
Extensions to the Petri Net Library in Modelica

Stefan M.O. Fabricius
Swiss Federal Institute of Technology Zurich (ETHZ), Switzerland

Laboratory for Safety Analysis

fabricius@lsa.iet.mavt.ethz.ch

c©with the author, December 2001

Abstract

The standard Modelica1 library contains a sub-library
for modeling of discrete phenomena with Petri net
(PN) formalism. It is designed for, and implements,
black deterministic priority PNs, which are well suited
e.g., for control system specification, but can have
rather limited expressiveness in other problem do-
mains. Such may be in reliability engineering or in in-
vestigation of socio-technical aspects of complex tech-
nical systems. Therefore, the PN library already avail-
able is extended on the one hand with transitions al-
lowing for deterministic or stochastic time delays be-
fore its firing and on the other hand with places capable
of containing more than one token. Several modeling
and simulation examples are given to demonstrate the
usability of the enhancements–among them–queuing
models and models to determine system availability.

1 Introduction

In 1962, C.A. Petri ([Pet62]) addressed in his disserta-
tion the problem of representing co-operating, concur-
rent, or competing processes by a graphical modeling
formalism, subsequently referred to as Petri Nets. For-
mally, PNs are bipartite digraphs and in their original
form, no notion of time was associated.
Later, many extensions to the early concept were pro-
posed, among other, time-modeling and modeling of
random behavior with statistic functions. In the pro-
cess, many different types of PNs have been defined,
and for historical reasons–at times–somewhat confus-
ing terms were used. E.g., Stochastic Petri Nets
(SPNs) were introduced in the 1980’s as a formalism
for the description of systems whose dynamic behavior
can be represented by means of continuous-time homo-
geneous Markov chains. This original SPN proposal as-
sumed atomic firings, exponentially distributed firing

1Modelica is a trademark of the Modelica Association
(http://www.modelica.org)

times and a race execution policy, that is, when mul-
tiple transitions are simultaneously enabled, the one
transition with the minimum delay is selected to fire,
compare to [Sah96]. Other authors, as [Sch99], argu-
ment, that in their opinion, the term Stochastic Petri
Net should encompass any randomness in a PN, and
not be confined to exponential firing delays only. In
this text, SPNs shall not be limited in their random-
ness to exponential distributions. [Rei85] gives a good
introduction to PNs and their mathematical founda-
tion. Here, not the mathematic formalism of PNs is
of major interest thus, but rather, their usability for
expressing and simulating discrete-event phenomena.
The current PN library in Modelica implements PN
components, namely, places and transitions, as strictly
local sets of Boolean equations allowing for unifying
treatment of both continuous and discrete components
(hybrid models) in an object-oriented modeling lan-
guage as Modelica, see [Mo98] for a more detailed de-
scription. The authors of the library chose their PNs
to be normal2, priority3 Petri Nets with maximum fir-
ing4 semantics. They show how their approach allows
to seamlessly integrate discrete and continuous behav-
ior e.g., as is required for comprehensive modeling of
embedded control systems. Their focus is on process
control, for which, they explain, the chosen semantics
are appropriate.
However, when modeling problems in other areas, the
limitation to places that can hold one token only
and the immediate firing policy of enabled transitions
can be a severe constraint. This paper therefore de-
scribes extensions to the available PN library which
give a modeler more flexibility in modeling discrete-
event phenomena. The paradigms of object-oriented
physical modeling of Modelica are not hurt by doing
so. The tight integration of discrete and continuous
equations in Modelica allows to generate efficient exe-
cution code for a hybrid model (synchronous equations

2Places of capacity 1
3To eliminate otherwise inherent non-determinism in PNs
4Enabled transitions must fire immediately



principle, see [Ot99] and [El00]).
Many sophisticated, computer-based, PN modeling
tools exist in the marketplace and can be engaged for a
wide variety of analysis tasks, using both analytical as
well as simulative methods. One such a tool was used
e.g., in [Fa01] to show how PNs can be used to inves-
tigate influence of component maintenance policy on
system availability. But usually, the respective stand-
alone PN tools show inherent trouble when having to
deal with systems exhibiting hybrid behavior. The new
extended Modelica PN library shall enable modeling in
a fashion quite similar to respective distinguished PN
tools, at the same time allowing to integrate discrete
behavior with continuous one by profiting from the ca-
pabilites and other existing libraries in Modelica.
This text first illustrates the structure of the extended
PN library, then explains the characteristics of the new
PN components, before giving several modeling exam-
ples.

2 Library Structure

Fig. 1 depicts the extended PN library with three sub-
libraries “Extensions”, “ExamplesExtendedPetriNets”
and “Modules” added to the original library.

Figure 1: PN library

The contents of the first sub-library “Extensions” are
shown in fig. 2 with a variety of new place and tran-
sition components, the second contains several models
demonstrating the features of the new components and
the third some compoposite models and utility blocks.

3 Transitions with Time Delay

The PN transitions as presented in [Mo98], fire, if all
input places are marked and all output places are not.
The new transitions presented here shall fire only after
a certain time delay D has passed. In order to achieve

Figure 2: PN library extensions

such behavior, the firing process must be divided in
two phases.

1. Activation: A transition is said to be activated
(another term used is: enabled), if all of its in-
put places are marked. At the time instant, the
transition is activated, the delay process starts to
run.

2. Actual firing: As soon as the time delay D–locally
specified as a constant parameter or a variable of
the transition–has passed, the transition can fire,
if the transition is still activated and if all of its
output places are free. If the output places are
not free when the delay has passed, firing is either
postponed until they are actually free at a later
time, or firing will not occur because of loss of
activation.

An important questions is, what happens, if one or all
of the input places loose their marking while the delay
process is running and regain it before the current de-
lay time has passed. There is different ways in dealing
with such situations. Here, a so-called preemptive re-
peat different (PRD) firing policy is used. This means,
an interrupted job5 will be repeated with a re-sampled
delay time. The PRD policy will be illustrated with a
simulation example later in this text.
Having clarified delayed firing semantics, attention is
shifted to the implementation of the new delay tran-
sition in Modelica. Fig. 3 depicts an iconic represen-
tation of the new component with deterministic time
delay (colored red).
Two new Boolean variables, activated and delay passed
are declared in the Modelica model of the transition.
The second variable becomes “true”, only if the respec-
tive transition was activated at run time for a time
interval equal or longer than the delay time D. The

5Interrupted job signifiying a token removal from an in-place
of a transition while it is activated and waits for its delayed firing

2



Figure 3: Transition with deterministic time delay

transition can fire if both new Boolean variables have
a “true” value and if the output place is free. The
respective Modelica code (somewhat abbreviated but
containing all the important statements) is given be-
low.

model TDelay
parameter Real delay=5;

Boolean activated;
Boolean delay_passed;
Boolean fire;
Real last_activation_time;

equation
//activation of transition
activated = inTransition.state;

//set activation time
when activated then

last_activation_time = time;
end when;

//activated and delay passed
delay_passed = activated

and ((time - delay) > last_activation_time);

//fire command
fire = activated and delay_passed

and not outTransition.state;

//propagate firing to in and output places
inTransition.fire = fire;
outTransition.set = fire;

end TDelay

For many problems to be modeled in the discrete-event
domain, it is desirable to have access to time delays
which have the characteristic of some probability dis-
tribution. Fig. 4 shows a transition which implements
time delays realized as samples drawn from a random
number generator (RNG) and transformed to behave
as if they were exponentially distributed variables.

Figure 4: Transitions with exponentially distributed de-
lay

Fig. 4 displays two variants, the transition on the left
(yellow) implements a custom RNG, the transition on
the right (greenish-yellow) makes use of the available,
built-in RNG (acronym BIRNG) of the Modelica tool

Dymola. In the yellow transition, a so-called linear
congruential method (LCM) (see e.g., [Law00]), is used
to generate pseudo random numbers x (eq. 1).

xk+1 = (axk)mod m, k = 0, 1, 2 . . . (1)

The numbers produced are uniformly distributed. To
obtain exponentially distributed numbers y with mean
1/λ, the transformation

y = − 1
λ

ln(x) (2)

can be carried out. The Modelica code for a transition
with exponential distribution and customized RNG is
shown below. As can be seen, each time the transition
is becomes activated, a random number is generated
and used as time delay D; seeds for the RNG can be
set as parameter in each transition individually.

model TDelayExp
parameter Real mean=10 "Exponential mean";
parameter Integer seed=1973272912;

Boolean activated;
Boolean delay_passed;
Boolean fire;
Real last_activation_time;
Real delay;
Integer Xi(start=seed);
Integer Xiplus;
Integer m=(2^31) - 1;
Integer a=7^5;

equation
//activation of transition
activated = inTransition.state;

//activated and delay passed
delay_passed = activated

and ((time - delay) > last_activation_time);

//fire command
fire = activated and delay_passed

and not outTransition.state;

//propagate firing to in and output places
inTransition.fire = fire;
outTransition.set = fire;

//set activation time
algorithm

when activated then
last_activation_time := time;
Xiplus := mod(a*Xi, m);
delay := -mean*ln(Xiplus/m);
Xi := Xiplus;

end when;
end TDelayExp

As mentioned, the tool Dymola, which is based on the
Modelica modeling language specification, has a few
built-in functions (e.g., “RandomUniform(time)”) for
random number generation. They are used in the tran-
sition variant on the right in Fig. 4, the respective code
to call the RNG functions and the transition to ex-
ponential distribution is shown in the following code
segment.

//set activation time
algorithm

3



when activated then
last_activation_time := time;
delay := -mean*ln(RandomUniform(time));

end when;

Test runs with models containing these Dymola
BIRNG functions have miraculously produced, after
a very large number of random samples were drawn,
extremely large realizations for the random numbers
(x = 10300). The reason for this could not be deter-
mined since the source code of the random number
generator could not be inspected.
That is one reason, why customized RNGs were im-
plemented directly in the new library components. Of
course, other methods than the LCM could be used for
RNG as well, and a more sophisticated concept with
special classes for RNG could be realized in Model-
ica. Currently, four probability distributions are im-
plemented for use in transtions, namely, uniform, ex-
ponential, normal and Weibull.
The transformation to normal variates uses two inde-
pendent uniform numbers x1 and x2 to yield one nor-
mal sample according to eq. 3 and eq. 4 (Box-Mueller
method).

xnormal,standard =
√
−2ln(x1)cos(2πx2) (3)

xnormal = mean+ standardDev ·xnormal,standard (4)

Given a uniform random number x, a Weibull variate
xW can be calculated with the transformation of eq. 5

xW = − 1
α
· ln(1− x)1/β (5)

4 Multiple Tokens on Places

The original Modelica PN library implements places
to hold only a single token, i.e., a place can either be
marked or not (Boolean places). Such places are used
in so-called C/E (condition/event) PNs.
If a PN was to serve as a model for e.g., flow and storage
of numerous individual objects in a system, the need for
places which can contain more than one token arises.
The implementation of such places is discussed in this
section. Fig. 5 displays the graphic representation of
places which can contain N tokens at the maximum.

Figure 5: Places capable of holding more than one token

Naturally, the number of tokens present on a place at
any time is of interest now. This number must be
know, since it influences the firing of the transitions
the respective place is connected to. A place which is
empty (does not hold any tokens), can obviously not
supply any tokens to transitions. In a similar fash-
ion, a place which is full (the number of tokens has
reached a certain locally defined limit) cannot receive
any more tokens. The new place component therefore
defines a capacity limit and several new variables e.g.,
for the number of tokens currently hold (Integer) and
for empty and full states (Boolean). A possible im-
plementation is given below (case of a place with one
input and one output connector).
model P11Capacity

parameter Integer num_tokens_start=0
"Initial number of tokens";

parameter Integer N=1 "Capacity limit for tokens";

Integer num_tokens(start=num_tokens_start)
"number of tokens present on the place";

Integer new_num_tokens(start=num_tokens_start);
Boolean full;
Boolean empty;
Boolean tokenin;
Boolean tokenout;
Boolean tokeninout;

equation
// Set new token number for next iteration
num_tokens = pre(new_num_tokens);

tokenin = inTransition.set and not full
and not outTransition.fire;

tokenout = outTransition.fire and not empty
and not inTransition.set;

tokeninout = inTransition.set and outTransition.fire;

when {tokenin,tokenout,tokeninout} then
new_num_tokens = if edge(tokenin) then num_tokens + 1

else if edge(tokenout) then num_tokens - 1 else num_tokens;
end when;

full = num_tokens == N;
empty = num_tokens == 0;

// Report state to input and output transitions
inTransition.state = full and not pre(tokenin)

and not pre(tokeninout);
outTransition.state = not empty and not pre(tokenout)

and not pre(tokeninout );
end P11Capacity

The place in the middle of fig. 5 has two additional
output ports

outTokens.signal[1] = num_tokens;
Bchange.signal[1] = not (num_tokens == new_num_tokens);

which propagate the current number of tokens hold in
the place and a signal (Boolean) whenever the number
changes. These signals are of value when collecting
performance statistics during simulation runs as will
be shown in the next sections.

5 Test Models

Some rather small PN models shall demonstrate the
functionality implemented in the new PN components.

4



5.1 Deterministic Delay

The first test model consists of three places and two
transitions and is depicted in fig. 6. It shall illustrate
the delayed firing of a transition with time determin-
istic delay D. Place P1 is marked initially while P2
and P3 are not. The condition port of transition T1
obeys the relation “T1.condition = (time > 5.0)” and
the delay of transition T2 is set to D = 5.0 time units
(e.g., indicating seconds s).

Figure 6: Simple PN with deterministic delay

The PN is simulated for a total of 15s. The marking
of P1 is shown in fig. 7, its token is removed after 5.0s,
when the external condition port is set to “true”.

Figure 7: Marking of place P1

Place P2 receives a token when transition T1 fires at
time t = 5.0s, at which point in time T2 is activated
(see fig. 8. The delay process on T2 starts running and
T2 can fire at time t = 10.0s since it is still activated
and its output place P3 is empty. Fig. 9 illustrates the
Boolean variable “activated” of transition T2.

Figure 8: Marking of place P2

5.2 Preemptive Repeat Different Fir-
ing Policy

The model in fig. 10 shall demonstrate the PRD firing
policy of transitions with time delay.
The following rules apply to the external condition
ports of transitions T1, T3 and T4.

Figure 9: Boolean variable “activated” of transition T2

Figure 10: Job interruption model

T1.condition = (time > 5);
T3.condition = (time > 7.5) and (time < 8.0);
T4.condition = (time > 12.5);

Place P1 is marked initially. A simulation run of 20.0s
is made. As can be seen in fig. 11 (marking of place P2),
transition T1 fires at time 5.0s, at which point in time
T2 and T3 become both activated. The delay on T2
starts running (the delay is D=5s), but T3 fires before
the delay of T2 is over, at time 7.5s. As soon as the
token leaves P2, transition T2 is no longer activated.
After the firing of T3 and T4, the token is again present
on place P2 and T2 is newly activated. The delay on
T2 starts running once more and T2 fires at time 12.5s
(this time, T3 cannot fire anymore because its external
condition port is set to false after time t ≥ 8.0s.

Figure 11: Marking of place P2

5.3 Capacity Limits On Places

Fig. 12 depicts a PN with capacity limits of 10, 100
and 10 tokens, respectively, on places P1, P2 and P3.

5



Initially, P1 carries 10, P2 5 and P3 2 tokens.

Figure 12: Net with multiple tokens on places and lim-
its

Fig. 13 indicates the markings of the three places. It
can be seen, how repeteatedly after a delay of 2.5s, a
token is removed from P1 and added to P2. In parallel,
transition T2 fires after delays of 1.0s until time t =
7.0s when P2 reaches empty state. At t = 7.5s, P2
receives a token from T1, which is passed on to T2
when another delay of 1.0s has passed. At time t = 8.5,
P3 becomes full and T2 cannot fire anymore, which in
turn leads to an increase in the number of tokens on
P2 in the following. As can be seen, the example net
behaves as demanded by the stated firing semantics.

Figure 13: Markings of places P1,P2 and P3

6 Example Modeling Applica-
tions With the New PN Com-
ponents

This section gives examples of modeling and simula-
tions with the new PN components in two problem
domains. The first deals with queuing systems, the
second with availability analysis of systems of renew-
able components.

6.1 M/M/1 Queuing System

An M/M/1 6 queuing system is modeled as a PN, see
fig. 14; in reality, it could be a ticket shop selling tickets
for a bus ride, with customers arriving at certain points
in time and waiting in line–if necessary–to be served at
the desk.
In the PN model, the transition “Interarrival” rep-
resents the arrival process as a delay of exponential
characteristic (delay signifies inter-arrival times). The
place “Queue” denotes the line of waiting customers
and transition “Service” models the duration of service
again as an exponential stochastic process. The block
in the lower half of the model collects the current num-
ber of tokens on the place representing the queue, and
it recalculates the average queue length as a weighted
time average while the simulation progresses at run-
time.

Figure 14: Queuing model

The behavior of such an M/M/1 queue can be investi-
gated analytically. With arrival rate λ and service rate
µ, the server utilization ρ is

ρ = λ/µ. (6)

According to the formula of Little, in the long run
(steady-state performance), the average queue length
for the M/M/1 system is

Lqueue = ρ2/(1− ρ). (7)

In the above model, λ = 1/10 and µ = 1/8, therefore,
the expected value for queue length is Lqueue = 3.2.
Fig. 15 displays the development of average queue
length, it can be seen, the value stabilizes after about
2500 time units. The end value after 100’000 time units
of simulation time is rather close to the analytically
computed value. Note, the value depicted in fig. 15 is
a so-called running average, i.e., it gives the current
average queue length at a particular point in time dur-
ing the simulation, accounting for the queue history
from the beginning of the simulation until the current
simulation time. Only the final value at the end of the

6“M” stands for the memoryless characteristic of the expo-
nential distribution. The first “M” denotes the arrival process,
the second “M” the service process and the “1” indicates the
existence of one server only.

6



simulation serves as an estimate of the long-run perfor-
mance of the system (standard simulation practice).

Figure 15: Average queue length evolution during the
simulation

Of course, in order to investigate a system by means
of simulation, it is usually not sufficient to carry out
just one single simulation run. Often, several sequen-
tial batch runs and independent replications (with dif-
ferent random number streams) are carried out to
produce multiple realizations of performance measures
which are then manipulated statistically to obtain a
point estimate with respective confidence interval, see
textbooks on simulation topics, e.g., [Ban96], [Law00].
Simulation experiment parameters as simulation dura-
tion, initial transient phase (which is not used for per-
formance measure collection), number of batches and
replications must be chosen appropriately. However, in
this text, the feasibility of the PN models for discrete-
event simulation is of interest, not the very details of
simulation experiments.
Fig. 16 is a zoom of the time window with the largest
queue length that occurred during this particular sim-
ulation, maximum queue length is 26 customers in this
case.

Figure 16: Queue length

6.2 Steady-State Availability Simula-
tion

In this paragraph, system availability is investigated in
a quantitative manner. If the failure behavior of the
components installed in a system and their interaction
is known and modeled, the overall system characteris-
tics can be analyzed. Two examples of renewable sys-
tems are given and their availability is determined an-
alytically and by carrying out steady-state7 simulation
experiments. The long run performance of the systems
is of interest here, the so-called stationary availability8.

6.2.1 System of Two Components Combined
in Series

First, a combination of two components, arranged seri-
ally, is investigated, a practical configuration in reality
may be two pumps installed serially in a pipe. The
functional state of each of the two components can be
modeled with a PN as depicted in fig. 17, with a func-
tional and a nonfunctional state active when the re-
spective place is marked. The transitions represent fail-
ure and repair processes modeled as exponential time
delays (lifetime and repairtime).

Figure 17: Component with two states

A Model of the serial system is given in fig. 18.
The blocks “C1” and “C2”, at the bottom of the
model representation, contain individual components
as shown above in fig. 17, with an additional Boolean
output connector propagating the component state
(“true”=functional). The system state is given by
markings of the two places in fig. 18, which depend on
a combinatory logic of the two individual component
states.

7As opposed to “terminating” simulation experiments, see
[Ban96] and [Law00].

8E.g., the German industrial norm DIN 40041 also defines
a transient availability as the probability that a system is in
functional state at a certain point in time.

7



Figure 18: Serial arrangement of two components

The availability of such a system can be computed an-
alytically with Markov theory. If the component fail-
ure rates are known (e.g., by collection and analysis of
historic data in an industrial production environment)
and the failure and repair characteristic is exponential
with failure rate λ = 1

49 and repair rate µ = 1, then the
system availability can be calculated to (see appendix
A)

A2serial,renewable = 0.9604.

In the PN model, the steady-state system availability
A is calculated as running average during the simu-
lation (usage of evaluation block from the “Modules”
sub-library), in particular as the ratio between system
up-time tup and total time ttotal available for system
operation

A =
tup

ttotal
(8)

with

ttotal = tup + tdown. (9)

The trajectory of the availability performance measure
is illustrated for a simulation run of 15’000 time units
in fig. 19, the numerical value obtained at the end of
the simulation run is one single estimate for expected
system availability. As can be seen, the experimentally
determined value is very close to the analytical result.

6.2.2 Two-out-of-Three System

The second availability simulation is carried out with a
two-out-of-three system. Systems of this type are well

Figure 19: Stabilizing availability measure

know in reliability engineering, and are functional if at
least two of the three components of the system are
in working condition. A realization with components
from the Modelica library is shown in fig. 20.

Figure 20: Two-out-of-three system

Analytical computation of the steady-state availability
is given in appendix B. For λ = 1/9 and µ = 1 (per
definition, in an m-out-of-n system, the components
have identical characteristic), system availability is

A203,renewable = 0.972.

Fig. 21 depicts the running average of system avail-
ability for a run of 20’000 time units. Again, it can be
seen that the simulation result is close to the analyti-
cally computed value.

8



Figure 21: Two-out-of-three system availability

In [Fa01], it has been shown in more detail, how PN
models can be used for simulative investigation of
system availability. A stand-alone, computer-based,
purely discrete-event PN simulator was used. With
the PNs shown above, in elegant combination with
the combinatory logic blocks available in the standard
Modelica library, it is possible to seamlessly couple the
PNs with dynamic, continuous-time physical models
of any desired level of detail. This can greatly support
the analysis of e.g., reliability, availability, safety, de-
pendability or other performance measures of complex
technical systems without having to neglect system dy-
namics, as is inherently the case with many established
tools know in reliability engineering as e.g., fault or
event trees.

7 Conclusion and Outlook

This paper has shown how the available, standard PN
library in Modelica can be extended with semantics as
known from timed, stochastic PNs. New PN compo-
nents were introduced, allowing to generate PNs with
delayed transition firing (deterministic and stochastic
delay) and multiple tokens on places. As in the avail-
able library, the new components are defined strictly
by local constraint equations, therefore living up to the
principles of object-oriented system modeling in Mod-
elica. Seamless integration with continuous-time model
parts in one unique simulation environment is therefore
possible and provides the basis for hybrid simulation.
It could be investigated in additional work, how token
attributation could be included as well, hence support-
ing colored PNs. This would demand for appropriate
data structures and management on places together
with correct exchange of tokens via connectors, if fea-
sible and consistent with the local equation paradigm.
The idea hereby would not be to imitate all the fea-
tures of stand alone, sophisticated PN modeling tools.
It would be hard, if not impossible to include, e.g., an-

alytical analysis capabilities or token game animation
of such tools. Rather, the hybrid capabilities in the
Modelica environment would be of main interest.

References

[Ban96] Banks, Jerry; Carson, John S.; Nelson, Barry
L. (1996). Discrete-Event System Simulation. 2nd
ed., Prentice Hall, New Jersey, U.S.A.

[El00] Elmqvist H., Mattsson S. E., Otter M. (2000)
Object-Oriented and Hybrid Modeling in Modelica.
ADPM 2000, Dortmund, Germany

[Fa01] Fabricius S.M.O., Badreddin E. (2001).
Stochastic Petri Net Modeling for Availability
and Maintainability Analysis. Proceedings of
14th International Congress and Exhibition on
Condition Monitoring and Diagnostic Engineering
Management (COMADEM), September 2001,
Manchester, UK

[Law00] Law Averill M., Kelton W.David (2000). Sim-
ulation Modeling and Analysis. 3rd ed., McGraw-
Hill, Boston, U.S.A.

[Ot99] Otter M., Elmqvist H., Mattsson S.E. (1999).
Hybrid Modeling in Modelica based on the Syn-
chronous Data Flow Principle. 1999 IEEE Sym-
posium on Computer-Aided Control System De-
sign, CACSD’99, pp. 151-157, August 22-27, 1999,
Hawaii, U.S.A.

[Mo98] Mosterman P.J., Otter M., Elmqvist H.:
(1998). Modeling Petri Nets as Local Constraint
Equations for Hybrid Systems Using Modelica.
The Proceedings of the Summer Computer Sim-
ulation Conference, July 19-22, S. 314-319, 1998
Reno, Nevada, U.S.A.

[Pet62] Petri, C.A. (1962). Kommunikation mit Au-
tomata. PhD thesis University of Bonn, Bonn,
West Germany

[Rei85] Reisig, W. (1985). Petri Nets: An Introduc-
tion. Springer-Verlag, Berlin, Germany

[Sah96] Sahner, Robin A.; Trivedi, Kishor S.; Puli-
afito, Antonio (1996). Performance and Reliabil-
ity Analysis of Computer Systems: An Example-
Based Approach Using the SHARPE Software
Package. Kluwer Academic Publishers, Boston,
U.S.A.

[Sch99] Schneeweiss, W.G. (1999). Petri Nets for Re-
liability Modeling (in the Fields of Engineering
Safety and Dependability). LiLoLe-Verlag GmbH,
Hagen, Germany

9



A Analytical Computation of
the Availability of a Serial
System of Two Components

Two components A and B combined in series can be
modeled by the Markov diagram in figure 22 (capital
letters “A” and “B” indicate functional components,
small letters “a” and “b” indicate non-functional com-
ponents).

Figure 22: Markov diagram, detailed (2 serial)

For the case of identical components, the Markov
model can be reduced to the diagram in figure 23.

Figure 23: Markov diagram, compact (2 serial)

The equations for the renewable system state proba-
bilities are

dP0

dt
(t) = −2λP0(t) + µP1(t) (10)

dP1

dt
(t) = 2λP0(t)− (µ + λ)P1(t) + 2µP2(t)(11)

dP2

dt
(t) = λP1(t)− µP2(t) (12)

and the availability is

A2serial,renewable(t) = P0(t) (13)

The asymptotic availability or steady-state availability
for time t →∞ can be calculated solving the following
set of linear algebraic equations.

0 = −2λP0(∞) + µP1(∞) (14)
0 = 2λP0(∞)− (µ + 2λ)P1(∞) + 2µP2(∞)(15)
0 = λP1(∞)− µP2(∞) (16)

and the availability is

A2serial,renewable(t) = P0(t) (17)

The asymptotic availability or steady-state availability
for time t →∞ can be calculated solving the following
set of linear algebraic equations.

0 = −2λP0(∞) + µP1(∞) (18)
0 = 2λP0(∞)− (µ + 2λ)P1(∞) + 2µP2(∞)(19)
0 = λP1(∞)− µP2(∞) (20)

to yield the expression

A2serial,renewable(∞) =
µ2

µ2 + 2µλ + λ2
(21)

For λ = 1
49 and µ = 1, the state probabilities are

P0(∞) = 0.9604, P1(∞) = 0.392, P2(∞) = 0.004

and the steady-state system availability is therefore

A2serial,renewable = 0.9604.

B Analytical Computation of
the Availability of a Two-out-
of-Three System

The detailed as well as the reduced Markov diagrams
for the 2-out-of-3 system are shown in figures 24 and
25.

Figure 24: Markov diagram, detailed

Figure 25: Markov diagram, compact 2-out-of-3 system

The equations for the state probabilities of the renew-
able system are

10



dP0

dt
(t) = −3λP0(t) + µP1(t) (22)

dP1

dt
(t) = 3λP0(t)− (µ + 2λ)P1(t) + 2µP2(t)(23)

dP2

dt
(t) = 2λP1(t)− (2µ + λ)P2(t) + 2µP3(t)(24)

dP3

dt
(t) = λP2(t)− 3µP3(t) (25)

The availability again is

A203,renewable(t) = P0(t) + P1(t) (26)

and the asymptotic availability for time t →∞ can be
calculated solving the following set of linear algebraic
equations.

0 = −3λP0(∞) + µP1(∞) (27)
0 = 3λP0(∞)− (µ + 2λ)P1(∞) + 2µP2(∞)(28)
0 = 2λP1(∞)− (2µ + λ)P2(∞) + 2µP3(∞)(29)
0 = λP2(∞)− 3µP3(∞) (30)

to yield

A203,renewable(∞) =
µ2(3λ + µ)

3µ2λ + µ3 + 3λ2µ + λ3
(31)

For λ = 1
9 and µ = 1, the state probabilities are

P0(∞) = 0.729, P1(∞) = 0.243, P2(∞) = 0.027, P3(∞) = 0.001

and the steady-state system availability is therefore

A203,renewable = 0.972.

11


