OpenModelica Users Guide

Version 0.2, April 2005

Preliminary Incomplete Draft, 2005-04-18

PELAB — Programming Environment Laboratory
Department of Computer and Information Science
Linkdping University, Sweden

Copyright © 2002-2005, PELAB, Department of Computer and Information Science,
Linkdping University.

All right reserved. Reproduction or use of editorial or pictorial content is permitted under the
conditions of the OSM license. No patent liability is assumed with respect to the use of
information contained herein. While every precaution has been taken in the preparation of this
book the publisher assumes no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of information contained herein.

The OSM (OpenModélica) License (Version 1.1 of March 4, 2005)
1 Preface

The aim of this license is to lay down the conditions enabling you to use, modify and circulate OSM.
However, PELAB/LIU remain the authors of OSM and so retain property rights and the use of al ancillary
rights.

2 Definitions

OSM is defined as all successive versions of the OSM software and their documentation that have been
developed by PELAB/LIU and including accepted contributions from other contributors according to this
license.

OSM DERIVED SOFTWARE is defined as all or part of OSM that you have modified and/or translated
and/or adapted.

3 Dual License

OSM is made available under the OSM licensing scheme, which is a dual licensing scheme with two options,
a) and b):

a) OSM OPEN SOURCE LICENSE:

If you wish to write Open Source software you can use the Open Source version of OSM, released under the
OSM license which include GPL as its open source licensing option. If you use the OSM Open Source
version you must release your Application using OSM including this Application's source code under the
GPL aswell.

This OSM license text, and Copyright (c) PELAB/Linkoping University, must be present in your copy of
OSM and in OSM DERIVED SOFTWARE.

You should have received a copy of the GPL - GNU General Public License along with OpenModélica; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.

b) OSM COMMERCIAL LICENSE

If you are using OSM commercialy - that is, for commercial usage or for creating proprietary software for
sale or use in a commercia setting - you must purchase a commercial license of OSM from PELAB/LIU,
which allows you to use OSM without releasing your Application under the GPL.

Comment: Payments for OSM are intended for OSM development and integration of accepted contributions
into OSM.

4 Priority

If thereis any conflict between this OSM License text and the GNU GPL license, thistext has priority.
5 Contributions

PELAB/LIU reserves the right to accept or turn down source code contributions to OSM.

6 Limitation of the warranty

Except when mentioned otherwise in writing, OSM is supplied as is, with no explicit or implicit warranty,
including warranties of commercialization or adaptation. You assume all risks concerning the quality or the
effects of OSM and itsuse. If OSM is defective, you will bear the costs of all required services, corrections or
repairs.

7 Consent

4

When you access and use OSM, you are presumed to be aware of and to have accepted al the rights and
obligations of the present OSM license. This includes accepting that your open source code contributions to
OSM, if accepted into OSM by PELAB/IDA, follow the OSM licensing rules including copyright and
ownership by PELAB/IDA.

8 Binding effect

This license has the binding value of a contract. Y ou are not responsible for respect of the license by athird
party.

9 Applicable law

The present license and its effects are subject to Swedish law and Swedish courts.

10 Contact information

See http://www.ida.liu.se/~pelab/modelica/ OpenM odelica.html

License Disclaimer

The software (sources, binaries, etc.) in its original or in a modified form are provided “as is’ and the
copyright holders assume no responsibility for its contents what so ever. Any express or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright holders, or any party who modify and/or redistribute the package,
be liable for any direct, indirect, incidental, special, exemplary, or consequential damages, arising in any way
out of the use of this software, even if advised of the possibility of such damage.

Table of Contents

TADIE O CONLENES. ...ttt b et b e bbb b b bbbt b e sb et eb e sbesb e e e st ebesbe e ns 5
Preface 7

Chapter 1 INEFOOUCTION.c.eiuiitiieieieet sttt ettt b bbb bbb b et abenrenre e 8

11 SYSLEM OVEIVIBIW ...ttt sttt st s eesbesbesae e testesteeneestesbesseeneesteseesneesensens 9

L11 ImMplementation SLAIUS.........cccceeiieiiieiieie ettt ae et resre e snesreeneennens 10

1.2 Interactive Session With EXaMPIES.......ccccoi i 10

13 Commands for the Interactive Session Handler ... 17

Chapter 2 Getting Started with the Graphical Model EdIitor ..o 18

2.1 YOUF FITSE IMOOE ...ttt bbb s ebe b 19

211 Creating aNEW MOELccoiiiieeiceeee e ee e 20

2.1.2 Changing Parameter Values of COMPONENLS........ccccevereerierereeieeseseseeeeseesesseeseeseesnens 23

2.1.3 Trandating and Simulating Using the INteraCtive Viewcccccceveveeeecene s seecesieenns 26

P20 0 . [o PSP 26

Y220 IR ST S Y/ g To =g Vo 1 0 7= (1 o [ST 26

22 Keyboard Command SNOMCULScccceieeeeierie ettt 27

221 Class Browser WINCOWcecoieiiiiiiiieiecie ettt re s re b sbe e nresre 27

222 ClassWindow - Graphical Layer VIEWcceceererireeeere e neens 27

2.2.3 ClassWindow — MOdeliCaTEXE VIBWcouciiiiiiieire e 28

Chapter 3 DrModelica Notebook and Model EQItOrcccvviiireinineneseseeeeeeseseeee e 30

31 Interactive Notebooks with Literate Programimingcceeeeererereeneneseesese e seeeeeseenees 30

3.1.1 Tree Structured Hierarchical Document Representationccccceveveveecenieseseeseeseenn, 31

3.2 The DrModelica TULOMNG SYSEEM.......cciieiiirenieeee et see e e eeneeneenas 32

33 Simple DrModelica Notebooks in OpenMOdEliCa........ccervrereerereseeee s 37

34 OpenModelica Notebook COMMANGSccceeierererieeerese e enas 40

Chapter 4 Emacs Textual Model Editor/BrOWSENccceoevirireeneneneese s s 42

Chapter 5 Eclipse Plugin Model EitOr/BrOWSEScoireirinenieiee e 44

Chapter 6 Modelica Algorithmic Subset DEDUGEScceeeeieiececeeeee e 45

6.1 The Debugger COMMEANGS.......cccoiviieeeiiiese e sre ettt e e resreeaesresresneeeesnens 45

6.2 Starting the Modelica Debugging SUDPIOCESScoveeririerienieesesieseeese s seeeneens 45

6.3 Setting/Deleting BreaKPOINTSocvvveeeieeseseeeeeesie et nee e 46

6.4 StePPIiNg aNd RUNNINGc..oiiiicecese ettt e et s re s re e e srennas 46

6.5 G a0 TH o T o [- = VST 47

6.6 AdditioNal COMMAINGS.........ueeiiiieiie e e e e e s e s s sbb e e e s sbae e e sanbenessbrenes 49

6.7 Hints for Debugging Large Programs

6.8 Summary of Debugger Commands....

Index 51

Preface

This users guide provides documentation and examples on how to use the OpenModelica system, both
for the Modelica beginners and advanced users.

Chapter 1

Introduction

The OpenM odelica system described in this document has both short-term and long-term goals.

The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as a partial but rather complete implementation of the language. It turns out that with
support of appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical algorithms, e.g. for control system
design, solving nonlinear equation systems, or to develop optimization algorithms that are applied to complex
applications.

The longer-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well as
convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as akind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural analysis,
system identification, etc., as well as modeling problems that require extensions such as partial differential
equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to use.
Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.

Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submitted
to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modélicato be executed interactively, as well as equation models and Modelica functions to be compiled into
efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and a

numerical DAE solver. An external function library interfacing a LAPACK subset and other basic agorithmsis under
development.

11

System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1 below.

Eclipse Plugin Graphical Model
Editor/Browser \ Editor/Browser
Interactive 1t
_Emacs session handler Textual
Ed|tor/Browser Model Editor
DrModelica / \
NoteBook Execution Modelica |
Model Editor Compiler
Modelica
Debugger

Figure 1-1. The architecture of the OpenModelica environment. Arrows denote data and control flow. The interactive
session handler receives commands and shows results from eval uating commands and expressions that are translated
and executed. Several subsystems provide different forms of browsing and textual editing of Modelica code. The
debugger currently provides debugging of an extended algorithmic subset of Modelica. The graphical model editor is
not really part of OpenModelica but integrated into the system and available from MathCore without cost for academic

usage.
The following subsystems are currently integrated in the OpenModelica environment:

An interactive session handler, that parses and interprets commands and Modelica expressions for evaluation,
simulation, plotting, etc. The session handler also contains simple history facilities, and completion of file
names and certain identifiersin commands.

A Modelica compiler subsystem, translating Modelicato C code, with a symbol table containing definitions of
classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from libraries.
The compiler also includes a Modelica interpreter for interactive usage and constant expression evaluation.
The subsystem also includes facilities for building simulation executables linked with selected numerical ODE
or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from transated
expressions and functions, as well as simulation code from equation based models, linked with numerica
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

Emacs textual model editor/browser. In principle any text editor could be used. We have so far primarily
employed Gnu Emacs, which has the advantage of being programmable for future extensions. A Gnu Emacs
mode for Modelica has previously been developed. The Emacs mode hides Modelica graphical annotations
during editing, which otherwise clutters the code and makes it hard to read. A speedbar browser menu allows
to browse aModédlicafile hierarchy, and among the class and type definitions in those files.

10

e Eclipse plugin editor/browser. The Eclipse plugin provides file and class hierarchy browsing and text editing
capabilities, rather analogous to previously described Emacs editor/browser. Some syntax highlighting
facilities are also included. The Eclipse framework has the advantage of making it easier to add future
extensions such as refactoring and cross referencing support.

e DrModelica notebook model editor. This subsystem provides a lightweight notebook editor, compared to the
more advanced Mathematica notebooks available in MathModelica. This basic functionaity still alows
essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters and
sections can be represented and edited, including basic formatting. Cells can contain ordinary text or Modelica
models and expressions, which can be evauated and simulated. However, no mathematical typesetting or
graphic plotting facilities are yet available in the cells of this notebook editor.

e Graphical model editor/browser. Thisis a graphical connection editor, for component based model design by
connecting instances of Modelica classes, and browsing Modelica model libraries for reading and picking
component models. The graphical model editor is not really part of OpenModelica but integrated into the
system and provided by MathCore without cost for academic usage. The graphical model editor also includes
a textua editor for editing model class definitions, and a window for interactive Modelica command
evaluation.

¢ Modelica debugger. The current implementation of debugger provides debugging for an extended algorithmic
subset of Modelica, excluding equation-based models and some other features, but including some meta-
programming and model transformation extensions to Modelica. This is conventional full-feature debugger,
using Emacs for displaying the source code during stepping, setting breakpoints, etc. Various back-trace and
inspection commands are available. The debugger also includes a data-view browser for browsing hierarchical
data such astree- or list structuresin extended Modelica.

1.11 Implementation Status

In the current OpenM odelica implementation (April 2005), not al subsystems are yet integrated as well asisindicated
in Figure 1-1. Currently there are two versions of the Modelica compiler, one which supports most of standard
Modelica including simulation, and is connected to the interactive session handler, the notebook editor, and the
graphic model editor, and another meta-programming Modelica compiler version which is integrated with the
debugger and Emacs, supports meta-programming Modelica extensions, but does not allow equation-based modeling
and simulation. Those two versions are currently being merged into asingle Modelica compiler version.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenM odelica environment. (Also
called WinMosh.exe (under Windows) or mosh (under Linux) —the Modelica Shell).

The Windows version which at installation is made available in the start menu as openModelica->OpenModelica
Shel1l responds with an interaction window:

11

Flle Edit View Help

& Bm Z2/r m 8

Starting server.
2>

Ready MM

We enter an assignment of a vector expression, created by the range construction expression 1: 12, to be stored in the
variable x. The value of the expression is returned.

>> x := 1:12
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

The function bubblesort is caled to sort this vector in descending order. The sorted result is returned together with
its type. Note that the result vector is of typereal [: 1, instantiated asreal [12], since thisis the declared type of the
function result. The input Integer vector was automatically converted to a rReal vector according to the Modelica
type coercion rules. The function is automatically compiled when called if this has not been done before.

>> bubblesort (x)
{12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

Another call:

>> bubblesort ({4,6,2
0

(5,8})
{8.0,6.0,5.0,4.0,2.

}
It is aso possible to give operating system commands via the system utility function. A command is provided as a
string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort .mo to the output stream. However, the cat command does not boldface
M odelica keywords — this improvement has been done by hand for readability.

>> gystem("cat bubblesort.mo")

function bubblesort

input Reall[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

Yy = Xj

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > yI[j] then

t = ylil;

y[il := yI[31;

yI[3l := t;
end if;

end for;

12

end for;
end bubblesort;

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would not be
returned. Only a success code (0 = success, 1 = failure) is returned to the winmosh window. For example:

>> gystem("dir")
0

>> gystem("Non-existing command")
1

Anather built-in command is cd, the change current directory command. The resulting current directory isreturned as
astring.

>> cd("..")
"/home/petfr/modelica"

We load a model, here the whole Modelica standard library:

>> loadModel (Modelica)
true

We also load afile containing the dcmotor model:

>> loadFile ("M:/modeq/VC7/Setup/testmodels/dcmotor.mo")

true
It is simulated:
>> gimulate (dcmotor, startTime=0.0,stopTime=10.0)
record
resultFile = "dcmotor res.plt"

end record

We list the source code of the model:
>> list (dcmotor)

"model dcmotor
Modelica.Electrical.Analog.Basic.Resistor rl(R=10) ;
Modelica.Electrical.Analog.Basic.Inductor il;
Modelica.Electrical.Analog.Basic.EMF emfl;
Modelica.Mechanics.Rotational.Inertia load;
Modelica.Electrical.Analog.Basic.Ground g;
Modelica.Electrical.Analog.Sources.ConstantVoltage v;

equation
connect (v.p,rl.p);
connect (v.n,g.p) ;
connect (rl.n,il.p);
connect (il.n,emfl.p) ;
connect (emfl.n,g.p);
connect (emfl.flange b,load.flange a);
end dcmotor;

n

We test code instantiation of the model to flat code:

>> instantiateModel (dcmotor)

"fclass dcmotor
Real rl.v;
Real rl.i;
Real rl.p.
Real rl.p.1i;
Real rl.n.
Real rl.n.
parameter Real rl.R
Real il.v;

10;

i;
p.v;
Real il.p.1i;
n.v;
Real il.n.i;
parameter Real il.L
parameter Real emfl.
Real emfl.v;
Real emfl.i;
Real emfl.w;
Real emfl.p.v;
Real emfl.p.i;
Real emfl.n.v;
Real emfl.n.i;
Real emfl.flange b.phi;
Real emfl.flange b.tau;
Real load.phi;
Real load.flange_a.phi;
Real load.flange a.tau;
Real load.flange b.phi;
Real load.flange b.tau;
parameter Real load.J = 1;
Real load.w;
Real load.a;

~
=
[y

Real g.p.v;
Real g.p.1i;
Real v.v;

Real v.i;

Real v.p.v;
Real v.p.i;
Real v.n.v;

Real v.n.i;
parameter Real v.V = 1;

equation
rl1.R * rl.i = rl.v;
rl.v = rl.p.v - rl.n.v;

0.0 = rl.p.i + rl.n.i;

rl.i = rl.p.1i;

il.L * der(il.1i) = il.v;

il.v = il.p.v - il.n.v;

0.0 = il.p.1 + il.n.i;

il.1i = il.p.1i;

emfl.v = emfl.p.v - emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.1i;

emfl.w = der(emfl.flange b.phi);

emfl.k * emfl.w = emfl.v;

emfl.flange b.tau = -(emfl.k * emfl.i);
load.w = der(load.phi) ;

load.a = der(load.w) ;

load.J * load.a = load.flange a.tau + load.flange b.tau;

14

load.flange a.phi = load.phi;
load.flange b.phi = load.phi;

g.p.v = 0.0;

v.v = v.V;

V.V = V.p.V - V.n.v;
0.0 = v.p.1i + v.n.1i;
v.i = v.p.i;

emfl.flange b.tau + load.flange a.tau = 0.0;
emfl.flange b.phi = load.flange a.phi;
emfl.n.i + v.n.i + g.p.i = 0.0;

emfl.n.v = v.n.v;

V.n.v = g.p.v;

il.n.i + emfl.p.i = 0.0;
il.n.v = emfl.p.v;
rl.n.i + il.p.i = 0.0;
rl.n.v = il.p.v;

v.p.1 + rl.p.i = 0.0;
v.p.v = rl.p.v;
load.flange b.tau = 0.0;

end dcmotor;
n

We plot part of the simulated result:

>> plot({load.w, load.phi})
true

£ tmpPlot.plt

File Edit Special

Plot by OpenModelica

loadw ®

15 load.phi ®

307]
281]
201]
1487]
1010]
nar]

Clear al loaded libraries and models:

>> clear ()
true

List the loaded models — but nothing left:

>> list ()

We load another model, the Inf1luenza model:

>> loadFile ("M:/modeq/VC7/Setup/testmodels/Influenza.mo")
true

It is simulated:

15

>> simulate (Influenza, startTime=0.0, stopTime=3.0)
record
resultFile = "Influenza res.plt"

end record

The simulated population is plotted:

>> plot ({Infected Popul.p})
true

- tmpPlot.plt
File Edit Special

Plot by OpenModelica

Infected_Populp ®

58 T

52T b
a0

0.0 0.4 1.0 1.4 20 2.8 3.0

We load another model, the vanberpPol model:

>> loadFile ("M:/modeq/VC7/Setup/testmodels/VanDerPol .mo")

true
It issimulated:
>> simulate (VanDerPol)
record
resultFile = "VanDerPol res.plt"

end record

Assign avector to avariable:

>> a:=1:5
{1,2,3,4,5}

Typein afunction:

>> function MySgr input Real x; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:
>> b:=MySqgr (2)
4.0

Look at the value of variable a:

>> a
{1,2,3,4,5}

Look at the type of a:

>> typeOf (a)
"Integer[]"

16

Retrieve the type of b:

>> typeOf (b)

"Real™"

What is the type of Mysqr? Cannot currently be handled.

>> typeOf (MySqr)

Error evaluating expr.

No constant binding for MySqr
No constant binding for MySqr
No constant binding for MySqgr
No constant binding for MySqr

List the available variables:

>> listVariables ()
{currentSimulationResult, a, b}

Do code instantiation to flat forrm of the vanberpPol model:

>> instantiateModel (VanDerPol)

"fclass VanDerPol
Real x(start=1.0);

Real y(star

t=1.0);

parameter Real lambda = 0.3;

equation

der(x) = y;

der(y) =

-Xx + lambda * (1.0 - x * x) * y;

end VanDerPol;

n

Clear again:

>> clear ()
true

List the dcmotor model:

>> list (dem

"model dcmo
Modelica
Modelica
Modelica.
Modelica.
Modelica
Modelica

equation
connect (v
connect (
connect (r
connect (1
connect (e
connect (e

end dcmotor
n

Leave and quit

>> quit ()

V.

otor)

tor

.Electrical.Analog.Basic.Resistor rl(R=10) ;
.Electrical.Analog.Basic.Inductor il;

Electrical.Analog.Basic.EMF emfl;
Mechanics.Rotational.Inertia load;

.Electrical.Analog.Basic.Ground g;
.Electrical.Analog.Sources.ConstantVoltage v;

.p,rl.p);

n,g.p);

l.n,il.p);

l.n,emfl.p);

mfl.n,g.p);

mfl.flange b,load.flange a);

7

OpenModelica:

17

1.3 Commands for the Interactive Session Handler

Thefollowing is the complete list of commands currently available in the interactive session hander.

instantiateModel (modelname) Performs code instantiation of a model/class and return a string containing the flat

simulate (modelname)

class definition.
Trandlate amodel named modelname and simulate it.

simulate (modelnamel, startTime=<Real>] [, stopTime=<Rea| >] [, numberOfIntervals

plot (vars)

list ()

list (modelname)
listVariables ()
typeOf (variable)
clear ()
clearVariables ()

timing (€Xpr)

cd ()
cd (dir)
system (Str)

readFile (Str)

runScript (Str)

loadModel (classname)
loadFile (Str)
saveModel (str, modelname)

help ()
quit ()

=<Integer>1) Trandlate and simulate a model, with optional start time, stop time,
and optional number of simulation intervals or steps for which the simulation
results will be computed. Many steps will give higher time resolution, but occupy
more space and take longer to compute. The default number of intervalsis 500.

Plot the variables given as avector, eg. plot ({x1,x2}).
Return a string containing all loaded class definitions.

Return a string containing the class definition of the named class.
Return a vector of the names of the currently defined variables.
Return the type of the variable as a string.

Clear all loaded definitions.

Clear all defined variables.

Evaluate expression expr and return the number of seconds (elapsed time) the
evaluation took.

Return the current directory.
Change directory to the directory given as string.

Execute str as a system(shell) command in the operating system; return integer
success value. Output into stdout from a shell command is put into the console
window.

Load file given as string str and return a string containing the file content.
Execute script file with file name given as string argument str.

Load model or package of name classname from MODEL I CAPATH.

Load Modelicafile (. mo) with name given as string argument str.

Save the model/class with name modelname in the file given by the string argument
str.

Print this helptext (returned as a string).
Leave and quit the OpenM odelica environment

18

Chapter 2

Getting Started with the Graphical Model Editor

This chapter gives a short introduction to graphical modeling. Y ou will learn how to build your own model using the
graphical model editor by using the drag-and-drop technique of already developed and freely available components
from the Modelica Standard Library.

The Modelica Standard Library isloaded into the OpenM odelica environment when the model editor is started and
can be browsed using the class browser visible at the left of Figure 2-1 below.

& MathModelica

Tooks Shape Window Kernel Help

oo " med AN QQFE | RB:o(EP|(Hias Ll

I I

Modelicatdd Modslica

Figure 2-1. The Graphical Model Editor with the class browser to the left, showing icons for the ModelicaAdditions
library and the Modelica Standard library.

To open the library, double click on the Modelica package icon in the class browser to the left. As shown by Figure
2-2, the Modelica Standard Library is hierarchically structured into sublibraries.

19

@ MathModelica
File Edit Yiew Tools Shape MWindow Eernel Help

BRE oV \Hed AN QR RBio(E @HiaELh W

~]
Mech:

echanics Math

7 P —
= I

Electrical Blacks

7 —
I

Slunits leans

—
=

Constants

Figure 2-2. The Graphical Model Editor with the class browser showing the Modelica Standard library opened up into
sublibraries.

Thefollowing list briefly describes the most important sublibraries in the Modelica standard library:

Thermal Components for thermal systems.

Mechanics Mechanical rotational and translational components.

Math Definitions of common mathematical functions, such as sin, cos, and log.
Electrical Common electrica components, such as resistors and transistors.
Blocks Continuous and discrete input/output blocks for use in block diagrams.
SIunits Type definitions with Sl standard names and units.

Icons Graphical layout for many component icons

Constants Common constants from mathematics, physics, etc.

2.1 Your First Model

We will introduce the model editor by showing how to build a model of a simple DC motor. Since the DC motor
includes both electrical and rotational mechanical components the example a so illustrates multi-domain modeling.

20

2.1.1 Creating a New Model

To create a new model, select New Model inthe File menu. A dialog box will appear, in which you will be able to
specify aname of the new model. Enter Motor asModel name.

¥ New Model
Model name:
[Motor |
Description:
| |
Entends:
| |
Inzert into:
| |
Propertiss
[] partial [] encapsulated
[ak.] l Cancel]

Figure 2-3. Dialog box for creating a new model.

When clicking on the ok button of the dialog box a new window will appear. This window presents different views of
the model. A model has two graphical views (Icon and Diagram), and one text view (ModelicaText).

Y our new Motor model will also appear at the top package level in the class browser. Since no icon for the model
has yet been created it is assigned a default icon (a question mark).

21

* MathModelica - [Motor: Diagram View]

B File Edt Yiew Tools Shape Window Kernel Help LIE) X

T LTI IEEDEAYL XYY B R =D (Fia=ii nn
|Cless Browser ________X|

|
I I

todelicaddd. todelica

Figure 2-4. The Graphical Model Editor with the new Mot or model appearing as a question mark icon in the class
browser window to the l€ft.

Now you can assemble the DC motor by drag-and-drop of components from the class browser to the diagram view
window to the right. The constant voltage source component can be found in the
Modelica.Electrical.Analog.Sources package whereas the rotationa mass representing the motor shaft is
located in the Modelica.Mechanics.Rotational package. The other electrical components needed are located in
theModelica.Electrical.Analog.Basic package.

Components placed in the diagram layer window can be graphically transformed using the mouse and keyboard.
To move a component, select it and hold down the left mouse button while moving the mouse. The component will
follow the mouse cursor. Release the mouse button when the component is located at the desired position. If more
than one component is selected, al of them will be moved simultaneoudly.

Scaling of components is done using the handles that are visible when a component is selected. Place the mouse
cursor over one of the handles, click and hold down the left mouse button while moving the mouse.

Components can aso be rotated freely using the handles visible when a component is selected. Place the mouse
cursor over one of the handles, click and hold down the left mouse button and the shift button on the keyboard while
moving the mouse. The mouse cursor will change its appearance while rotating the component.

Pressing the right mouse button when the mouse cursor is placed over a component brings up a menu with suitable
operations.

22

CF MathModelica - [Motor: Diagram View] Elﬁ‘g|
B Ele Edit View Iools Shape MWindow Kernel Help (=& <)

Fd s mE o (M NOCOAR Q& v BBR:co(EE [Hiadih U
|Class Browser ________X]|

|
F— F— L)

Examples

I @ resistar1 inductor
o }a i

Interfaces Sensars

= b
Inetia IdealGear L inertiat
e 1 éﬁ =

R=1 L=1

JuEisU0g

IdealPlanetary IdealGearR2T
= e -
Spring Damper I

-Igju -gj—\l_ﬁ ground?

SpringDamper ElastoBackla.
BearingFriction Chitch

* ¥ v

< >
H: 46,55 i -4.68

Figure 2-5. The Graphical Model Editor with several components dragged into the diagram view, and severa
sublibraries and model classes visible in the class browser window to the left.

When the components have been placed on the drawing area, similar to the figure above, you have to draw the lines
that connect the components. Thisis done using the connector tool from the toolbar:

RN

To connect two components, select the connector tool and place the mouse cursor over a connector, i.e., the square
symbol on either side of the component. When you are close enough, the mouse cursor will change into a cross. Click
and a hold down the left mouse button, drag the cursor to the other connector and then rel ease the mouse button when
the mouse cursor turns into a cross. Continue to connect all components until the model diagram resembles the onein
Figure 2-6 below.

23

F MathModelica - [Motor: Diagram View] EJ@‘E‘
B File Edit Yiew Tools Shape ‘Window Kernel Help =& X]

mE oo (S NOCcOCAR QA BB :o[BE a2 L0 %N

Library

Ewxamples

B
H

Library @ resistar] inductar1
1
Interfaces Sensors L e
o R=1 L=1

L— T

=

Inertia IdealGear 5 imartial

J.—l 4 1 1

L @ —

=g = 55;) E by

] e) E O

|dealPlanetary |dealGeaR 2T

A Ik«

Spring Damper

-[g]ﬂ -[gj—‘un graund?
SpringDamper ElastoBackla,
BearingFriction Clutch

% w

PP - Yl -

Hi-11.39 (Y1 75.70

Figure 2-6. The Graphic Model Editor with components connected into a simple DC motor model.

2.1.2 Changing Parameter Values of Components

To change a parameter value of a component, e.g. the resistance of the resistor, we need to switch to the Modelica
Text View of the class. Click ontheModelica Text View buttonin the toolbar to switch to text mode:

= &5

Whenever we switch from the graphical view to the Modelica Text View after making any changes to the model in
the graphical layers we need to update the text view. Click on the Refresh Class button, also found in the toolbar:

After the text view has been updated it should look similar to the one in Figure 2-7. The order of the component
declarations and connection equations depend on in which order you placed them on the drawing area and connected
them.

24

* MathMod - [Motor: Modelica Text View]
File Edit Yiew Iodls Shape Window Kernel Help (. r=}
‘i BB ooyl NEHee AN Q&8 (RBioBE (HiaSih W
hodel Hotor
Modelica.Electrical.inalog. Sources.ConstantVoltage constantWoltagel (Placement (visible=t
Modelica.Electrical.Analoy.Basic.Ground groundl (Placement (visible=trus, transformation (x
Modelica.Electrical.inalog.Basic.Resistor resistoril (Placement (visible=true, transformati
Modelica.Electrical.Analoy.Basic, Inductor inductorl (P lacerwent (visible=trus, transformati
Examples Modelica.Mechanics.Rotational . Inertia inertial (Placement (visible=true, transformation (=
Modelica.Electrical.Analog.Basic.EMF ENF1 (Placement (visible=Lrue, transformation (x=30,y=
equation
[oyres (ENF1l.flange b, insrtial.flange_a) iLing (visikle=true,points={{40.0,10.03,{60.0,10.0}
. (constantVoltagel.n, groundl.p) (Line (visible=true,points={{-70.0,0.0},{-70.0,-30.0}}
_ _ (groundl.p,EMFl.n) iLing (visikle=trues,points={{-70.0,-30.0},{30.0,-30.03,{30.0,0.0}}
(EMF1.p,inductorl.n) (Line(visible=trus,points={{30.0,20.0},{30.0,50.0},4{10.0,50.0}}
. (resistorl.n, inductorl.p) i(Line(visible=trus,points={{-30.0,50.0},{-10.0,50.0}}1):
Inettia IdealGiear (resistorl.p, constantVoltagel.p) (Line (visikle=true, points={{-50.0,50.0},{-70.0,50.0
.’L_=l end Motor;
4 e
N o
IdealPlanetary ldealGearR2T
A TFe
Spring Damper

T

SpringDarmper ElastoBackla.

g de

BearingFriction Clutch

* &

Lnl Col L

Figure 2-7. The Graphical Model Editor with the Modelica Text View mode showing the new Mot or model. Thisview
also alows text editing of the model.

Locate the line that starts with Modelica.Electrical.Analog.Basic.Resistor. Put the text cursor right after
resistorl and add the text (rR=20). This text is a modification of the resistor component, changing its parameter r
(resistance) from the default value of 1 to 20. The Modelica Text View should now look similar to the one found in
Figure 2-8 below.

25

@ MathModelica - [Motor: Modelica Text View]
le Edit View Tools Shape Window Kernel Help
BH IR oS Nmee AN §FE BRB:oRE Eiaf4L We

fll wod=l Motor

Nodelica.Electrical.inalog.Sources.ConstantVoltage constantVoltagel " annotation(Placement (visible=t
Nodelica.Electrical.inalog.Basic,Ground groundl " annotation (PLACEMEnt (ViSiblestrus, CERRSEOEWAtiON (X
Nodelica.Electrical.inalog.Basic.Resistor resistorl] " annotation (Placement (visible=true, transt
Nodelica.Electrical.inalog.Basic, INANCtor inductorl ' annotation (PLACEment (ViSiBlE=Crus, CEARSIoCMAtl
Examples Modelica.Mechanics.Rotational. Inertia inertial "' annotation(Placement (visible=true, transformation (x=
Nodelica.Electrical.inalog.Basic ENF ENF1 " cnnotation (Placement (viSible=trus, transLormation(x=30,y=
equation
Interfaces Gensars connect [ENF1.£lange_b, inertial.flange_a) =nnotationiline {visible=true,points={20.0,10.0},¢60.0,10.0)
3 connect [constantVoltagel.n, groundl.p) annotacioniline (visible=true,points={{-70.0,0.0},(-70.0,-30.0))
L WL connect (groundl.p,ENF1.n) annotation{Line [visible=tzus,points=((=70.0,-30.0},(30.0,-30.0},£30.0,0.0))
[=] comnect (ENF1.p, induetorl.n) annotacion{Line{visible=true,points=((30.0,20.0},(30.0,50.0},¢10.0,50.0))
connect (resistorl.n, INGUELOrl.p) Annotarion(Line (visiblestrue,points={-30.0,50.0},(-10.0,50.03))):
Ineslis IdealGiear comnect (resistorl.p, constantVoltagel.p) annocacion(Line (visible=true,pointa={{-50.0,50.0},{-70.0,50.0
JEN end Motor:
) ¥
] e
IdealPlanetary |dealGearR2T
B oFa
Sping Damper

o e

SpingDamper ElastoBackla

=

BearingFiicton Cluch

* &

Ln4 Col 60

Figure 2-8. The Modelica Text View of the Motor model, with a modifier R=20 added for the resistor1 component.

When you make any changes to the model in the Modelica Text View you need to click on the apply Class
Definition buttonin the toolbar to confirm the changes:

When you have done this, change class view back to the Diagram View and study the icon of the resistor component.
It should show r=20 instead of rR=1, i.e., the resistance of the resistor is now 20 ohm.

@ MathModelica - [Mator: Diagram View)
M phe [vew Jock ghape Window Lernel pel (=1 =

SH imE oo (hE NOOCARE Q& » AR PP @i =i N
- =
=
Erampe
s 1] =
Lt dutton
| shrary “ [mulﬂ uctor
Indertaces Seraoy
L=l
Ineitis Idealien o+
.p_Ei_ ,.) § T
IdnalFlrmiagy |dnalannRIT
-\ e
Speing Damper
=
Sl ampe Elof ackla
A
& 4
Eearofacton Chutch
A A
¥ w. ~
e, - o B ¥
Xi 5827 ¥i M0.67

26

Figure 2-9. The Diagram View showing R=20 for the resistor1 component.

2.1.3 Translating and Simulating Using the Interactive View

Tranglating and simulating is performed using the Interactive View of the simulation kernel window. To open the
kernel window, select open Kernel Window in the File menu. Enter the command simulate (Motor) in the
interactive view to translate and simulate the model.

by Interactive View

simulate{Motor)
record
resultFile = "Moter res.plt"

end record

Figure 2-10. Theinteractive view of the simulation kernel window, with the simulation command
simulate (Motor).

2.1.4 Plotting

After the model has been translated and simulated, any of its variables can be plotted using the plot command.
Giving the command plot ({inductorl.w, inertial.a}) will bring up the window below.

& tmpPlot. plt E]EJE'

File Edit Special
Plot by OpenModelica
'1D = T T T T T T T T T T T - lnduc10r1 V .
inertial.a ®
nar]
0oL J
1] 1 2 3 4 5] 7 a g 10

Figure 2-11. OpenModelica plot window created by the command: plot ({inductorl.w, inertial.a}), &ftera
simulation of the Motor model.

2.15 Saving and Loading

It is possible to save a model from the model editor. Saving a model will create a Modelica 2.0 standard output file
with the extension . mo. Thisfile can later be loaded back into the model editor.

27

2.2 Keyboard Command Shortcuts

The following are keyboard shortcut commands available in the different windows of the Graphical model editor,
including the text editing window.

2.2.1 Class Window — Common Shortcuts
CTRL + O Open aModelica (.mo) file.

CTRL + Q Quit the model editor.

2.2.2 Class Browser Window

LEFT ARROW Select the class to the left of the currently selected class.

RIGHT ARROW Select the class to the right of the currently selected class.

UP ARROW Select the class above the currently selected class.

DOWN ARROW Select the class bel ow the currently selected class.

ENTER If the selected class is a package; open the package and view its contents, otherwise; open
the class for editing.

DELETE Delete the selected class.

2.2.3 Class Window — Graphical Layer View

CTRL + S Save class present in active class window.

CTRL + Z Undo last undo/redo supported operation.

CTRL + Y Redo last undo/redo supported operation.

CTRL + A Select all items.

DELETE Delete the selected items.

CTRL + W Zoom the view to fit the size of the window.

F5 Switch to afull screen view of the graphical layer.
ESC Deselect dl items, or if the Full Screen view is activated, return to normal view.
SPACE Pointer tool.

c Connector tool.

L Linetool.

R Rectangle tool.

E Ellipse tool.

P Polygon tool.

T Text tool.

B Bitmap tool.

+ Zoom In tool.

28

- Zoom QOut tool.

LEFT ARROW Move selected items | eft, otherwise if no selection move view area left.
RIGHT ARROW Move selected items right, otherwise if no selection move view arearight.
UP ARROW Move selected items up, otherwise if no selection move view area up.

DOWN ARROW Move selected items down, otherwise if no selection move view area down.

CTRL + LEFT ARROW Moveview areato theleft end of the diagram.

CTRL + RIGHT ARROW Moveview areato theright end of the diagram.

CTRL + UP ARROW Move view areato the top of the diagram.

CTRL + DOWN ARROW Move view areato the bottom of the diagram.

SHIFT + LEFT ARROW Small move of selected items left; if no selection move view arealeft.
SHIFT + RIGHT ARROW Small move of selected itemsright; if no selection move view arearight.
SHIFT + UP ARROW Small move of selected items up; if no selection move view area up.
SHIFT + DOWN ARROW Small move of selected items down; if no selection move view area down.
PAGE UP Move view area up.

PAGE DOWN Move view area down.

SHIFT + PAGE UP Move view area | eft.

SHIFT + PAGE DOWN Moveview arearight.

HOME Move view areato the upper left corner.

END Move view areato the lower |eft corner.

CTRL + HOME Move view areato the upper right corner.

CTRL + END Move view areato the lower right corner.

CTRL + L Rotate the selected items 90° to the left (anti-clockwise).
CTRL + R Rotate the selected items 90° to the right (clockwise).
CTRL + H Flip the selected items horizontally.

CTRL + J Flip the selected items vertically.

2.24 Class Window — Modelica Text View

CTRL + P Print the text.

CTRL + A Select all text.

CTRL + Z Undo last edit.

CTRL + Y Redo last edit.

CTRL + X Cut the selected text to the Clipboard.

CTRL + C Copy the selected text to the Clipboard.
CTRL + V Paste Clipboard contentsinto the text editor.
LEFT ARROW Move one character |eft.

RIGHT ARROW Move one character right.

UP ARROW Move oneline up.

DOWN ARROW Move one line down.

29

PAGE UP
PAGE DOWN
HOME

END

CTRL + HOME
CTRL + END
DELETE

Move one page up.

Move one page up.

Move to the beginning of the line.
Move to the end of the line.

Move to the beginning of the text.
Move to the end of the text.

Delete the selected text, or if no text is selected, delete the character to the right.

2.2.5 Interative Kernel Window — Output View

CTRL +

Q

CTRL + A

Copy the selected text to the Clipboard.
Select all text.

2.2.6 Interactive Kernel Window — Input Field

CTRL + X

CTRL + C

CTRL + V

CTRL + Z

CTRL + Y

DELETE

CTRL + A

ENTER

UP ARROW

DOWN ARROW

Cut the selected text to the Clipboard.
Copy the selected text to the Clipboard.
Paste Clipboard contentsinto the text field.
Undo the last operation.

Redo the last operation.

Delete the selected text, or if no text is selected, delete the character to the right.

Select all text.
Evaluate given command.
Step backward in the history of commands.

Step forward in the history of commands.

30

Chapter 3

DrModelica Notebook and Model Editor

This chapter covers the OpenModelica electronic notebook and model editor subsystem, together with the
DrModelica tutoring system for teaching Modelica, which is based on such notebooks.

However, the OpenModelica notebook facility is work in progress, which currently is only partially completed
(see Section 3.3). For these reasons we first present the electronic notebook facility and DrModelica based on the
MathModelica implementation. The OpenModelica electronic notebooks is a simplified version of those notebooks,
that however ill are able to handle the full DrModelica system.

3.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as well as
graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation scripting,
model documentation and storage, etc.

The Notebook facility is actually an interactive WYSIWYG (What-Y ou-See-Is-What-Y ou-Get) redization of
Literate Programming, a form of programming where programs are integrated with documentation in the same
document.

31

2 Evaluated Modeling. Code Generation, and... =] E3

AI
Modelin! 3 Evaluated Modeling, Code Generation, and.__ [E[=] E3 |
Simulatii 4|

Process Bl 7 Evaluated Modeling, Code Generation, and... =] E3
[P —

B e c
- using Mathe Rghecr mrnt canr L T——— = -
E Evaluated Modeling. Code Generation, and... [H[=] [E3
RO Srec ve il domgna con -
e r— ¢ reeskl oFhe mzre 8
e 2 The Seesawf e i =+ LiRrqulntacSainx| ;I
PS50 3 Lk WD DD =x . phpxlcelusluex,
Fumcini In tan menen e ClmjonelMetelx [{1, 5., 1, 5., @, @, @, 0],
- - Than can camly b chaured 4.1 Tdeneitgietcix (2] |3
o 33, S, fn fre—

= ¢ Mt rlxEacm
omccm Proendy

== . Linemciz |E,
ohe e perciur

Iem, 03 Esden L0 EOGUS WLCECL BSOU0E LECES coEOel
SALESLEY 6 00MN LW.RIS 300G L.GREEE _B.JDNLD L5 3EEAL |
gdm, 0,

u The Epeem i, o3,
M Mat el e, 3 The coreml lus m be el 10 gkl e 0 vHL ShER YH AT MERRITMCnm oF g mama The g e
Bbstract e e o Pl cloacd loop maz man e FK e f E = 2 7R
r——— '
The e o wem gt art £ure ' L]
maricy mwzn wer che miaty ' R
A - o 1
oz e mare by recckl |
Cev, which pra £, w7 wone - Lo
ok 1 v or PR ——— sTazatpacs |
frepaprp—. e e = [N
mra e et et
am =
1 Imtroduction = B
T m o o
Corarod mocrs o
Mo pager a | W Zimu heien and S de Generacion

" Pimma

H

Figure 3-1. Examples of notebooks in the MathModelica modeling and simulation environment.

3.1.1 Tree Structured Hierarchical Document Representation

Traditional documents, e.g. books and reports, essentialy always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document itself and its sections usually have headings as labels for
easier navigation. This kind of structure is also reflected in electronic notebooks. Every notebook corresponds to one
document (one file) and contains a tree structure of cells. A cell can have different kinds of contents, and can even

contain other cells. The notebook hierarchy of cells thus reflects the hierarchy of sections and subsections in a
traditional document such as a book.

32

i1
subtity & E RN A
IL L E, 1 B I Is L I, L

[Tarwra wared Ta Y
=)

ackage MyPackage
MyPackage] g modgl class3
Modelica packagel]
end class3;
model class2 ...
1.1 Notes 1 model classl ...
package MySubPackage

model classl

1 Introduction]

2 Package MyPackage]

2.1 Begin package MyPackage | .
2.2 Class?)|
2.3 Class? N end classl;
2.4 Class1 1 end MySubPackage;
2.5 Package MySubPackage 1
end MyPackage;
*.5.1 Beqin package MySubPackage '] Y gei
2.5.2 Classl H
2.5.3 End package MySubPackage n
N

2.6 End package MyPackage

S~ o
@ (b)

Figure 3-2. The package MyPackage in anotebook (a) and as Modelicatext (b).

Modelica packages including documentation and test cases can also be stored as notebooks, e.g. as in Figure 3-1 or
Figure 3-2. Those cells that contain Modelica model classes intended to be used from other models, e.g. library
components or certain application models, can be marked as Modelica code cells. This means that it is possible to
export the Modelica cells in the notebook MyPackage.nb of Figure 3-2a, into a file MyPackage.mo with the
contents shown in Figure 3-2b.

3.2 The DrModelica Tutoring System

Understanding programs is hard, especially code written by someone else. For educational purposes it is essential to
be able to show the source code and to give an explanation of it at the same time.

Moreover, it isimportant to show the result of the source code’ s execution. In modeling and simulation it is also
important to have the source code, the documentation about the source code, the execution results of the simulation
model, and the documentation of the simulation results in the same document. The reason is that the problem solving
process in computational simulation is an iterative process that often requires a modification of the origina
mathematical model and its software implementation after the interpretation and validation of the computed results
corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing efficient
numerical agorithms rather than giving attention to the aspects that should facilitate the learning and teaching of the
language. There is a need for an environment facilitating the learning and understanding of Modelica. These are the
reasons for developing the DrModelica teaching material for Modelica and for teaching modeling and simulation.

33

£ DrModelica.nb * o =] 1
N
Susanna Maonermar
Eva-Lena Lengguist Sandelin
This notebook is developed to facilitate the leaming of the Modelica languase. 1t is a supplementary rcterial to
Fotor Fritzson's book "Frinciples of Object-Oviented Modeling and Simulation” so the page rafevences below
are frar this kool
1 Getting Started 1l
2 A Quick Tour of Modelica]
2.1 Getting Started - First Basic Examples _\
There is a long tradition that the first sample program in any computer language is a tovial program printing the sthag "Hello :)
World" (p. 17). Since Modelica iz an equation based lanmuage, printing a string does not make much sence. Instead, our Hello
World IWodelica program solves a trivial differential equation. The second example shows how you can write a model that solves a
Differential Algebraic Fouation Svstem (p. 17 In the Wan der Pol (p. 19 example declaration as well as itialization and prefiz
ugage are show in a slightly more complicated way. 1
2.2 Classes and Instances 1
In Mlodelica objects are created implicitly just by Declaring Instances of Clagses (p. 237, Almost anything in Modelica iz a class, T
bt there are some keywords for specific use of the class concept, called Eestricted Classes (p. 243 The concept Feuse of
MModeling Knowledge (p. 25) iz an important part of Modelica. Modelica has several built-in types (lke Real, Mtegey, Booleam and
String), which has most of the properties a class has and it is possible to change the walue of them during nin-time. You can read
more about classes in chapter 3.]
2.2.1 Exercises 2l
Exercise 1
Exercise 2
Exercise 3 1
2.3 Inheritance]_
Inheritance (p. 26) iz the ability to extend the behavior and properties of an existing clags. Thiz way the properties of a specific
class can be reused. See chapter 4 for additional details concerning inheritance.
2.3.1 Exercises i
2.4 Generic Classes T
In tnany situations it is advantageous to be able to express Generic Patterns (p. 26) for programs. By doing so a substanitial
amount of coding and software maintenance can be avoided by directly expressing the general structure of the problem and
providing the special cases as parameters. In Modelica the clags construct iz general enough to handle generic modeling and
rograrming, In chapter 4 vou can learn rore about generic classes. i
’—p 100% ~ 4] | v

Figure 3-3. The front-page notebook of the DrModelica tutoring system.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a table of
contents that holds all other notebooks together by providing links to them. This particular notebook is the first page
the user will see (Figure 3-3).

34

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1" by Peter Fritzson. The summary
introduces some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords in
detail.

£ Helloworld.nb *] =10 x|

First Basic Class

1 Helloworld]

The program containg a declaration of a class called HelloWorld with two fields and one equation. The first field 12 the waniable x
which is initialized to a start value 2 at the time when the simulation starts. The second field is the variable a, which 15 a constant that
is initialized to 2 at the beginning of the sunulation. Such a constant 15 prefized by the kevword pararneter in order to indicate that it 1s
constant during sinulation but i a model parameter that can be changed between simulations.

The Modelica program solves a trivial differential equation: =" = - a * x. The wanable x 1z a state variable that can change
value over time. The x ' 1 the time denvative of x.

zlass HelloWorld
Real xistart = 1};

parameter Real a = 1;
equation
deri(x) = - a * x;

end HelloWorld

2 Simulation of Helloworld]

Simulate [HelloWorld, {t, 0, 4}]

<fimulationData: HelloWorld : Z00Z-10-31 11:
29:12 : {0., 4.} : 502 data points : 1 events : 3 wariables>

{a, = x7}

PlotSimulation[x[t], {t, 0, 4}, AxesOrigin = {0, 0}]

—x[t]

1

0.8

0.6

0.4

0.z

t
1 2 3 4

J1 e
[1259 -~ 4]] o4

Figure 3-4. TheHellowWorld class simulated and plotted using the MathM odelica version of DrModelica

Now, let us consider that the link “HelloWorld” in DrModelica Section 2.1 in Error! Reference sour ce not found. is
clicked by the user. The new notebook, to which the user is being linked (see Figure 3-4), is not only a textual

35

description but also contains one or more examples explaining the specific keyword. In this class, HelloWorld, a
differential equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write his’her own programs or copy
examples from other notebooks. This new notebook can be linked from existing notebooks.

DriModelica.nb =[O =]
|l
9 Algorithms and Functions]
2.1 Algorithms]_

In Ilodelica, algorithrmic statements can only occur within Algorithen Sections (p. 2217, starting with the keyword algorithm
Simple Assignment Statements (p. 2227 is the tost common kind of statements in algorithm sections. There is a special form of
azsignment staternent that iz ondy used when the right hand side contatnz a call to a Function with Whltiple Besults (p. 2237

The for-Statement (alzo called for-loop) i a convendent way of expressing iteration (p. 2230 When using the for-loop for
iteration we must be able to express the range of values over which the iteration wariable should iterate in a closed form as an
iteration expression. For cases where this is not feasible there iz also a2 While-loop iteration construet in Modelica (p. 2240 For
conditional expressions the if-Statement (p. 225) is used. When- Staternents (p. 226) are used to express actions & event
instemits and are closely related to when-sgquations. The Beindt (p. 2290 staternent can be used in when-staternents to define new
values for contimious-time stafe variables of a model at an event.

The Assert (p. 2317 staternent provides a conwvendent means for specifying checks on model validity within a rmodel.
The most cornon usage of Terminate (po 2310 is to give more appropriate stopping criteria for terminating a sirmilation than a
fizzed point in tirne.

0.1.1 Exercises 71

Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5

9.2 Functions]_

The body of a Modelica function is a kind of algonithem section that contains procedural algoritbrric code to be executed when the
function is Called (p. 233). Since a function is a restricted and enhanced kind of class, it is possible to inherit an existing function
declaration in the declaration of a new function. In this way we can declare the cotenon structure of a 2et of functions as a
Partial Base Function (p. 234 which can be inherited into the functions we want to define. & function with more than one output
fortnal paramneter has MWultiple Fesultz (p. 2357, [t iz pogsible to call functions defined owtside of the Modelica language, so called
External Functions (p. 237).

9.2.1 Exercises 711
Exercise 1
Exercise 2
Exercise 3

10 packages]

What is a Package?]

10.1 Packages as Abstract Datatypes]
The notion of a package partly originates from the notion of Abstract Data Type (p. 247).]

| 100% ~ 4] | v

Figure 3-5. DrModelica Chapter 9 in the main page of the MathModelica version of DrModelica.

36

When a class has been successfully evaluated the user can simulate and plot the result, as depicted in Figure 3-4 for
the simple He11oworld example model..

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by doing
the exercises that concern the specific chapter. Exercises have been written in order to elucidate language constructs
step by step based on the pedagogical assumption that a student learns better “using the strategy of learning by
doing”. The exercises consist of either theoretical questions or practical programming assignments. All exercises
provide answers in order to give the user immediate feedback.

Figure 3-5 shows Chapter 9 of the DrModelica teaching material. Here the user can read about language
congtructs, like algorithm sections, when-statements, and reinit equations, and then practice these constructs by
solving the exercises corresponding to the recently studied section.

Exercisel_nh - O] x|
1 Using Algorithm Sections]
Wiite a fimction, Suw, which caleulates the sum of mumbers, in an array of athitrary size. j
Wite a fimction, Average, which calculates the average of nardbers, in an arvay of athitrary size. Average should use make a fimction call to Sun. }

White a class, Largestawverage, that has two arrays and caleulates the average of each of them. Then it compares the averages and sets avariable to true ift b
the first array is larger than the second and otherwise false.

1.1 Answer 11

-

| 100% « 4| |

Figure 3-6. Exercise 1 in Chapter 9 of DrModelica.

Exercise 1 in Section 9.1.1 is shown in Figure 3-6. In this exercise the user has the opportunity to practice different
language constructs and then compare the solution to the answer for the exercise. Notice that the answer is not visible
until the Answer section is expanded. The answer is shown in Figure 3-7.

37

I Exercisel.nb

1.1 Answer

1.1.1 Sum

function Jum
input Reall[:] =:
output Real sum;

algorithm
for i in l:size(x,l) loop
sum = sum + x[i]:
end for:
end Sum;

1.1.2 Average

function Average

input Real[:] =:

output Real awerage;
protected

Real sum;

algorithm

average = Jumix) f sizeix,l):;
end bveradge;

1.1.3 LargestAverage

class Largestdwverage
parameter Integer[:] &4l = {1, 2, 3, 4,
parameter Integer[:] A2 = {7, &, 9}:
Real awveragedl, averagedl:
Eoolean &lLargest(start = false):

algorithm

averageldl := Average (Al):

averaged? := Average [AZ):

if averagedl > awveragedz then
Allargest := true;

elze
Allargest := false;

end if;

end Largestdwveradge;

a}:

1.1.4 Simulation of LargestAverage

Simulate[Largestiverage, {t, 0, 1}]

=SimulationData: Largestdwverage : 2002-10-10 11:

28:45 @ f0., 1.} : 502 data points : 1 events : 13 wariables=
{&1[1] , &1 =] , &1 3] , &1 04 , &A1 [5] , &1lLargest, AZ[1] .,

L2 [2] . A2 [3] , averagedl, averaged?, _derdunmy, —dunmy?}

Wher wee look at the values in the varisbles we see that A2 has the largest average (8) and therefore the warlable &1Largest is

false (= 0).

0., 3., 8.1

{Allargest[1], averageRli[1] , averageh2?[1]}

100% « 4

Figure 3-7. The answer section to Exercise 1 in Chapter 9 of DrModelica.

3.3

Simple DrModelica Notebooks in OpenModelica

1A

38

As mentioned in the introduction to this chapter, the OpenModelica notebook facility is a simplified
implementation of the basic electronic notebook facilities, but advanced enough to represent hierarchical
documents, simple type setting, text editing, etc., which is enough to be able to read in the whole
DrModelicateaching material.

Eile Cell Edit Help

Version 2604-02-13]

DrModelica]

Copyright: () MathCore Ehgineering AB, 2003,

Copyright: (c) FELAE Linkopings Universitet, 2003

Contact: support@mathcore com Authors: Susanna Monemar, Eva-Lana Lengquist Zandalin, Peter Friteson, Feter

All rights reserved Reproduction aor use of editarial or pictarial content in any manner is prohibited without expressed permission,if such
caontent is not available by permission from another source Mo patent liahility is assumed with respect to the use of the information
caontained herein.While every precaution has been taken in the preparation of this manual the publisher assumes no responsihility for
errors or omissions.Meither is any liahility assumed for damages resulting from the use of the information contained herein.

This notehook is developed to facilitate the learning of the Modelica language. It is a supplementary material to
Feter Fritzson's book "Principles of Object-Criented Modeling and Simulation with Modelica® (Wiley-lEEE Press,Z003)
50 the page references helow are from this book.

Getting Started 11

When starting to use this material it is necessary to first change the directory to the path where this file
is located. This is done in the setDirectory cell below. To evaluate a cell just click in the specific cell and
press shift + enter.

In this file, important cells are initialization cells, so when evaluating one cell a message will appear
asking: "Do you want to automatically evaluate all initialization cells in the notebook Driviodelica”. If you
want the cells o be evaluated just press "yes"

| class Hellioworld]

1L

A cell has to be evaluated before it is possible to simulate it. In the "File" menu under "Palettes” there is a tool called

"MattdodelicaP alette”, which can be used as a shorcut to basic functionality, instead of typing it by hand, a button can be clicked. To
simulate a class, just press the Simulate[..] button in the MathiodelicaPalette and add the class name instead of "JPlaceholder]”. After
simulating as class it is possible to plot or just ook at the values of the variables in the class. When writing Modelica code the style of
the input cell must he changed from input to Modelicalnput. This can be done in one of two ways, either by selecting the cell bracket
of an existing cell, then click the right mouse-button and choose "Style” -= "Modelicalnput”. Or by clicking the kodelicalnput-button
on the MathhodelicaPalette, which will create a new cell of the style Madelicalnput.

A Quick Tour of Modelica

Getting Started - First Basic Examples :|

There is a long tradition that the first sample program in any computer language is a trivial program l
]

| L
1

printing the string "Hello World" (p. 19). Since Modelica is an equation based language, printing a string
does not make much sence. Instead, our Hello World Modelica program solves a trivial differential
equation. The second example shows how you can write a model that solves a Differential Algebraic
Equation System (p. 19]. In the Yan der Pol (p. 22) example declaration as well as initialization and
prefix usage are shown in a slightly more complicated way.

Classes and Instances

|

Figure 3-8. The start page (main page) of DrModelica in the OpenModelica notebook system.

This is exemplified by Figure 3-8, showing the DrModelica main page (start page) in the teaching
material.

As can be seen from Figure 3-9 and Figure 3-10, the OpenModelica notebook implementation can
already represent the hierarchical structure of documents, cells, etc., but lacks some polishing in terms of
formatting and available commands. Also, no graphic information can currently be represented.

39

Gt Hotebook: home/z0dingaz/codefexjobb/code/thunk/Driodelica.nty

Eile Cell Edit Help

o T e

oo
contained herein,

This notebook is developed to facilitate the learning of the Modelica language. It is a supplementary material to
Peter Fritzzon's book "Principles of Ohject-Oriented Modeling and Simulation with Modelica” (Wiley-IEEE Press,Z2003)
s0 the page references helow are from this book.

Getting Started

A Quick Tour of Modelica

Classes, Types and Declarations

Inheritance, Modifications and Generics
Components, Connectors and Connections
Literals, Operators and Expressions

Arrays

Equations

Algorithms and Functions

Packages

Annotations, Units and Quantities

System Modeling Methodology and Continuous Model
Representation

Modeling Discrete Events and Hybrid Systems
Basic Laws of Nature

Application Examples

[P (- - A S S S S S R | W —

Figure 3-9. The DrModelica main notebook in OpenModelica with most cells closed, only showing the
title of each cedll, thus creating aform of table-of-contents for the notebook.

Figure 3-9 shows the main notebook of DrModelica will al cells closed, only showing the heading of
each cell/section. This looks like a kind of table-of-contents, which is convenient for navigation in the
notebook. To read a closed section, just click on it and it will open.

40

o abibliune s R dsiisEquaksnaigidailsieny
Eile Cell Edit Help

Out[3]= 12

infarmation contained herein.While every precaution has been taken in the prepa{ratiun of this manual,t'he publisher assumes no
responsibility for errors or omigsions. Meither is any liahility assumed for damages resulting from the wuse of the information
contained herein.

This notebook is developed to facilitate the learning of the Modelica language. It is a supplementary material to
Peter Fritzzon's book "Principles of Ohject-Oriented Modeling and Simulation with Modelica” (Wiley-IEEE Press,2003)
s0 the page references helov are fram this boaok.

Getting Started

YWhen starting to use this material it is necessary to first change the directory to the path where this
file iz located. This is done in the setDirectory cell below. To evaluate a cell just click in the specific
cell and press shift + enter.

In this file, important cells are initialization cells, so when evaluating one cell a message will appear
asking: "Do you want to automatically evaluate all initialization cells in the notebook Crivodelica”. If
you want the cells to be evaluated just press "yves".

Inf3li= | 5+7]

(-]

A cell has to be evaluated before it is possible to simulate it. In the "File” menu under "Palettes” there is a tool called
"MathodelicaPalette”, which can be used as a shortcut to basic functionality, instead of typing it by hand, a button can he
clicked. To simulate a class, just press the Simulate[..] button in the kMathidodelicaPalette and add the class name instead of
"“[Placehalder)”. After simulating as class it is possible to plot ar just look at the values of the variables in the class. When
wiriting Modelica code the style of the input cell must be changed from input to Maodelicalnput. This can he done in one of two
ways, either by selecting the cell bracket of an existing cell, then click the right mouse-buttan and choose "Style" -=
"Modelicalnput®. Or by clicking the Modelicalnput-button on the tMathhdodelicaPalette, which will create a new cell of the style

A Quick Tour of Modelica

Classes, Types and Declarations
Inheritance, Modifications and Generics
Components, Connectors and Connections

| PP P . S P —

e

Figure 3-10. The OpenModelica DrModelica notebook, showing the evaluation of a simple expression
(5+7) in acell, followed by the creation of an output cell to contain the result: 12..

The OpenModelica Notebook facility is coupled to the OpenMaodelica compiler and simulator, thus

allowing evaluation of expressions, simulation of models, and interactive session commands as specified
in Section 1.3.

3.4 OpenModelica Notebook Commands

The

The

current prototype of OpenM odelica notebooks support the following operations:

Opening and closing groups of cells by double clicking the hierarchical tree view (to the right).

Evaluation of Modelica code, commands, and expressions in input cells by typing
SHIFT+RETURN. The evaluation results are shown in a created output cell.

Opening and loading notebook files stored in XML-format Command: CTRL+0).
Opening and loading notebook files stored in FullForm Mathematica notebook format.
Saving notebook filesin XML format. (Command: ?7?)

Terminating the notebook subsystem (ALT+Q Or ALT+F4).

Select acell, by asingle click on the cell in the tree view to the right.

Possihility to edit the style template to change the appearance of different cell types.
Move cursor, by CTRL + UP ARROW Of CTRL + DOWN ARROW.

Close current document (CTRL+W).

Select and copy text inside acell.

following functionality is ongoing work and is currently being implemented:

4

Removing selected cells.
Pasting cells.

Change type setting style for a cell.

Clickable active links that opens the linked document when clicked on the link. The DrModelica
notebook contains many such links.

Moving the cursor by using the mouse.

Editing textin acell.

Color marking and indentation of Modelica code.
A more complete menu system.

Pasting text into a cell.

Moving acell by dragging it in the tree view.
Pasting graphic images into special graphic cells.

42

Chapter 4

Emacs Textual Model Editor/Browser

The Emacs Modelica mode provides facilities for keyword highlighting, suppressing annotations, etc.

(?? Describe those facilities, including how the Modelica mode is started).

Another quite useful facility is the Speedbar menu, depicted in Figure 4-1. (?? This Screendump shows
the same facility used for RML code, not Modelica code. Needs to be updated)

<+> yaccpar
[+]
[+] Makefile.in
[-] absyn.rml
{-} Types
{+} L to Direction
{=3'B
ExternalDecl
Exp
Elementittributes
Each
Elementiry
Equation
Equationlten
ElementSpec
Element

Makefile

v

NV VYN YOV OV Y

ElementItem

v

Enurliteral
{+} Functionirgs to Within
{-} Relations

£ lement_spec_nawme
> path_string

> opt_path string

> path _string2
s[lpath_last_ident
path_first_ident
get_cref_from_exp
get_cref from farg
get_cref from_narg
join_paths

strip last

cref _to_path
path_to_cref
cref_get first
restr_string
print_restr
last_classnane
print_shsyn_exp
cref_squal
algorithm.rml
builtin.rml

v

B A

v

[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
£<

ceval.rml
classinf.rml
classloader .rml
codegen.rml
connect.rml
corba.rml
SPEEDEAR 40

—ioix|

b

El

5

3 =lolx]

—
& absyn.rml = -
File Edit Options Buffers Took Help

end

(** relation:
P
#r Helper relation to path string
L)

relation path stringz: (Path, string) =»> string =
axiom path stringz (IDENT(s),] => =
rule path_stringz(n,str) =»> ns &
string appendis,str] => sl &
string appendisl,ns) => ss
path stringz (QUALIFIED(s,n), str] =» s=

end

(** relation: path last ident
P

*r Returns the last ident (kfter last dot) in a paht

rule path_last_ident(p] =» res
path last_ident (QUALIFIED(_ ,p]) => res
axiom path last ident (IDENT(n]) =»> n

end

(** relation: path first_ident
P

** Returns the last ident (ifter last dot) in a paht
B

relation path first ident : Path =»> Ident =
axiom path first ident (QUALIFIED (n,pj) => n

axiom path first ident (IDENT(nj) =»> n
end

(** relation: get_cref from exp
p

—-(Unix]—— absyn.rml (RHL Win CVS-1.86 Fill)--L464-—70%

Figure4-1. Emacs with a speedbar menu to the left, which allows clicking on file names (for expansion
or closing the file contents menu). An expanded file shows all function, class, and type declarations. By
clicking on one of those, you can position the editor at the appropriate definition.

Give the command M-x speedbar to start the Speedbar menu. See Section 6.1 for an explanation to the

notation M-x, etc.

When you open files the speedbar menu will automatically update itself. Y ou can double-click with
the left mouse button or single-click with the middle button to expand trees, and jump between files and

program definitions.

3]

At the top you see the search path to the current directory, where you can click on the directory
names at different levels to jump back and forth in the hierarchy. Subdirectories are visible in the tree as
expandable nodes.

It isalso possible to right-click in the speedbar window to have a menu appear.

Chapter 5

Eclipse Plugin Model Editor/Browser

The Eclipse plugin is currently in a prototype stage. The following functionality is available, but need to
be dightly improved before the first release:

o A Modélica package browser is available for browsing packages and classes.

o Integration with the Eclipse text editor is available.

e The Eclipse editor works well and has been extended with Modelica syntax highlighting and
automatic indentation.

e Thebasic platform functionality is available but need to be improved.

Chapter 6

Modelica Algorithmic Subset Debugger

This chapter presents a comprehensive Modelica debugger for an extended algorithmic subset of the
Modelica language. This replaces debugging of algorithmic code using primitive means such as print
statements or asserts which is complex, time-consuming and error- prone.

The debugger is portable since it is based on transparent source code instrumentation techniques that
are independent of the implementation platform.

The usual debugging functionality found in debuggers for procedura or traditional object-oriented
languages is supported, such as setting and removing breakpoints, single-stepping, inspecting variables,
back-trace of stack contents, tracing, etc.

We presents the debugger functionality by a debugging session on a short Modelica example. The
functionality of the debugger is shown using pictures from the Emacs debugging mode for Modelica
(modelicadebug-mode).

Note 1: The current (March 2005) implementation of the debugger only works together with the
Modelica compiler version that supports an extended algorithmic subset of Moddlica, without equations
and simulation, but including meta-programming support. Both compiler versions will be merged into a
single version in the near future.

Note 2: when applying the debugger to debug the OpenModelica compiler itself, give the make
debug command to compile the code with debugging turned on, or just the command: make, to compile
it without debugging support.

6.1 The Debugger Commands

The Emacs Modelica debug mode is implemented as a specialization of the Grand Unified Debugger
(GUD) interface (gud-mode) from Emacs. Because the Modelica debug mode is based on the GUD
interface, some of the commands have the same familiar key bindings.

The actual commands sent to the debugger are also presented together with GUD commands
preceded by the Modelica debugger prompt: mdbes.

If the debugger commands have several aternatives these are presented using the notation:
alternativel|alternative2]....

The optional command components are presented using notation: [optional].

In the Emacs interface: M-x stands for holding down the Meta key (mapped to A1t in general) and
pressing the key after the dash, here x, ¢-x stands for holding down the control (ctrl) key and
pressing x, <RET> isequivalent to pressing the Enter key, and <spc> to pressing the space key.

6.2 Starting the Modelica Debugging Subprocess

The command for starting the Modelica debugger under Emacsis the following:

M-x modelicadebug <RET> executable <RET>

46

6.3 Setting/Deleting Breakpoints

A part of a session using this type of commands is shown in Figure 6-1 below. The presentation of the
commands follows.

macs@kafka.carafe.idaliu.se 8 x|
File Edit Options Buffers Tools Complete [nfOut Signals Help

e x b @d P2

function sval
input Exp ewxp_l:
output Real rwal_1:
algorithm
rual_1 :=
match exp_l
local Integer wl.w2:
W el,.eZ:
caze RCOMST{v1) then wi:
caze PLUS(el,e2) equation
vl = evaliell: w2 = evalieZ):
then vl+vZ:
caze SUB(el,.e2) equation
viF evalield: 2 = evalie2):

-—{00S)-- ewal.no {Modelical--L14--C8--Top-—----—----
Current directory is Aoygdrivesc/homedadrpos/docdprojects/mod @
%licaﬁﬁodelicaEDnFerenceQOOEftestsf

Init

moblE> - Modelica debugger

melb@> - 2002, 2003, 2004, LIU/IDAAPELAE. adrpo@ida,liu,se
modblE> - debugging process 2800

mdb@> - on tty:sdewsttyl

ndb@>Breskpoint oni [eval.mo:?] added to breakpoints list,
mdb@>Breskpoint on: [eval.mo:ll] added to breskpoints list,
melbB > Breskpoint on: [eval.mo:ld] added to breskpoints list,
nclbi@>show

—————————— CURRENT BREAKPOINTS ---------

#0 -> eval,maid

#1 -> eval mo:il

#2 -> eval.mo:ld

niclo@ e lear
Breakpoints list cleared
ki@ >
lil;** *gudx {Debugger frun—-L18--C5--Al1-—--------

Figure 6-1. Using breakpoints.
To set abreakpoint on the line the cursor (point) is at:

C-x <SPC>
mdb@> break on file:lineno|string <RET>

To delete a breakpoint placed on the current source code line (gud - remove):

C-c C-d
C-x C-a C-d
mdb@> break off file:lineno|string <RET>

Instead of writing break one can use alternativesbr |break | breakpoint.
Alternatively one can delete al breakpoints using:

mdb@> cl|clear <RET>

Showing al breakpoints:

mdb@> sh|show <RET>

6.4 Stepping and Running

To perform one step (gud-step) in the Modelica code:

C-c C-s
C-x C-a C-s
mdb@> st|step <RET>

To continue after a step or a breakpoint (qud-cont) in the Modelica code:

47

C-c C-r
C-x C-a C-r
mdb@> ru|run <RET>
Examples of using these commands are presented in Figure 6-2.

'emacs@kafka.carafe.ida.lin.se 13l

File Edit Options Buffers Tools Complete InfOut Signals Help

Cw®x 0l ?

function swval
input Exp exp_l:
output Real rval_1:
algorithm
rval_1 :=
match exp_1
local Integer wil.w2:
Exp el.e2:
case[FCOMSTEvLY then wiz
caze PLUS{el,e2) equation
vl = evalield: w2 = evalieZl:
then wl+v2:
caze SUB(el.e2) equation
vl = evalield: w2 = evalieZ):

then vl-v2:
caze MIL{el.e2) equation
vl = evalield:r o2 = evalied):
then wl=e2:
caze [IVi{el.e2) equation
--{00S)-- eval.no {Modelica}--L9--Co--Tgp---=—===-==----- 9
Current. directory iz Aocygdrive/c/homedadrpos/doc/projecte/modelica @
/MHodelicaConference2005/ tests/
[Init]

mobE> - Modelica debugger

molbi@> - 2002, 2003, 2004, LIU/IDASPELAE. adrpolida, liu,se
mobE> - debugging process 3716

molbl> - on tty:iddevwittyl

nob@>Breakpoint oni [eval.mo:9] added to breskpoints list,
molh@>Breakpoint on: [eval,mo:1l] added to breskpoints list,
nolb@>[Parse]

4-16/2%3+10

[Ewall

Breaskpoint [1], on eval.mo:ll reached
eval,.moill,7Bevallcallievaliely => (vl}
nclbE@ > 1run

Breakpoint [0]. on eval,mo:9 reached
eval ,mot9, BRevalBaxion tRCONST (w1} => {(wll
I =eR] |

I__!T** *guchx {Debuggertrund--L20--L5--All-———---——--——- q

Figure 6-2. Stepping and running.

6.5 Examining Data
There are no GUD keybindings for these commands but they are inspired from the GNU Project
debugger (GDB).
To print the contents/size of a variable one can write:

mdb@> pr|print variable name <RET>
mdb@> sz|sizeof variable name <RET>

at the debugger prompt. The size is displayed in bytes.
Variable values to be printed can be of a complex type and very large. One can restrict the depth of
printing using:
mdb@> [set] de|depth integer <RET>
Moreover, we have implemented an external viewer written in Java called Modelicabataviewer tO
browse the contents of such alarge variable. To send the contents of a variable to the external viewer for
inspection one can use the command:

mdb@> bw|browse|gr|graph var name <RET>

48

a the debugger prompt. The debugger will try to connect to the Modelicabataviewer and send the
contents of the variable. The external data browser has to be started a priori. If the debugger cannot
connect to the external viewer within a specified timeout a warning message will be displayed. A picture
of the external ModelicabDataviewer tool is presented in Figure 6-3.

-iix]

| | Modelica Data Viewer
=] Modelica Variables
B et:Exp
E—_l SUB:record
| | RCONST:record
L # 4Real
;l MUL:recaord
;l D% record
| RCONST:record
L% 1EReal
| RCONST:record
—# zReal
| RCONST:record
L% 3Real

EHC) e2Exp
5] RCONST:recard
L ® 10Real

Modelica Data Viewer (Browser) Help

Quick crash-course on Modelica variable exploring

Start the wiewer before starting the debugger

< (thiz could be rectified in the future so that the
viewet iz started by the debugger)

Click on wariable name inside the tree to explore a variable o
[More could be added here in the future] |

Figure 6-3. Modelica Data Viewer (Browser) for data structures, here a small abstract syntax tree.

If the variable which one tries to print does not exist in the current scope (not alive variable) a notifying
warning message will be displayed.

Automatic printing of variables at every step or breakpoint can be specified by adding a variable to a
display list:
mdb@> di|display variable name <RET>
To print the entire display list:
mdbe> di|display <RET>
Removing adisplay variable from the display list:
mdb@> un|undisplay variable name <RET>
Removing all variables from the display list:
mdb@> undisplay <RET>
Printing the current live variables:
mdbe> 1i|live|livevars <RET>
Instructing the debugger to print or to disable the print of the live variable names at each step/breapoint:

mdb@> [set] li|live|livevars [on|off]<RET>

Figure 6-4 shows examples of some of these commands within a debugging session:

49

'emacs@kafka.carafeidaliuse o =]

File Edit Options Buffers Tools Complete InfOut Signals Help

O w®x LS P ?

cutput Real rwal_1:

alzorithm
rval_1 :=
match exp_1
local Integer wil.w2:
wp el e2:

case RCOMST{vl) then wi:
caze PLUS(el.e2) equation
vl = evalield: w2 = evalieZ):
then wvl+y2:
caze SUB{el.e2) equation
vl = evalield: [u2 = evalie2):
then wl-v2:
caze MIL{el.e2) equation
--iI0S)-- eval.mo {Modelicar-—-L 14--C21-- B¥-————-—=--——- |
Breakpoint [1]. on eval.mo:ll reached
eval ,moill,7EevalBcall jevaliely => (vll
nclbE@ > 1run

Breakpoint [0]. on eval,mo:9 reached
eval.mot9.8feval@axionRCONST (w1} =3 (vl
ncdb@xprint vl

Resultsi[not in current context]
FParameters vl=4

nolh@ st

eval,moild, 23Revalloallieval (e2) =3 (w2}

mnodkb@>print e2

Resultsi[not in current context]

Parameters te2=MUL (DIV(RCOMST (163 RCONST (233 RCONST (30
ncdb@rdisplay e2

Resultsi[not in current context]

Parameters je2=MUL (DIV(RCOMST (163 . RCONST (23 » .RCOMST (32
Variable: [e2] added to display variabile list,

modk@rdisplay
—————— LIST OF DISPLAY VARIABLES ------
#0 -> eZ
ncdb@undisplay
List of display varishles cleared,
=eh |
l—i_—l:** *gudx {Debuggerirun?--L38--C5--Bot——----------——- |

Figure 6-4. Examining variable values using print and display commands.

6.6 Additional commands

The stack contents (backtrace) can be displayed using:
mdb@> bt |backtrace <RET>
Because the contents of the stack can be quite large, one can print afiltered view of it:
mdb@> fbt|fbacktrace filter string <RET>
Also, one can restrict the numbers of entries the debugger is storing using:
mdb@> maxbt |maxbacktrace integer <RET>
For displaying the status of the Modédlica runtime:
mdb@> sts|stat|status <RET>
The status of the extended Modelica runtime comprises information regarding the garbage collector,

allocated memory, stack usage, €etc.
The current debugging settings can be displayed using:
mdb@> stg|settings <RET>
The settings printed are: the maximum remembered backtrace entries, the depth of variable printing, the
current breakpoints, the live variables, the list of the display variables and the status of the runtime
system.
One can invoke the debugging help by issuing:

mdb@> he|help <RET>

For leaving the debugger one can use the command:

50

mdb@> qu|quit|ex|exit|by|bye <RET>

A session using these commands is presented in Figure 6-5 below:

emacs@kafka.carafeidalivse

=10]

File Edit Options Buffers Tools Complete In/Out Signals Help

@ X 0GP ?

output Real rwal_1:

algorithm
ryal_l 1=
match exp_1
local Integer vl w2:
Exp el.e2:

caze RCOMST(v1) then vl
caze FLUS{el,e2} equation
vl = evaliellr w2 = evalisl):
then vl+ud:
caze SlE{el.e2} equation
vl = evaliell: [W2 = evalis2):
then vi-uv2:
caze MIL{el, e2) equation
wl = evaliell: w2 = evalis2):
then vixw2:
caze NIV{el, e2) equation
{D0S)-- ewal.no

{Modelicar--L14--C21-—- E¥-——-—-—---o

nokE>display

—————— LIST OF DISPLAY VARIAELES ------
#0 -» 2

nokbErundisplay

List of display variables cleared,

nob@ bt

STACK
#0 ->eval.mo;ll,7,11,20 relation[eval].goallcallievaliel) => (wi)]
#1 -»eval.moild,7,14,20 relation[evall.gzoallcallievaliel) =¥ {wi}]
#2 -reval,moi9,8.9,17 relation[evall,goallaxioniRCOMST (vl =» {v1)]
#3 ->eval.moild,23,14,36 relation[evall.goallcallievalis2) =» {u2)]

nokbE>stell

————————————————————— CURREMT SETTINGS
nax backtrace entries: 100
depth of wariable print:

execution type! step
print names of livevars each step: false
Variables printed at each step/breakpoint:
—————— LIST OF DISPLAY VARIAELES ------
Mo display varishles are zet

breakpoints:

—————————— CURREMNT BREAKPOINTS ---------
#0 -> sval,moy9
#1 -» ewal,mosll
tiy: édeu/t,tgl

{Debugger3rund=-L 45 --C8- a5 -———=-—c-—c--ooooo oo 1

——iEE RgUOdx

Figure 6-5. Additional debugger commands.

6.7

In order to faster get to an interesting place when debugging a large program such as the OpenModelica
compiler itself, you can put a breakpoint at the place where you would like to start the investigation, but
give the fast debug command when starting the execution from the beginning. In that case the
debugger will avoid saving backtrace and variables up to this breakpoint. Then you can turn off
backtrace and run the debugger as usual.

6.8

Hints for Debugging Large Programs

Summary of Debugger Commands

The following isacomplete list of the current debugger commands

br |break |breakpoint string [on|off]
cl|clear

sh|show

bt |backtrace

fbt | fbacktrace filter

Setting/unsetting breakpoints
Clear all breakpoints

Show all breakpoints

Print the backtrace (stack)
Print filtered backtrace (stack)

mb | maxbacktrace int (O=full, default=0) Set the maximum of backtrace entries (stack).

ca|callchain

fca|fcallchain filter

Print the call chain
Print filtered call chain

51

mc |maxcallchain integer

[set] de|depth integer
[set] ms|maxstring integer

set st|step [on|off]
st |step|<ENTER> | <CR>
ne|next

ru|run

stg|settings

he |help
sts|stat|status

li|live|livevars

[set] li|live|livevars [on|off]

pr|print var_name
sz|size|sizeof var_name
di|display var_name
ud|undisplay Var_name
di|display
ud|undisplay

gr|graph var_hame
pty|printtype identifier
fa|fast

qu|quit|ex|exit|by|bye

Index

literate programming, 30

Set the maximum of callchain entries. (O=full, default=100)

Set the depth of variable printing. (O=full, default=10)

Set how may chars we print from long strings. (O=full,
default=60)

Set the execution mode.

Perform one step.

Jump over next statement.

Run the program.

Print the current settings.

Showing help.

Printing the status of Modelica runtime.
Print the names of live variables.

On/Off printing names of livevars each step.
Print the live variable.

Print sizeof the live variable.

Display thelive variable each step.
Un-display thelive variable.

Show display variables.

Un-display ALL display variables.

Send the live variable to external viewer.
Print type info on any Modelicaid.

FAST debugging: no backtrace, callchain, livevars.
Exiting the debugger/program.

