Modelica.Electrical.Analog.Ideal

Modelica.Electrical.Analog.Ideal.IdealThyristor Modelica.Electrical.Analog.Ideal.IdealGTOThyristor Modelica.Electrical.Analog.Ideal.IdealSwitch Modelica.Electrical.Analog.Ideal.IdealCommutingSwitch Modelica.Electrical.Analog.Ideal.IdealIntermediateSwitch Modelica.Electrical.Analog.Ideal.ControlledIdealSwitch Modelica.Electrical.Analog.Ideal.ControlledIdealCommutingSwitch Modelica.Electrical.Analog.Ideal.ControlledIdealIntermediateSwitch Modelica.Electrical.Analog.Ideal.IdealOpAmp Modelica.Electrical.Analog.Ideal.IdealOpAmp3Pin Modelica.Electrical.Analog.Ideal.IdealOpAmpLimited Modelica.Electrical.Analog.Ideal.IdealDiode Modelica.Electrical.Analog.Ideal.IdealTransformer Modelica.Electrical.Analog.Ideal.IdealGyrator Modelica.Electrical.Analog.Ideal.Idle Modelica.Electrical.Analog.Ideal.Short Modelica.Electrical.Analog.Ideal.IdealOpener Modelica.Electrical.Analog.Ideal.IdealCloser Modelica.Electrical.Analog.Ideal.ControlledIdealOpener Modelica.Electrical.Analog.Ideal.ControlledIdealCloser

Information


This package contains electrical components with idealized behaviour:

Main Authors:
Christoph Clauß <clauss@eas.iis.fhg.de>
André Schneider <schneider@eas.iis.fhg.de>
Fraunhofer Institute for Integrated Circuits
Design Automation Department
Zeunerstraße 38
D-01069 Dresden

Version:
$Id: Modelica_Electrical_Analog_Ideal.html 12 2004-08-18 15:45:34Z Dag $

Copyright:
Copyright © 1998-2002, Modelica Association and Fraunhofer-Gesellschaft.
The Modelica package is free software; it can be redistributed and/or modified under the terms of the Modelica license, see the license conditions and the accompanying disclaimer in the documentation of package Modelica in file "Modelica/package.mo".

NameDescription
IdealThyristor Ideal thyristor
IdealGTOThyristor Ideal GTO thyristor
IdealSwitch Ideal electrical switch
IdealCommutingSwitch Ideal commuting switch
IdealIntermediateSwitch Ideal intermediate switch
ControlledIdealSwitch Controlled ideal switch
ControlledIdealCommutingSwitch Controlled ideal commuting switch
ControlledIdealIntermediateSwitch Controlled ideal intermediate switch
IdealOpAmp Ideal operational amplifier (norator-nullator pair)
IdealOpAmp3Pin Ideal operational amplifier (norator-nullator pair), but 3 pins
IdealOpAmpLimited Ideal operational amplifier with limitation
IdealDiode Ideal diode
IdealTransformer Ideal electrical transformer
IdealGyrator Ideal gyrator
Idle Idle branch
Short Short cut branch
IdealOpener Ideal electrical opener
IdealCloser Ideal electrical closer
ControlledIdealOpener Controlled ideal electrical opener
ControlledIdealCloser Controlled ideal electrical closer


Modelica.Electrical.Analog.Ideal.IdealDiode Modelica.Electrical.Analog.Ideal.IdealDiode

Ideal diode

Modelica.Electrical.Analog.Ideal.IdealDiode

Information


This is an ideal switch which is

open (off), if it is reversed biased (voltage drop less than 0)
closed (on), if it is conducting (current > 0).

This is the behaviour if all parameters are exactly zero.

Note, there are circuits, where this ideal description with zero resistance and zero cinductance is not possible. In order to prevent singularities during switching, the opened diode has a small conductance Gon and the closed diode has a low resistance Roff which is default.

The parameter Vknee which is the forward threshold voltage, allows to displace the knee point
along the Gon-characteristic until v = Vknee.


Parameters

NameDefaultDescription
Roff1.E-5Forward state-on differential resistance (closed diode resistance) [Ohm]
Gon1.E-5Backward state-off conductance (opened diode conductance) [S]
Vknee0Forward threshold voltage [V]

Modelica definition

model IdealDiode "Ideal diode" 
  extends Modelica.Electrical.Analog.Interfaces.OnePort;
  parameter Modelica.SIunits.Resistance Roff(       final min=0) = 1.E-5 
    "Forward state-on differential resistance (closed diode resistance)";
  parameter Modelica.SIunits.Conductance Gon(       final min=0) = 1.E-5 
    "Backward state-off conductance (opened diode conductance)";
  parameter Modelica.SIunits.Voltage Vknee(       final min=0) = 0 
    "Forward threshold voltage";
  Boolean off(start=true) "Switching state";
protected 
  Real s "Auxiliary variable: if on then current, if opened then voltage";
  
equation 
  off = s < 0;
  v = s*(if off then 1 else Roff) + Vknee;
  i = s*(if off then Gon else 1) + Gon*Vknee;
end IdealDiode;

Modelica.Electrical.Analog.Ideal.IdealThyristor Modelica.Electrical.Analog.Ideal.IdealThyristor

Ideal thyristor

Modelica.Electrical.Analog.Ideal.IdealThyristor

Information


This is an ideal thyristor model which is

open (off), if the voltage drop is less than 0 or the firePort is false
closed (on), if the voltage drop is greater or equal 0 and the firePort is true.

This is the behaviour if all parameters are exactly zero.

Note, there are circuits, where this ideal description with zero resistance and zero cinductance is not possible. In order to prevent singularities during switching, the opened thyristor has a small conductance Gon and the closed thyristor has a low resistance Roff which is default.

The parameter Vknee which is the forward threshold voltage, allows to displace the knee point
along the Gon-characteristic until v = Vknee.


Parameters

NameDefaultDescription
Roff1.E-5Closed thyristor resistance [Ohm]
Gon1.E-5Opened thyristor conductance [S]
Vknee0Forward threshold voltage [V]

Modelica definition

model IdealThyristor "Ideal thyristor" 
  extends Modelica.Electrical.Analog.Interfaces.OnePort;
  parameter Modelica.SIunits.Resistance Roff(       final min=0) = 1.E-5 
    "Closed thyristor resistance";
  parameter Modelica.SIunits.Conductance Gon(       final min=0) = 1.E-5 
    "Opened thyristor conductance";
  parameter Modelica.SIunits.Voltage Vknee(       final min=0) = 0 
    "Forward threshold voltage";
  Boolean off(start=true) "Switching state";
protected 
  Real s "Auxiliary variable: if on then current, if opened then voltage";
  
public 
  Modelica.Blocks.Interfaces.BooleanInPort firePort(
                                                    final n=1);
equation 
  off = s < 0 or pre(off) and not firePort.signal[1];
  v = s*(if off then 1 else Roff) + Vknee;
  i = s*(if off then Gon else 1) + Gon*Vknee;
end IdealThyristor;

Modelica.Electrical.Analog.Ideal.IdealGTOThyristor Modelica.Electrical.Analog.Ideal.IdealGTOThyristor

Ideal GTO thyristor

Modelica.Electrical.Analog.Ideal.IdealGTOThyristor

Information


This is an ideal GTO thyristor model which is

open (off), if the voltage drop is less than 0 or the firePort is false
closed (on), if the voltage drop is greater or equal 0 and the firePort is true.

This is the behaviour if all parameters are exactly zero.

Note, there are circuits, where this ideal description with zero resistance and zero cinductance is not possible. In order to prevent singularities during switching, the opened thyristor has a small conductance Gon and the closed thyristor has a low resistance Roff which is default.

The parameter Vknee which is the forward threshold voltage, allows to displace the knee point
along the Gon-characteristic until v = Vknee.


Parameters

NameDefaultDescription
Roff1.E-5Closed thyristor resistance [Ohm]
Gon1.E-5Opened thyristor conductance [S]
Vknee0Forward threshold voltage [V]

Modelica definition

model IdealGTOThyristor "Ideal GTO thyristor" 
  extends Modelica.Electrical.Analog.Interfaces.OnePort;
  parameter Modelica.SIunits.Resistance Roff(       final min=0) = 1.E-5 
    "Closed thyristor resistance";
  parameter Modelica.SIunits.Conductance Gon(       final min=0) = 1.E-5 
    "Opened thyristor conductance";
  parameter Modelica.SIunits.Voltage Vknee(       final min=0) = 0 
    "Forward threshold voltage";
  Boolean off(start=true) "Switching state";
protected 
  Real s "Auxiliary variable: if on then current, if opened then voltage";
  
public 
  Modelica.Blocks.Interfaces.BooleanInPort firePort(
                                                    final n=1);
equation 
  off = s < 0 or not firePort.signal[1];
  v = s*(if off then 1 else Roff) + Vknee;
  i = s*(if off then Gon else 1) + Gon*Vknee;
end IdealGTOThyristor;

Modelica.Electrical.Analog.Ideal.IdealSwitch Modelica.Electrical.Analog.Ideal.IdealSwitch

Ideal electrical switch

Modelica.Electrical.Analog.Ideal.IdealSwitch

Information


Ideal electrical switch. In order to prevent singularities during switching, the opened switch has a high resistance and the closed switch has a low resistance.

If the actual circuit has an appropriate structure, the limiting case is also allowed, i.e., the resistance of the closed switch could be exactly zero and the conductance of the open switch could be also exactly zero (i.e. the resistance is infinite). Note, there are circuits, where a description with zero/infinity resistances is not possible.


Parameters

NameDefaultDescription
Roff1.E-5Closed switch resistance [Ohm]
Gon1.E-5Opened switch conductance [S]

Modelica definition

model IdealSwitch "Ideal electrical switch" 
  extends Interfaces.OnePort;
  parameter SI.Resistance Roff(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Gon(       final min=0) = 1.E-5 "Opened switch conductance";
protected 
  Real s "Auxiliary variable";
  Boolean off;
public 
  Modelica.Blocks.Interfaces.BooleanInPort control(
                                                   final n=1, signal(start={
          false})) "true/false opened/closed switch";
equation 
  off = control.signal[1];
  v = s*(if off then 1 else Roff);
  i = s*(if off then Gon else 1);
end IdealSwitch;

Modelica.Electrical.Analog.Ideal.IdealCommutingSwitch Modelica.Electrical.Analog.Ideal.IdealCommutingSwitch

Ideal commuting switch

Modelica.Electrical.Analog.Ideal.IdealCommutingSwitch

Information


The commuting switch has a positive pin p and two negative pins n1 and n2. The switching behaviour is controlled by the control signal. If the control signal is true, the pin p is connected with the negative pin n2. Otherwise, the pin p is connected to the negative pin n1.

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron. The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model IdealCommutingSwitch "Ideal commuting switch" 
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
public 
  Interfaces.PositivePin p;
  Interfaces.NegativePin n2;
  Interfaces.NegativePin n1;
  Modelica.Blocks.Interfaces.BooleanInPort control(
                                                   final n=1) 
    "true => p--n2 connected, false => p--n1 connected";
protected 
  Real s1;
  Real s2 "Auxiliary variables";
  Boolean off;
equation 
  off = control.signal[1];
  0 = p.i + n2.i + n1.i;
  
  p.v - n1.v = s1*(if (off) then 1 else Ron);
  n1.i = -s1*(if (off) then Goff else 1);
  p.v - n2.v = s2*(if (off) then Ron else 1);
  n2.i = -s2*(if (off) then 1 else Goff);
end IdealCommutingSwitch;

Modelica.Electrical.Analog.Ideal.IdealIntermediateSwitch Modelica.Electrical.Analog.Ideal.IdealIntermediateSwitch

Ideal intermediate switch

Modelica.Electrical.Analog.Ideal.IdealIntermediateSwitch

Information


The intermediate switch has four switching contact pins p1, p2, n1, and n2. The switching behaviour is controlled by the control signal. If the control signal is true, the pin p1 is connected to pin n2, and the pin p2 is connected to the pin n2. Otherwise, the pin p1 is connected to n1, and p2 is connected to n2.

IdealIntermediateSwitch1

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron.

IdealIntermediateSwitch2

The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model IdealIntermediateSwitch "Ideal intermediate switch" 
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
public 
  Interfaces.PositivePin p1;
  Interfaces.PositivePin p2;
  Interfaces.NegativePin n1;
  Interfaces.NegativePin n2;
  Modelica.Blocks.Interfaces.BooleanInPort control(
                                                   final n=1) "true => p1--n2, p2--n1 connected,
         otherwise p1--n1, p2--n2  connected";
protected 
  Real s1;
  Real s2;
  Real s3;
  Real s4 "Auxiliary variables";
  Boolean off;
equation 
  off = control.signal[1];
  p1.v - n1.v = s1*(if (off) then 1 else Ron);
  p2.v - n2.v = s2*(if (off) then 1 else Ron);
  p1.v - n2.v = s3*(if (off) then Ron else 1);
  p2.v - n1.v = s4*(if (off) then Ron else 1);
  
  p1.i = if (off) then s1*Goff + s3 else s1 + s3*Goff;
  p2.i = if (off) then s2*Goff + s4 else s2 + s4*Goff;
  n1.i = if (off) then -s1*Goff - s4 else -s1 - s4*Goff;
  n2.i = if (off) then -s2*Goff - s3 else -s2 - s3*Goff;
end IdealIntermediateSwitch;

Modelica.Electrical.Analog.Ideal.ControlledIdealSwitch Modelica.Electrical.Analog.Ideal.ControlledIdealSwitch

Controlled ideal switch

Modelica.Electrical.Analog.Ideal.ControlledIdealSwitch

Information


The ideal switch is a three-pole. If the third pin voltage exceeds the given parameter Voltage, the pins p and n are open (no current flowing, any voltage possible). Otherwise, p and n are short cut.


Parameters

NameDefaultDescription
level0.5Switch level [V]
Roff1.E-5Closed switch resistance [Ohm]
Gon1.E-5Opened switch conductance [S]

Modelica definition

model ControlledIdealSwitch "Controlled ideal switch" 
  parameter SI.Voltage level =      0.5 "Switch level";
  parameter SI.Resistance Roff(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Gon(       final min=0) = 1.E-5 "Opened switch conductance";
protected 
  Real s "Auxiliary variable";
public 
  Interfaces.Pin p "Positive pin";
  Interfaces.Pin n "Negative pin";
  Interfaces.Pin control 
    "Control pin: control.v > level open, otherwise closed";
equation 
  control.i = 0;
  0 = p.i + n.i;
  p.v - n.v = s*(if (control.v < level) then Roff else 1);
  n.i = s*(if (control.v < level) then 1 else Gon);
end ControlledIdealSwitch;

Modelica.Electrical.Analog.Ideal.ControlledIdealCommutingSwitch Modelica.Electrical.Analog.Ideal.ControlledIdealCommutingSwitch

Controlled ideal commuting switch

Modelica.Electrical.Analog.Ideal.ControlledIdealCommutingSwitch

Information


The commuting switch has a positive pin p and two negative pins n1 and n2. The switching behaviour is controlled by the control pin. If its voltage exceeds the value of the parameter level, the pin p is connected with the negative pin n2. Otherwise, the pin p is connected the negative pin n1.

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron. The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
level0.5Switch level [V]
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model ControlledIdealCommutingSwitch 
  "Controlled ideal commuting switch" 
  parameter SI.Voltage level =      0.5 "Switch level";
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
public 
  Interfaces.PositivePin p;
  Interfaces.NegativePin n2;
  Interfaces.NegativePin n1;
  Interfaces.Pin control 
    "Control pin: if control.v > level p--n2 connected, otherwise p--n1 connected";
protected 
  Real s1;
  Real s2 "Auxiliary variables";
equation 
  control.i = 0;
  0 = p.i + n2.i + n1.i;
  
  p.v - n1.v = s1*(if (control.v > level) then 1 else Ron);
  n1.i = -s1*(if (control.v > level) then Goff else 1);
  p.v - n2.v = s2*(if (control.v > level) then Ron else 1);
  n2.i = -s2*(if (control.v > level) then 1 else Goff);
end ControlledIdealCommutingSwitch;

Modelica.Electrical.Analog.Ideal.ControlledIdealIntermediateSwitch Modelica.Electrical.Analog.Ideal.ControlledIdealIntermediateSwitch

Controlled ideal intermediate switch

Modelica.Electrical.Analog.Ideal.ControlledIdealIntermediateSwitch

Information


The intermediate switch has four switching contact pins p1, p2, n1, and n2. The switching behaviour is controlled by the control pin. If its voltage exceeds the value of the parameter level, the pin p1 is connected to pin n2, and the pin p2 is connected to the pin n2. Otherwise, the pin p1 is connected to n1, and p2 is connected to n2.

ControlledIdealIntermediateSwitch1

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron.

ControlledIdealIntermediateSwitch2

The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
level0.5Switch level [V]
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model ControlledIdealIntermediateSwitch 
  "Controlled ideal intermediate switch" 
  parameter SI.Voltage level =      0.5 "Switch level";
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
  
public 
  Interfaces.PositivePin p1;
  Interfaces.PositivePin p2;
  Interfaces.NegativePin n1;
  Interfaces.NegativePin n2;
  Interfaces.Pin control "Control pin: if control.v > level p1--n2, p2--n1 connected,
         otherwise p1--n1, p2--n2  connected";
protected 
  Real s1;
  Real s2;
  Real s3;
  Real s4 "Auxiliary variables";
equation 
  control.i = 0;
  
  p1.v - n1.v = s1*(if (control.v > level) then 1 else Ron);
  p2.v - n2.v = s2*(if (control.v > level) then 1 else Ron);
  p1.v - n2.v = s3*(if (control.v > level) then Ron else 1);
  p2.v - n1.v = s4*(if (control.v > level) then Ron else 1);
  
  p1.i = if (control.v > level) then s1*Goff + s3 else s1 + s3*Goff;
  p2.i = if (control.v > level) then s2*Goff + s4 else s2 + s4*Goff;
  n1.i = if (control.v > level) then -s1*Goff - s4 else -s1 - s4*Goff;
  n2.i = if (control.v > level) then -s2*Goff - s3 else -s2 - s3*Goff;
end ControlledIdealIntermediateSwitch;

Modelica.Electrical.Analog.Ideal.IdealOpAmp Modelica.Electrical.Analog.Ideal.IdealOpAmp

Ideal operational amplifier (norator-nullator pair)

Modelica.Electrical.Analog.Ideal.IdealOpAmp

Information


The ideal OpAmp is a two-port. The left port is fixed to v1=0 and i1=0 (nullator). At the right port both any voltage v2 and any current i2 are possible (norator).


Modelica definition

model IdealOpAmp 
  "Ideal operational amplifier (norator-nullator pair)" 
  SI.Voltage v1 "Voltage drop over the left port";
  SI.Voltage v2 "Voltage drop over the right port";
  SI.Current i1 "Current flowing from pos. to neg. pin of the left port";
  SI.Current i2 "Current flowing from pos. to neg. pin of the right port";
  Interfaces.PositivePin p1 "Positive pin of the left port";
  Interfaces.NegativePin n1 "Negative pin of the left port";
  Interfaces.PositivePin p2 "Positive pin of the right port";
  Interfaces.NegativePin n2 "Negative pin of the right port";
equation 
  v1 = p1.v - n1.v;
  v2 = p2.v - n2.v;
  0 = p1.i + n1.i;
  0 = p2.i + n2.i;
  i1 = p1.i;
  i2 = p2.i;
  v1 = 0;
  i1 = 0;
end IdealOpAmp;

Modelica.Electrical.Analog.Ideal.IdealOpAmp3Pin Modelica.Electrical.Analog.Ideal.IdealOpAmp3Pin

Ideal operational amplifier (norator-nullator pair), but 3 pins

Modelica.Electrical.Analog.Ideal.IdealOpAmp3Pin

Information


The ideal OpAmp with three pins is of exactly the same behaviour as the ideal OpAmp with four pins. Only the negative output pin is left out. Both the input voltage and current are fixed to zero (nullator). At the output pin both any voltage v2 and any current i2 are possible.


Modelica definition

model IdealOpAmp3Pin 
  "Ideal operational amplifier (norator-nullator pair), but 3 pins" 
  Interfaces.PositivePin in_p "Positive pin of the input port";
  Interfaces.NegativePin in_n "Negative pin of the input port";
  Interfaces.PositivePin out "Output pin";
equation 
  in_p.v = in_n.v;
  in_p.i = 0;
  in_n.i = 0;
end IdealOpAmp3Pin;

Modelica.Electrical.Analog.Ideal.IdealOpAmpLimited Modelica.Electrical.Analog.Ideal.IdealOpAmpLimited

Ideal operational amplifier with limitation

Modelica.Electrical.Analog.Ideal.IdealOpAmpLimited

Information


The ideal OpAmp with limitation behaves like an ideal OpAmp without limitation, if the output voltage is within the limits (VMin < out.v < VMax). In this case the input voltage vin=in_p.v - in_n.v is zero. If the input voltage is vin < 0, the output voltage is out.v = VMin. If the input voltage is vin > 0, the output voltage is out.v = VMax.


Modelica definition

model IdealOpAmpLimited "Ideal operational amplifier with limitation" 
  Interfaces.PositivePin in_p "Positive pin of the input port";
  Interfaces.NegativePin in_n "Negative pin of the input port";
  Interfaces.PositivePin out "Output pin";
  Interfaces.PositivePin VMax "Positive output voltage limitation";
  Interfaces.NegativePin VMin "Negative output voltage limitation";
  SI.Voltage vin "input voltage";
protected 
  Real s "Auxiliary variable";
equation 
  in_p.i = 0;
  in_n.i = 0;
  VMax.i = 0;
  VMin.i = 0;
  vin = in_p.v - in_n.v;
  in_p.v - in_n.v = if (s < -1) then s + 1 else if (s > 1) then s - 1 else 0;
  out.v = if (s < -1) then VMin.v else if (s > 1) then VMax.v else (VMax.v -
    VMin.v)*s/2 + (VMax.v + VMin.v)/2;
end IdealOpAmpLimited;

Modelica.Electrical.Analog.Ideal.IdealTransformer Modelica.Electrical.Analog.Ideal.IdealTransformer

Ideal electrical transformer

Modelica.Electrical.Analog.Ideal.IdealTransformer

Information


The ideal transformer is an ideal two-port resistive circuit element which is characterized by the following two equations:

    v1 =  n * v2
    i2 = -n * i1

where n is a real number called the turns ratio.


Parameters

NameDefaultDescription
n1Turns ratio

Modelica definition

model IdealTransformer "Ideal electrical transformer" 
  extends Interfaces.TwoPort;
  parameter Real n=1 "Turns ratio";
equation 
  v1 = n*v2;
  i2 = -n*i1;
end IdealTransformer;

Modelica.Electrical.Analog.Ideal.IdealGyrator Modelica.Electrical.Analog.Ideal.IdealGyrator

Ideal gyrator

Modelica.Electrical.Analog.Ideal.IdealGyrator

Information


A gyrator is an ideal two-port element defined by the following equations:

    i1 =  G * v2
    i2 = -G * v1

where the constant G is called the gyration conductance.


Parameters

NameDefaultDescription
G1Gyration conductance [S]

Modelica definition

model IdealGyrator "Ideal gyrator" 
  extends Interfaces.TwoPort;
  parameter SI.Conductance G =      1 "Gyration conductance";
equation 
  i1 = G*v2;
  i2 = -G*v1;
end IdealGyrator;

Modelica.Electrical.Analog.Ideal.Idle Modelica.Electrical.Analog.Ideal.Idle

Idle branch

Modelica.Electrical.Analog.Ideal.Idle

Information


The model Idle is a simple idle running branch.


Modelica definition

model Idle "Idle branch" 
  extends Interfaces.OnePort;
equation 
  
  i = 0;
  
end Idle;

Modelica.Electrical.Analog.Ideal.Short Modelica.Electrical.Analog.Ideal.Short

Short cut branch

Modelica.Electrical.Analog.Ideal.Short

Information


The model Short is a simple short cut branch.


Modelica definition

model Short "Short cut branch" 
  extends Interfaces.OnePort;
equation 
  v = 0;
end Short;

Modelica.Electrical.Analog.Ideal.IdealOpener Modelica.Electrical.Analog.Ideal.IdealOpener

Ideal electrical opener

Modelica.Electrical.Analog.Ideal.IdealOpener

Information


The ideal opener has a positive pin p and a negative pin n. The switching behaviour is controlled by the control signal. If the control signal is true, pin p is not connected with negative pin n. Otherwise, pin p is connected with negative pin n.

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron. The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model IdealOpener "Ideal electrical opener" 
  extends Interfaces.OnePort;
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
  Modelica.Blocks.Interfaces.BooleanInPort control(
                                                   final n=1) 
    "true => switch open, false => p--n connected";
protected 
  Real s "Auxiliary variable";
  Boolean off;
  
equation 
  off = control.signal[1];
  v = s*(if off then 1 else Ron);
  i = s*(if off then Goff else 1);
end IdealOpener;

Modelica.Electrical.Analog.Ideal.IdealCloser Modelica.Electrical.Analog.Ideal.IdealCloser

Ideal electrical closer

Modelica.Electrical.Analog.Ideal.IdealCloser

Information


The ideal opener has a positive pin p and a negative pin n. The switching behaviour is controlled by the control signal. If the control signal is true, pin p is not connected with negative pin n. Otherwise, pin p is connected with negative pin n.

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron. The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model IdealCloser "Ideal electrical closer" 
  extends Interfaces.OnePort;
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
  Modelica.Blocks.Interfaces.BooleanInPort control(
                                                   final n=1) 
    "true => switch open, false => p--n connected";
protected 
  Real s "Auxiliary variable";
  Boolean on;
  
equation 
  on = control.signal[1];
  v = s*(if not on then 1 else Ron);
  i = s*(if not on then Goff else 1);
end IdealCloser;

Modelica.Electrical.Analog.Ideal.ControlledIdealOpener Modelica.Electrical.Analog.Ideal.ControlledIdealOpener

Controlled ideal electrical opener

Modelica.Electrical.Analog.Ideal.ControlledIdealOpener

Information


The ideal switch has a positive pin p and a negative pin n. The switching behaviour is controlled by the control pin. If its voltage exceeds the voltage of the parameter level, pin p is not connected with negative pin n. Otherwise, pin p is connected with negative pin n.

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron. The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
level0.5Switch level [V]
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model ControlledIdealOpener "Controlled ideal electrical opener" 
  parameter SI.Voltage level =      0.5 "Switch level";
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
protected 
  Real s "Auxiliary variable";
public 
  Interfaces.PositivePin p;
  Interfaces.NegativePin n;
  Interfaces.Pin control 
    "Control pin: control.v > level switch open, otherwise p--n connected";
equation 
  control.i = 0;
  0 = p.i + n.i;
  p.v - n.v = s*(if (control.v > level) then 1 else Ron);
  p.i = s*(if (control.v > level) then Goff else 1);
end ControlledIdealOpener;

Modelica.Electrical.Analog.Ideal.ControlledIdealCloser Modelica.Electrical.Analog.Ideal.ControlledIdealCloser

Controlled ideal electrical closer

Modelica.Electrical.Analog.Ideal.ControlledIdealCloser

Information


The ideal switch has a positive pin p and a negative pin n. The switching behaviour is controlled by the control pin. If its voltage exceeds the voltage of the parameter level, pin p is not connected with negative pin n. Otherwise, pin p is connected with negative pin n.

In order to prevent singularities during switching, the opened switch has a (very low) conductance Goff and the closed switch has a (very low) resistance Ron. The limiting case is also allowed, i.e., the resistance Ron of the closed switch could be exactly zero and the conductance Goff of the open switch could be also exactly zero. Note, there are circuits, where a description with zero Ron or zero Goff is not possible.


Parameters

NameDefaultDescription
level0.5Switch level [V]
Ron1.E-5Closed switch resistance [Ohm]
Goff1.E-5Opened switch conductance [S]

Modelica definition

model ControlledIdealCloser "Controlled ideal electrical closer" 
  parameter SI.Voltage level =      0.5 "Switch level";
  parameter SI.Resistance Ron(       final min=0) = 1.E-5 "Closed switch resistance";
  parameter SI.Conductance Goff(       final min=0) = 1.E-5 
    "Opened switch conductance";
protected 
  Real s "Auxiliary variable";
public 
  Interfaces.PositivePin p;
  Interfaces.NegativePin n;
  Interfaces.Pin control 
    "Control pin: control.v > level switch open, otherwise p--n connected";
equation 
  control.i = 0;
  0 = p.i + n.i;
  p.v - n.v = s*(if (control.v > level) then Ron else 1);
  p.i = s*(if (control.v > level) then 1 else Goff);
end ControlledIdealCloser;

HTML-documentation generated by Dymola Wed Jun 30 17:43:18 2004 .