0dec) Odec > Tspec (91)

TEdeC’ VESpeCa VEdec '_ Val var : _

32

VEspec(var) = (rel,V_.Tspec) VEqec(var) = (rel,0dec) Odec ™ Tspec

92
TEgec, VEspec, VEdec - relation var : _ (92)
TE gec(tycon) = (Aa*.1, CE) #ao* = #a’ (93)
TE qec, VEspec, VEdec - type o tycon
TE gec(tycon) = (Aa*.7, CE) #a* = #a”™* Aa*.7 admitsEq (94)
TEgec, VEspec, VEqec - eqtype o'* tycon
TE gec, VEspeCa VE gec Specy TE gec, VEspeCa VE gec SpecCoy (95)
TEqec, VEspec, VEdec = specy specy
spec = with _ V spec = type typbind V spec = datatype - (96)
TE gec, VEspeCa VE gec 1= spec
Comments:
7?7 77 Note that 0qec cannot be more specific than 7gpec.
7?7 7?7 Note that CE must be present.
Modules ‘ module = modid, VE

MEini, - module modid: spec end = ME, TE, VE, modid
VE' = {con — VE(con) ; VE(con) = (con,_)}
ME, TE, VE', modid - dec == ME', TE', VE" TE', VE, VE" |~ spec
module modid : spec end dec = modid, VE

(97)

Comment: The VE arising from the elaboration of the interface contains
bindings for both constructors and non-constructors. Only the constructor
bindings are retained (in VE’) when the module body is elaborated.

Module Sequences ‘ME F modseq = ME"
module = modid, VE modid ¢ Dom ME (98)

ME + module = ME + {modid — ({}, VE)}
ME - modseq;, = ME1 ME, - modseqy = MFE9 (99)

ME = modseq, modseqy, = MFE2

33

Programs

MEFE;inis - modseq = ME ME(Main) = (_, VE)
VE (main) = (rel, U) o> [[Tstring]tlist] [:>—| H
F modseq

(100)

Comment: A program is a collection of modules. The program’s entry point
is module Main’s relation main, which must have type string list => (.

34

7 Dynamic Semantics

7.1 Simple Objects

All objects in the dynamic semantics are built from syntactic objects and
the object classes shown in Figure ?7.

a € Answer = {Yes, No} final answers

I € Loc denumerable set of locations
prim € PrimVal primitive procedures and values
{FAIL} failure token

Figure 20: Simple Semantic Objects

7.2 Compound Objects

The compound objects for the dynamic semantics are shown in Figures 7?7
and ?7.
v € Val = Lit U PrimVal U Val* U (Con x Val*) U Closure U Loc
Closure = Clause x MEnv x VEnv x VEnv
VE € VEnv = Var 2 Val
ME € MEnv = Modld ™ VEnv

o € Store = Loc 13 (Val U {unbound})
s € State = Store x - - -
m € Marker = Store

Figure 21: Compound Semantic Objects

fc € FCont ::= orhalt failure continuations
| orelse(m, clause ,v*, ME,VE,fc,pc)
| ornot (m, gc, VE, fe)

gc € GCont ::= andhalt goal continuations
| andthen (goal , ME , gc)
| andnot (fc)
| andreturn(ME , result , pc)

pc € PCont ::= retmatch(pat*™, VE,gc, fc) procedure continuations

Figure 22: Grammar of Continuation Terms

Expressible values are literals, primitive procedures and values, tuples,
constructor applications, closures, or locations.

35

Closures are clauses closed with the module and variable environments
in effect when the closure (resulting from evaluating a relbind) was cre-
ated. The last component of a closure describes the recursive part of the
closure’s environment. This component will be successively unfolded during
recursions, giving each level of the recursion access to a ‘virtually recursive’
environment without actually creating a recursive object.

Logical variables behave like write-once references. A logical variable of
type a lvar is represented by a location, and the store maps that location
either to a value (when the variable has been instantiated) or to the token
‘unbound’ (before it has been instantiated).

Markers are used to record whatever information is necessary to restore
a store to an earlier configuration, viz. the configuration at the time the
marker was created.

The state is a tuple of a store o and some unspecified external compo-
nent X. The external component is not recorded in markers, and thus not
restored during backtracking.

The backtracking control flow is modelled using continuations. In con-
trast to denotational semantics, these continuations are encoded as first-
order data structures that are interpreted by special-purpose relations.

7.3 Initial Dynamic Objects

The initial dynamic objects MFinit, VFinis, and sinit, and the contents of
the set PrimVal are defined in Section 77?.

The function APPLY (prim,v*,s) = (v"*,s")/(FAIL,s") describes the
effect of calling a primitive procedure. It is also defined in Section ?7?.

7.4 Inference Rules

States and Markers | marker s = m|

s =(o,-)
_ 101
marker s = o (101)

!

restore(m,s) = s

s = (0,X)
restore (o, (-, X)) = '

(102)

Patterns ‘match(pat,v) = VE/FAIL‘

(103)

match(_,v) = {}

36

lity = lito

104
match(lity, lity) = {} (104)
lit, + lits
1

match (lity, lity) = FAIL (105)

cony = cons
106
match((-)coni, (cong,_)) = {} (106)

cony # cong
107
match({_ycony, (cons,_)) = FAIL (107)
cony = cony match*(pat®) v*) = VE/FAIL (108)

match({_)coni (pat, --- ,pat,), (cona,v*)) = VE/FAIL
cony # cong (109)
match((_)coni(pat,, --- ,pat,), (cona,v*)) = FAIL
match*(pat®), v*) = VE /FAIL (110)
match((pat,, --- ,pat;),v*) = VE/FAIL
match(pat,v) = VE (111)
match(var as pat,v) = VE + {var — v}

match(pat,v) = FAIL (112)

match(var as pat,v) = FAIL

‘match*(pat*,v*) = VE/FAIL‘

11
mateh (0, 1) = 1))
match(pat,v) = FAIL (114)
match™(pat :: pat*, v :: v*) = FAIL
match(pat,v) = VE match”(pat*,v*) = FAIL (115)
match® (pat :: pat*, v :: v*) = FAIL
match(pat,v) = VE match*(pat*,v*) = VE' (116)

match*(pat :: pat*,v :: v*) = VE + VE'

37

Long Variables ‘ lookupLong Var (longvar, ME, VE) = v ‘

VE(var) = v (117)
lookupLongVar (var, ME, VE) = v
ME(modid) = VE' VE'(var) =v (118)
lookupLong Var (modid . var, ME, VE) = v

Expressions ‘ eval(exp, ME, VE) = v ‘

11
eval(lit, ME, VE) = lit in Val (119)
120
eval ({(modid .)con, ME, VE) = (con,|]) (120)
lookupLong Var (longvar, ME, VE) = v (121)

eval (longvar, ME, VE) = v
eval* (exp®), ME, VE) = v(*) (122)
eval ({(modid .)con Cexpy, -+ ,expy), ME, VE) = (con,v(k))

eval*(exp®), ME, VE) = v(¥) (123)

eval(Cexpy, -+ ,expy), ME, VE) = v(¥) in Val

eval* (exp®, ME, VE) = v(*)

eval(exp;, ME, VE) = v; (1 <1 < k)

124
eval*(exp®), ME, VE) = v(*) (124)
Recursive Values unfold,,(VEec,v) = v'
(125)
unfold,(VE ec, (clause, ME, VE,)) = (clause, ME, VE, VE ¢)
v ¢ Closure (126)

unfold ,(VE rec,v) = v
Comment: 7?7 VE,. is the environment in which this closure was bound.

The effect of this step is to create a new closure in which an additional level
of recursion is available.

38

Recursive Value Environments unfoldyy VE = VE'

VE = {vary v v1,---,var, — v}
unfold ,(VE,v;) = v} (1 <i < k)
unfoldyg VE = {vary — vi,---,vary — vy}

(127)

Comment: This rule unfolds every closure bound in the environment, thus
enabling each of them to recurse one step.

Failure Continuations ‘faz’l(fc, s) = a‘
restore(m, s) = s invoke(clause,v*, ME, VE, fc, pc,s') = a (128)
fail(orelse (m,clause ,v* ,ME,VE ,fc,pc),s) = a
restore(m, s) = s’ proceed(gc, VE, fe,s') = a (129)
fail(ornot (m,gc, VE,fc),s) = a
130
fail(orhalt, s) = No (130)
Goal Continuations ‘proceed(gc, VE, fe,s) = a‘
exec(goal, ME, VE, fc, gc, s) = a (131)
proceed (andthen (goal , ME , gc), VE, fe,s) = a
fail(fc',s) = a (132)
proceed (andnot (fc'), VE, fc,8) = a
eval*(exp*, ME, VE) = v* return(pc,v*,s) = a (133)
proceed (andreturn (ME , exzp*,pc), VE, _,s) = a
fail(fe,s) = a (134)
proceed (andreturn (ME ,fail,pc), VE,_,s) = a
(135)

proceed (andhalt, VE, fe,s) = Yes

Comment: ?? The failure continuation in effect at the time of the return is
abandoned in favour of the one recorded in the procedure continuation pc.
This restricts relations to be determinate.

Procedure Continuations ‘return(pc,v*, s) = a‘

match* (pat*,v*) = VE' proceed(gc, VE + VE', fc,s) = a
return(retmatch(pat*, VE,gc,fc),v*,s) = a

(136)

39

match™(pat*,v*) = FAIL fail(fe,s) = a

137
return(retmatch(pat*, VE ,gc,fc),v*,s) = a (137)
Procedure Calls ‘ call(v,v*, fe, pe, s) = a‘
unfoldyy VEvec = VEiq.
invoke(clause,v*, ME, VE + VE!.., fe,pc,s) = a (138)
call((clause, ME, VE, VE ¢.),v*, fc, pc,s) = a
APPLY (prim,v*,s) = (v"*,s') return(pc,v"*,s') = a (139)
call (prim,v*, fc, pc, 8) = a
APPLY (prim,v*,s) = (FAIL,s") fail(fc,s') = a (140)
call (prim,v*, fc, pc, 8) = a
Goals ‘ exec(goal, ME, VE, fc, gc, s) = a‘
lookupLong Var (longvar, ME, VE) = v
eval® (exp*, ME, VE) = v"* pc = retmatch(pat*, VE, gc,fc)
call(v,v™, fe,pe, s) = a (141)
exec(longvar exp* => pat*, ME, VE, fe, gc,s) = a
eval(exp, ME, VE) = v VE(var) =
v=1v" proceed(gc, VE, fe,s) = a (142)
exec(var = exp, ME, VE, fc, gc, s) = a
eval(exp, ME, VE) = v VE(var) =v" v #v" fail(fc,s) = a (143)
exec(var = exp, ME, VE, fe, gc,s) = a
eval(exp, ME, VE) = v match(pat,v) = VE'
proceed (ge, VE + VE' fe,s) = a (144)
exec(let pat = exp, ME, VE, fe, gc,s) = a
eval(exp, ME, VE) = v match(pat,v) = FAIL fail(fe,s) = a (145)
exec(let pat = exp, ME, VE, fc, gc,s) = a
marker s = m f¢' = ornot(m,gc, VE,fc) gc¢' = andnot (fc)
exec(goal, ME, VE, fc', gc',s) = a
(g fe'sg9c'ys) (146)

exec(not goal, ME, VE, fc, gc,s) = a

40

gc' = andthen(goaly, ME ,gc) exec(goal,, ME, VE, fc,gc',s) = a
exec(goal, & goaly, ME, VE, fc, gc,s) = a

(147)

Comment: 7?7 Two values are equal if their representations are structurally
identical. Since references are represented by their locations in the store, two
references are equal if and only if they are in fact the same. The type dis-
cipline (in particular, the fact that relations do not admit equality) ensures
that equality is only ever applied to literals, nullary constructors, locations,
and values built out of such by tuple formation and constructor application.

exec'({(goal), ME, VE, fc, gc,s) = a

exec(goal, ME, VE, fc, gc, s) = a

148
exec'(goal, ME, VE, fe, gc, s) = a (148)
proceed(ge, VE, fe,s) = a (149)
exec'(e, ME, VE, fc, gc, s) = a
Clauses ‘ invoke(clause,v*, ME, VE, fe, pc, s) = a‘
match*(pat*,v*) = VE' gc = andreturn(MEFE ,result ,pc)
exec'((goal), ME, VE + VE', fc, gc,s) = a (150)
invoke(rule (goal) == _ pat* => result,v*, ME, VE, fc,pc,s) = a
match® (pat*,v*) = FAIL fail(fe,s) = a (151)
invoke(rule (goal) == _ pat* => result,v*, ME, VE, fc, pc, s) = a
marker s = m fc¢' = orelse(m,clauses,v*,ME ,VE,fc,pc)
invoke(clausey,v*, ME, VE, f¢', pc,s) = a (152)
invoke(clausey clauseq,v*, ME, VE, fc,pc,s) = a
Relation Bindings evalRel(ME, VE, relbind) = VE'
VE' = {var — (clause, ME, VE,{})} (153)
evalRel(ME, VE,var (: ty) = clause) = VE'
evalRel(ME, VE, relbind,) = VE;
evalRel(ME, VE, relbinds) = VEq (154)

evalRel(ME, VE, relbindy and relbindy) = VE1 + VE,

41

Declarations evalDec(ME, VE, dec) = VE'

eval(exp, ME, VE) = v

155
evalDec(ME, VE,val var = exp) = VE + {var — v} (155)
evalRel(ME, VE, relbind) = VE' wunfoldyy VE' = VE" (156)
evalDec(ME, VE,relation relbind) = VE + VE"
evalDec(ME, VE, dec1) = VE1 evalDec(ME, VE1, decy) = VE5 (157)
evalDec(ME, VE, decy deco) = VEq
dec = with _ V dec = type - V dec = datatype - (158)
evalDec(ME, VE, dec) = VE
Module Sequences load (ME, modseq) = ME'
evalDec(ME, VEiyni, dec) = VE (159)
load(ME,module modid: _ end dec) = ME + {modid — VE}
load(ME, modseq,) = ME, load(ME, modseqy) = ME> (160)
load(ME, modseq, modseqy) = ME,
Program Arguments ‘ cnvargu scon™ = v‘
161
cnvargy [] = (nil,[]) (161)
v = (scon in Lit) in Val cnvargv scon* = v’ (162)
cnvargu scon :: scon* = (cons, [v,v'])
Programs ‘ run(modseq, scon™) = a‘
load(MEiniy, modseq) = ME MFE(Main) = VE VE(main) =v
cnvargu scon®* = v fc = orhalt
pc = retmatch([],{},andhalt,fc) call(v,[v'], fe, pc, Sinit) = a (163)

run(modseq, scon*) = a

42

8 Initial Objects

This section defines the initial objects for the static and dynamic semantics.
Although there is some overlap in naming (MFEjn;; and VEj,;; occur in both
parts), the static and dynamic semantics are completely separated.

8.1 Initial Static Objects

Figures ?? to ?? show the interface to the standard types, constructors,
values, and relations.

The initial static objects are built in several steps. First let 2 be the
type name (RML, lvar,true). The set MutTyName is {tjyar}. Then assume
that references to MFEinit, TEinit, and VEj;; in the inference rules for the
static semantics are replaced by empty environments {}. Let TE and VE be
the environments resulting from the elaboration of the RML interface. Now,
TEiwwit = TE, VEwiy = VE, and MEj,i = {RML — (TEinita VEinit)}-

Furthermore, let Tchar, Tint, Treal, and Tsyring be the types corresponding
to the char, int, real, and string type constructors in TFEjyj, and let #yig
be the type name corresponding to the 1ist type constructor in TFEjpj;.

8.2 Initial Dynamic Objects

The set PrimVal is equal to the set of variable identifiers bound as relations in
the standard RML interface. VEiniy = {var — prim ; prim € PrimValAvar =
prim}, MFEin i = {RML — VEiui}, and sy = ({}, X) for some unspecified
external component X of the state.

8.2.1 Primitive Procedures

The function APPLY describes the effect of calling a primitive procedure.
We let true denote the value of the true constructor, i.e. (true,[]) (similarly
for false), NONE denote the value of the NONE constructor, i.e. (NONE,]),
and SOME (v) denote (SOME, [v]).

e APPLY (clock,[],s) = ([r],s) where r is a real number containing
the number of seconds since some arbitrary but fixed (for the current
process) past time point. The precision of r is unspecified.

e APPLY (print, [str], (o, X)) = ([], (¢, X")) where X has been modified
into X’ by emitting the string str to the standard output device.

e APPLY (tick,[],(0,X)) = ([i], (o, X)) where 7 is an integer generated
from X, and X' is X where this fact has been recorded so that 4 is not
generated again.

e APPLY (lvarmew,[],(0,X)) = ([{], (0 + {l — unbound}, X)), where
[¢ Dom o.

module RML:

(x types *)
eqtype char
eqtype int
eqtype real
eqtype string
eqtype ’a vector
eqtype ’a lvar (* admits eq, even if ’a does not *)
datatype bool = false
| true
datatype ’a list = nil
| cons of ’a * ’a list
datatype ’a option = NONE
| SOME of ’a

(* booleans *)
relation bool_and:
relation bool_not:
relation bool_or:
(* characters *)
relation char_int:
(* integers *)

(bool,bool) => bool
bool => bool
(bool,bool) => bool

char => int

relation int_abs: int => int
relation int_add: (int,int) => int
relation int_char: int => char
relation int_div: (int,int) => int
relation int_eq: (int,int) => bool
relation int_ge: (int,int) => bool
relation int_gt: (int,int) => bool
relation int_le: (int,int) => bool
relation int_1t: (int,int) => bool
relation int_max: (int,int) => int
relation int_min: (int,int) => int
relation int_mod: (int,int) => int
relation int_mul: (int,int) => int
relation int_ne: (int,int) => bool
relation int_neg: int => int
relation int_real: int => real
relation int_string: int => string
relation int_sub: (int,int) => int

Figure 23: Interface of the standard RML module

44

(x reals

*)

relation real_abs: real => real
relation real_add: (real,real) => real
relation real_atan: real => real
relation real_cos: real => real
relation real_div: (real,real) => real
relation real_eq: (real,real) => bool
relation real_exp: real => real
relation real_floor: real => real
relation real_ge: (real,real) => bool
relation real_gt: (real,real) => bool
relation real_int: real => int
relation real_le: (real,real) => bool
relation real_ln: real => real
relation real_lt: (real,real) => bool
relation real_max: (real,real) => real
relation real_min: (real,real) => real
relation real_mod: (real,real) => real
relation real_mul: (real,real) => real
relation real_ne: (real,real) => bool
relation real_neg: real => real
relation real_pow: (real,real) => real
relation real_sin: real => real
relation real_sqrt: real => real
relation real_string: real => string
relation real_sub: (real,real) => real

(* strings *)

relation string_append: (string,string) => string
relation string_int: string => int

relation string_length: string => int

relation string_list: string => char list
relation string_nth: (string,int) => char

(x vectors x*)

relation

vector_length:

’a vector => int

’a vector => ’a list
(’a vector,int) => ’a

relation vector_list:
relation vector_nth:

Figure 24: Interface of the standard RML module (contd.)

45

(* lists
relation
relation
relation
relation
relation
relation
relation
relation

(* logical variables *)

relation
relation
relation

*)
list_append:
list_delete:
list_length:
list_member:
list_nth:

list_reverse:

list_string:
list_vector:

lvar_new:
lvar_get:
lvar_set:

(* miscellaneous *)

relation

clock:

relation print:

relation
end

Figure 25: Interface of the standard RML module (contd.)
e APPLY (1var_get,|[l], (0,X))
and ([SOME (v)], (o,

e APPLY (1var_set,|[l,v], (0, X))
unbound, or (FAIL, (o,

tick:

(’a list,’a list) => ’a list
(’a list,int) => ’a list

’a list => int

(’?a,’’a 1list) => bool

(’a list,int) => ’a

’a list => ’a list

char list => string

’a list => ’a vector

() => ’a 1lvar
’a lvar => ’a option
(’a lvar,’a) => ()

() => real
string => ()
() => int

= ([NONE], (0, X)), if () = unbound,
X)), if o(1) is the value v.

= (I, (c + {I = v}, X)), if o(l) =
X)) if o(l) € Val.

The following operations do not access the state. If an operation succeeds

yielding a value v, then APPLY returns ([v],

APPLY returns (FAIL, s).
prim(x), and analogously for operations with more arguments.

Below, we abbreviate APPLY (prim, [z],

e int_abs(i) returns the absolute value of i.

° int_add(il, ’i2) =11 + 19

s). If an operation fails, then

s) to

e int div(iy,i2) returns the integer quotient of 41 and is; if 75 = 0, the
operation fails.

e int_eq 11,22

e int le(iy,%o

(é
e(i
t(i
(d

true if i1 = 19, false otherwise.

e(i1,19) = true if i1 > 49, false otherwise.

11,%9) = true if 41 > 19, false otherwise.

) =
)
)
)=

true if 41 < 49, false otherwise.

46

int_1t(i1,42) = true if i; < ia, false otherwise.
int_max(il,iz) =4y if 41 > 49, 19 otherwise.
int_min(il,ig) =g ife < 19, 19 otherwise.

int mod(i1,42) returns the integer remainder of 4; and iy; if iy = 0,
the operation fails.

int mul(iy,i9) =11 X ig

int mne(iy,i9) = true if i1 # i9, false otherwise.

int neg(i) = —i

int_real(i) = r where r is the real value equal to i.
int_string(i) returns a textual representation of 7, as a string.
int_sub(i1,i2) =11 — 4o

real_abs(r) returns the absolute value of r.
real_add(ry,re) = r1 + 7.

real_atan(r) returns the arc tangent of r.

real_cos(r) returns the cosine of r (measured in radians).
real div(ry,re) = r1/re; if 7o = 0, the operation fails.
real_eq(ri, o) = true if r| = ry, false otherwise.
real_exp(r) returns e’.

real floor(r) returns the largest integer (as a real value) not greater
than r.

real_ge(ry,r9) = true if r1 > ry, false otherwise.
real _gt(ry,ro) = true if r1 > ry, false otherwise.

real_int(r) discards the fractional part of r and returns the integral
part as an integer.

real le(ry, o) = true if r1 < ry, false otherwise.
real_ln(r) returns the natural logarithm of r; fails if » < 0.
real 1t(ry,re) = true if r1 < ro9, false otherwise.

real max(rq,re) = r1 if r1 > r9, ro otherwise.

47

e real min(ry,re) = ry if r1 < 19, ro otherwise.

e real mod(ry,r2) returns the remainder of r1/ry. This is the value
r1 — 1 X ro, for some integer i such that the result has the same sign
as r; and magnitude less than the magnitude of ro. If ro = 0, the
operation fails. (This corresponds to ANSI-C’s £fmod function.)

e real mul(ry,re) =71 X 7.
e real ne(ry,ro) = true if r1 # ro9, false otherwise.
e real neg(r) = —r.

e real pow(ri,r2) = rj?. This is defined when r; > 0, or r; < 0 and r9
is integral, or when r; = 0 and ro > 0; in other cases, the operation
fails. 0° is defined as 1.

e real sin(r) returns the sine of r (measured in radians).

e real sqrt(r) = /r; if r < 0, the operation fails.

e real string(r) returns a textual representation of r, as a string.
e real_sub(ry,re) =13 — 7.

e string int(str) = ¢ if the string has the lexical structure of an inte-
ger constant (as defined by the ICon token class) and ¢ is the value
associated with that constant. Otherwise the operation fails.

8.2.2 Implementation Dependent Parameters

Implicit in the description of the primitive procedures is that many may fail
if their results cannot be represented by the implementation. We distinguish
between four levels of conformance to this specification:

e Level 0 implementations have fixed precision integers and reals. Over-
flow and underflow conditions may or may not be reported as failures;
instead, approximate values may be returned. Also, approximations
are allowed for reals, e.g. by using IEEE floating-point.

e Level 1 implementations extend Level 0 implementations by detecting
all overflow and underflow conditions, reporting them as failures.

e Level 2 implementations have infinite-precision integers, for which no
overflow conditions are possible except due to memory exhaustion.
Reals behave as in Level 1 implementations.

e Level 3 implementations have infinite precision integers and reals. No
overflow or underflow conditions are possible except due to memory
exhaustion.

48

An implementation must document its conformance level. It is recom-
mended that IEEE 64-bit floating-point arithmetic be used for reals, and
that at least 31 bits of precision be available for integers.

An implementation is weakly conforming if it implements only a subset
of the standard types and operations described here. The implemented
subset must conform to this document. An implementation is also free to
add components to the standard interface.

8.2.3 Derived Dynamic Objects

The behaviour of some standard relations can be defined in RML itself;
they include the boolean, character, list, and vector operations, and most
string operations. Their definitions are shown in Figures 7?7 to ??7. An im-
plementation is expected to supply equivalent, but usually more efficient,
implementations of some of these relations. In particular, although the vec-
tor and string types can be defined in terms of lists, the vector_length,
vector_nth, string_length and string_nth relations are intended to ex-
ecute in constant time.

49

relation bool_and =
axiom bool_and(true, true) => true
axiom bool_and(true, false) => false
axiom bool_and(false, true) => false
axiom bool_and(false, false) => false
end

relation bool_or =
axiom bool_or(false, false) => false
axiom bool_or(false, true) => true
axiom bool_or(true, false) => true
axiom bool_or(true, true) => true
end

relation bool_not =
axiom bool_not false => true
axiom bool_not true => false
end

datatype char = CHR of int (* [0,255] x*)

relation char_int =
axiom char_int(CHR i) => i
end

relation int_char =
rule int_ge(i,0) => true & int_le(i,255) => true

int_char i => CHR 1
end

Figure 26: Derived types and relations

50

relation list_append =
axiom list_append([], y) =>y

rule 1list_append(y, z) => yz

list_append(x::y, z) => x::yz
end

relation list_reverse =
axiom list_reverse [] => []

rule list_reverse y => revy &
list_append(revy, [x]) => z

list_reverse (x::y) => z
end

relation list_length =
axiom list_length [] => 0

rule list_length xs => n & int_add(1l, n) => n’

list_length (_::xs) => n’
end

relation list_member =
axiom list_member(_, []) => false

rule not x = y & list_member(x, ys) => z

list_member(x, y::ys) => z
end

Figure 27: Derived types and relations (contd.)

o1

relation list_nth =
axiom list_nth(x::_, 0) => x

rule int_sub(n, 1) => n’ & list_nth(xs, n’) => x

list_nth(_::xs, n) => x
end

relation list_delete =
axiom list_delete(_::xs, 0) => xs

rule int_sub(n, 1) => n’ & list_delete(xs, n’) => xs’

list_delete(x::xs, n) => x::x8’

end
datatype ’a vector = VEC of ’a list

relation list_vector =
axiom list_vector 1 => VEC 1
end

relation vector_list =
axiom vector_list(VEC 1) => 1
end

relation vector_length =
rule list_length 1 =>n

vector_length(VEC 1) => n
end
relation vector_nth =
rule 1list_nth(l, n) => x
vector_nth(VEC 1, n) => x

end

Figure 28: Derived types and relations (contd.)

52

datatype string = STR of char list

relation list_string =
axiom list_string cs => STR cs
end

relation string_list =
axiom string_list(STR cs) => cs
end

relation string_length =
rule 1list_length cs =>n

string_length(STR cs) => n
end
relation string_nth =
rule 1list_nth(cs, n) => ¢
string_nth(STR cs, n) => ¢

end

relation string_append =
rule list_append(csl, cs2) => cs3

string_append(STR csl, STR cs2) => STR cs3
end

Figure 29: Derived types and relations (contd.)

93

