
A debugger for rml2c

Mikael Pettersson

Department of Computer and Information Science
Linköping University, Sweden

March 9, 2004

Abstract

This document describes the functionality, constraints, required

mechanisms, design, and implementation of a debugger for the rml2c

compiler.

1 Functionality

First define the interesting events to be procedure entries, procedure calls,
unifications, and failures. These events are the non-trivial steps in RML
execution. For each event there is a corresponding source-code site.

The debugger should at least have the following traditional functionality:

1. Breaking when execution reaches a designated site.

2. Continuing until the next breakpoint is reached.

3. Single-stepping to the next event.

4. Displaying the dynamic call chain.

5. Moving up and down through the activation records, and displaying
the values of lexically visible variables.

6. Mixing code modules, some compiled with debugging support, and
some not.

1



2 Constraints

The rml2c compiler maps RML programs to machine code by a series of
non-trivial transformational steps: the abstract syntax is first mapped to
First-Order Logic (FOL), then to Continuation-Passing Style (CPS), then
to a low-level imperative Code form, then to ANSI-C code, and finally to
machine code. Optimizations are applied at every level of representation.
These optimizations tend to significantly alter the structure of the program.

Traditional implementations of source-level debuggers operate at the ma-
chine level. They require mechanisms for inserting breakpoints, traversing
call stacks, and mapping machine state (program counter, registers, and
stack) to source-code regions and program variable values. In order to ac-
complish this, debuggers often require that the compiler’s optimizations be
severely limited in scope, and sometimes completely disabled. They have also
required the compiler to generate additional data structures for the inverse
mapping from machine state to program state.

For a language like RML and its rml2c compiler, this traditional approach
is not viable. The many program transformations applied are essential for
acceptable execution speed and memory usage. Keeping track of the cor-
rect inverse mapping from intermediate code (at every abstraction level!) to
source-code regions and variables would entail significant bookkeeping over-
head, and be non-trivial to implement. For example, the FOL optimizations
‘join’ similar code sequences, making the inverse mapping one-to-many. The
CPS optimizations, especially procedure inlining, dead-variable removal, and
tailcall optimization, also complicate the inverse mapping.

Therefore, the RML debugger follows the approach taken by the portable
SML/NJ and Scheme debuggers [?, ?, ?]. The required mechanisms are im-
plemented by source-code instrumentation (applied at the abstract syntax
level) and extensions to the runtime libraries. Then the instrumented pro-
gram is compiled and optimized using the normal compilation pipeline, and
linked with the extended runtime library. This approach is significantly eas-
ier to implement than the traditional approach. A disadvantage is that pro-
gram execution speed is reduced (since the program itself ‘polls’ the debugger
continuously), but this overhead may not be greater than that incurred by
traditional debuggers.

Being able to mix instrumented and non-instrumented code modules con-
strains the instrumentation to be of a purely local nature. In particular, it
may not add special parameters to procedure calls.

2



3 Required Mechanisms

To enable breakpoints, the debugger must be able to:

1. map user-interaction positions to source sites

2. suspend the program at every event for a particular site

3. map events to sites

4. resume a suspended program

To enable single-stepping, the debugger must be able to:

1. force the program to suspend at every event

2. determine the cause of suspension (breakpoint or single-stepping)

To display the dynamic call chain, the debugger must be able to:

1. locate the current activation record (or some equivalent data structure)

2. map an activation record to the current procedure name

3. map an activation record to its caller’s activation record

To display the values of variables visible at the site corresponding to an
activation record, the debugger must be able to:

1. map an activation record to a source site

2. map a source site to the set of visible variables and their types (scope
descriptor)

3. map an activation record and scope descriptor to the values of visible
variables

Since RML employs ML-style parametric polymorphism, the static types
of variables may be partially unknown. To properly display values, some
mechanism for recovering the actual runtime types should be present.

4 Design

5 Implementation

3


