
Design of FastBuildings library

Introduction
This document describes the design choices for the Modelica library FastBuildings.

Goal of the library
FastBuildings is a library for building energy simulation with the following ambitions:

• low order models for fast simulation, upscaling to districts and optimization

• single and multiple zone building simulation

• modular and easily extensible

• can be compiled by JModelica (also to FMUX) and OpenModelica

• compatible with the IDEAS library

Structure
The library has the following typological subpackages:

• Zones - Windows

• Buildings

• HVAC

• Users

• Input

• Examples

Conventions

Imports
The following imports are put on the top level, so usable anywhere in the package:

import SI = Modelica.SIunits;
import HT = Modelica.Thermal.HeatTransfer;

Naming
Class names can be long and descriptive. They should always start with a capital. For instance names,
different rules apply.

Important

All instance names start with a small letter.

Camel case is applied to all instance names.

Wherever possible, 3 letter abbreviations are used.

One of the only exceptions to these conventions are T and Q_flow order to maintain compatibility
with the Modelica.Thermal.HeatTransfer package and avoid confusion.

Many models will be built according to an resistance-capacitor (RC) analogy. It's important to be
consistent in the naming of all these components. Therefore, it is adopted to name the components as
follows:

• resistance: resXyz[io][1-9] (eg. resZon, resWali, resWalo, resFlo1)

• capacitor: capXyz[1-9] (eg. capZon, capHea)

• thermal resistance (parameter): rXyz[io][1-9], where Xyz[io][1-9] corresponds to the resistor
component (eg. rZon, rWali, ...)

• thermal capacity (parameter): cXyz[1-9], where Xyz[1-9] corresponds to the resistor component (eg.
cZon, cHea, ...)

Others:

• windows: win[1-9] (eg. win1, win2)

• All temperatures start with T (TAmb, TWali ...)

• rHum, vWin stand for ambient temperature, relative humidity and wind speed

• iGloHor, irr[1-9]: global horizontal radiation, irradiation on a specific surface (eg. irr1, irr2)

• design conditions: add Des (TAmbDes)

• nominal values: add Nom (Q_flowNom)

• all heatPorts are named heaPor[...]

• sensors, prescribed temperatures and prescribed heat flows: senXyz, preXyz, where Xyz is the
variable that is measured (eg. senTZon, preTAmb, preQHeaEmb)

Aliases and propagation
All parameters of resistances, capacitors etc. have to be progagated to the level of the zone. This allows
to switch more easily between different zone models in a building. The naming has to be consistent (see
above).

For example, avoid this:

model NotNice
 Capacitor capZon(c = 1e6) "Thermal capacity of the zone";
end NotNice;

but prefer this:

model Nice
 parameter SI.HeatCapacity cZon = 1e6 "Thermal capacity of the zone";
 Capacitor capZon(C = cZon);
end Nice;

This may seem inefficient, but it allows for instance to specify a thermal resistance for an exterior wall at
zone level, and split this resistance according to a specific rule over the different resistance components in
the wall itself. Example:

model Example_SplittedResistance_Fix
 extends FastBuildings.Zones.BaseClasses.Partials.Partial_SZ;

 FastBuildings.Zones.BaseClasses.Capacitor capZon(C = cZon) ;
 FastBuildings.Zones.BaseClasses.Capacitor capWal(C = cWal) ;
 FastBuildings.Zones.BaseClasses.Resistance resWale(R = 0.5 * rWal) ;
 FastBuildings.Zones.BaseClasses.Resistance resWali(R = 0.5 * rWal) ;

 parameter SI.HeatCapacity cZon "Thermal capacity of the zone" ;
 parameter SI.HeatCapacity cWal "Thermal capacity of the zone" ;
 parameter SI.ThermalResistance rWal "Total thermal resistance of the walls, in K/W" ;

equation
 ...

end Example_SplittedResistance_Fix;

model Example_SplittedResistance_Free
 extends FastBuildings.Zones.BaseClasses.Partials.Partial_SZ_CRE;

 FastBuildings.Zones.BaseClasses.Capacitor capZon(C = cZon) ;
 FastBuildings.Zones.BaseClasses.Capacitor capWal(C = cWal) ;
 FastBuildings.Zones.BaseClasses.Resistance resWale(R = (1-posCapWal) * rWal) ;
 FastBuildings.Zones.BaseClasses.Resistance resWali(R = posCapWal * rWal) ;

 parameter SI.HeatCapacity cZon "Thermal capacity of the zone" ;
 parameter SI.HeatCapacity cWal "Thermal capacity of the zone" ;
 parameter SI.ThermalResistance rWal "Total thermal resistance of the walls, in K/W" ;
 parameter Real posCapWal = 0.5 (min=0, max=1) "Position of the capacity in the wall: 0=inside, 1=outside";

equation
 ...

end Example_SplittedResistance_Free;

Issues, questions, doubts
Concept: having all inputs through the sim seems nice and clean (sim = Simulation Input or Info
Manager). However, there are some limitations, both from the language and from the tools. An overview
of issues that shaped the design:

• not possible to redeclare outer components (Modelica specs?)

• this is not problematic: if the inner is a subtype of the outer it works. So we have to choose the right
inner component at the top level of every simulation, and it has to extend from a PartialSim. Every
model should have the following declaration: outer PartialSim sim.

• In order to make graphical connections from the sim to other components, eg in a zone model, this
PartialSim should have the necessary connectors (RealOutputs). This means that all possible inputs
have to be defined in the Partial.

• to keep the models lean, I tried to declare those connectors as conditional realoutputs. The extended
sim models can specify which connectors are available by specifying the booleans.

• the difficulty is that conditional components can only be referenced in connect equations. So
specifying a value for a conditional RealOutput cannot be done in an equation. A RealExpression or
similar has to be used, and it's output connected to the conditional RealOutput. This seems
inefficient and error-prone.

• moreover, it seems that JModelica has issues with the booleans. The models compile fine, but the
CasadiModel cannot be instantiated. The following error message is thrown:

RuntimeError Traceback (most recent call last)
<ipython-input-84-790aa345e46f> in <module>()
----> 1 c=CasadiModel(fmux)

/home/roel/soft/JModelica_sdk_5464/Python/pyjmi/casadi_interface.py in __init__(self, name, path, verbose)
 104

 105 # Load CasADi interface
--> 106 self._load_xml_to_casadi(self._tempxml, verbose)
 107
 108 self._ode_conversion = False

/home/roel/soft/JModelica_sdk_5464/Python/pyjmi/casadi_interface.py in _load_xml_to_casadi(self, xml, verbose)
 818 options["sort_equations"] = False
 819 options["eliminate_dependent"] = False
--> 820 self.ocp.parseFMI(xml, options)
 821 casadi.updateDependent(self.ocp)
 822

/home/roel/soft/JModelica_sdk_5464/Python/casadi/casadi.py in parseFMI(self, *args)
 32401
 32402 """
> 32403 return _casadi.SymbolicOCP_parseFMI(self, *args)
 32404
 32405 def addVariable(self, *args):

RuntimeError: SymbolicOCP::readExpr: Unknown node: BooleanLiteral

So either add all potential outputs to the Partial_sim?

Maybe with conditional realoutputs? And the subcomponents can use the same booleans to specify
inputs? They can be connected and will be removed automatically when the boolean is on false.

Naming: booXXX for booleans?

How to specify the Q_flow of heaPorEmb?

conventions: powEle, qHeaCoo ?

Overleg met Ruben
Array van irr maken voor de instralingen

protected pre componentnes

pow voor elektrisch verbruik

windows onder zones

mapje Buildings.SZ en Buildings.MZ

Input: geen SIM voor elk model

Geen underscores!!

Aparte interfaces package

	Introduction
	Goal of the library
	Structure
	Conventions
	Imports
	Naming
	Aliases and propagation
	Issues, questions, doubts
	Overleg met Ruben

