OpenModelica Users Guide

Version 0.3, October 2005

Very Preliminary Draft, 2005-10-11

PELAB — Programming Environment Laboratory
Department of Computer and Information Science
Link&ping University, Sweden

Copyright © 2002-2005, PELAB, Department of Computer and Information Science, Linkdpings
universitet.

All rights reserved.
This document is part of OpenModelica, www.ida.liu.se/projectsOpenModelica

(Here using the new BSD license, see aso http://www.opensource.org/licenses/bsd-li cense.php)

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redigtributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

e Redigtributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materias
provided with the distribution.

e Neither the name of Linkdpings universitet nor the names of its contributors may be used
to endorse or promote products derived from this software withoutspecific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS'" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

LI o L o) 0 01 £ SRS 5
Preface 7

(O T o) (=t R o1 4 oo 11 ox o] o ST 8

11 SYSLEM OVEIVIEIW ...ttt b ettt b et bbb 9

111 Implementalion SEBIUS........cccvieereerireereesieseeseeneesseeseesaeseeeessesseeeeseesteeneessesneeeeseesseeneenes 10

12 Interactive Session With EXaMPIES.........ccviieciiiiicicces et 10

13 Commands for the Interactive Session Handler ..o 17

Chapter 2 Getting Started with the Graphical Model EdItor ... 19

21 YOUr FIFSEIMOE ...ttt st 20

211 Creating aNEW MOCEccoouiiiiiee bbb 21

2.1.2 Changing Parameter Values of COMPONENTS.........cccevirierereriereeneseseeseeseseeseeseseeneens 24

2.1.3 Trandating and Simulating Using the Interactive Viewccccccvvvvecevevvcecccecceecee 27

P2 S . ()1 11 o OSSOSO 27

P22 TSRS Y/ o To =g ol 0= o (1 oo O RS 27

2.2 Keyboard Command SNOMCULScccieiieiieeese et e e aen 28

221 ClassWindow — CommON SNOMCULScoeiuireireeirierieriereeese e seeseeres e see e seeseseeseeseeneenens 28

2.2.2 Class Browser WINAOWcoeiiiiinieineni sttt s sre e seennenens 28

2.2.3 ClassWindow — Graphical Layer VIEWccoeieieiiineneieee e 28

224 ClassWindow — MOdeliCa TEXE VIBW ...c..oueeuireieieere et seeeenens 29

225 Interative Kernel Window — OULPUL VIBWccvieeierineeeeseseseesees e s s see e 30

2.2.6 Interactive Kernel Window — INPUt FIeldoooiiiiiiieneeeeeere e 30

Chapter 3 DrModelica Notebook and Model EQItOrccovveeeirieneneeeesesesee e 31

31 Interactive Notebooks with Literate Programimingc.eceeeieerreresesseeneseeseeseeseeseeseesenns 31

3.1.1 Tree Structured Hierarchical Document Representationcccevveeeeeeveveseecieseeeeennn, 32

3.2 The DrModelica TULOFTNG SYSEEM.......couiiiereie et et 33

3.3 Using OpenModelica Notebooks 0n DIMOCEICa.........ccvieeeererinierese e 40

34 OpenModelica Notehook COMMENGSooueeriereriereeeee et 42

Chapter 4 Emacs Textual Model EditOr/BrOWSEN ..o a4

Chapter 5 Eclipse Plugin Model EitOr/BrOWSEScccociiiiriereeenesieseeieese e see e s sseeenesees 46

Chapter 6 Modelica Algorithmic Subset DEDUGOESccoiiireiriiieerer e 47

6.1 The Debugger COMMENGS........c..coiririeirieereeie ettt ettt 47

6.2 Starting the Modelica Debugging SUDPIOCESSccivrieeierereeieesiesieeeeseeseeeae e seeeseessesseenees 47

6.3
6.4
6.5
6.6
6.7
6.8
Index

Setting/Deleting BreakPOiNtSccoociiieieeeeere et s 48

SLEPPING BN RUNNING ...ttt ettt bbbt b e s b e enenes 48
EX@MINING DALA........ccueiiitieiise et st se e e ae s e e tesreeneasesneennenaens 49
Additional COMMEBINGS.......c.coiitirieieiee ettt ae st see e e e enesbe e seeneene 51
Hints for Debugging Large ProgramsSccoveverereeeeseseeieesies e seeneeseeseeeessessseeessessesseens 52
Summary of Debugger COMMANCS...........ccoviiieieii e e 52
53

Preface

This users guide provides documentation and examples on how to use the OpenModelica system, both
for the Modelica beginners and advanced users.

Chapter 1

Introduction

The OpenM odelica system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as a partial but rather complete implementation of the language. It turns out that with
support of appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical agorithms, e.g. for control system
design, solving nonlinear equation systems, or to develop optimization algorithms that are applied to complex
applications.

The longer-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well as
convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Maodelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as akind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural analysis,
system identification, etc., as well as modeling problems that require extensions such as partial differentia
equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to use.
Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.

Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submitted
to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modelicato be executed interactively, as well as equation models and Modelica functions to be compiled into
efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and a

numerical DAE solver. An external function library interfacing a LAPACK subset and other basic algorithms is under
development.

1.1 System Overview

The OpenM odelica environment consists of several interconnected subsystems, as depicted in Figure 1-1 below.

Eclipse Plugin Graphical Model
Editor/Browser '\ Editor/Browser
Interactive 1t
Emacs | ____—> session handler Textual
Editor/Browser — Model Editor
OMNotebook / \
DrModellpa Execution |« Modelica |,
Model Editor Compiler
Modelica
Debugger

Figure 1-1. The architecture of the OpenM odelica environment. Arrows denote data and control flow. Theinteractive
session handler receives commands and shows results from evaluating commands and expressions that are translated
and executed. Several subsystems provide different forms of browsing and textual editing of Modelica code. The
debugger currently provides debugging of an extended algorithmic subset of Modelica. The graphical model editor is
not really part of OpenModelica but integrated into the system and available from MathCore without cost for academic

usage.
The following subsystems are currently integrated in the OpenM odelica environment:

¢ Aninteractive session handler, that parses and interprets commands and Modelica expressions for evaluation,
simulation, plotting, etc. The session handler also contains simple history facilities, and completion of file
names and certain identifiersin commands.

e A Modelica compiler subsystem, translating Modelicato C code, with a symbol table containing definitions of
classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from libraries.
The compiler also includes a Modelica interpreter for interactive usage and constant expression evaluation.
The subsystem also includes facilities for building simulation executables linked with selected numerical ODE
or DAE solvers.

e An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelicalanguage.

e Emacs textual model editor/browser. In principle any text editor could be used. We have so far primarily
employed Gnu Emacs, which has the advantage of being programmable for future extensions. A Ghu Emacs
mode for Modelica has previously been developed. The Emacs mode hides Modelica graphical annotations
during editing, which otherwise clutters the code and makes it hard to read. A speedbar browser menu allows
to browse a Modélicafile hierarchy, and among the class and type definitions in those files.

10

e Eclipse plugin editor/browser. The Eclipse plugin provides file and class hierarchy browsing and text editing
capabilities, rather analogous to previously described Emacs editor/browser. Some syntax highlighting
facilities are also included. The Eclipse framework has the advantage of making it easier to add future
extensions such as refactoring and cross referencing support.

e OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared to
the more advanced Mathematica notebooks available in MathModelica. This basic functionality still alows
essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters and
sections can be represented and edited, including basic formatting. Cells can contain ordinary text or Modelica
models and expressions, which can be evaluated and simulated. However, no mathematical typesetting or
graphic plotting facilities are yet available in the cells of this notebook editor.

e Graphical model editor/browser. Thisis a graphical connection editor, for component based model design by
connecting instances of Modelica classes, and browsing Maodelica model libraries for reading and picking
component models. The graphical model editor is not really part of OpenModelica but integrated into the
system and provided by MathCore without cost for academic usage. The graphical model editor also includes
a textual editor for editing model class definitions, and a window for interactive Modelica command
evaluation.

¢ Modedlica debugger. The current implementation of debugger provides debugging for an extended algorithmic
subset of Modelica, excluding equation-based models and some other features, but including some meta-
programming and model transformation extensions to Modelica. This is conventional full-feature debugger,
using Emacs for displaying the source code during stepping, setting breakpoints, etc. Various back-trace and
inspection commands are available. The debugger also includes a data-view browser for browsing hierarchical
data such astree- or list structuresin extended Modelica.

1.1.1 Implementation Status

In the current OpenM odelica implementation version 1.3 (October 2005), not al subsystems are yet integrated as well
asisindicated in Figure 1-1. Currently there are two versions of the Modelica compiler, one which supports most of
standard Modelica including simulation, and is connected to the interactive session handler, the notebook editor, and
the graphic model editor, and another meta-programming Modelica compiler version which is integrated with the
debugger and Emacs, supports meta-programming Modelica extensions, but does not allow equation-based modeling
and simulation. Those two versions are currently being merged into a single Modelica compiler version.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment. (Also
called WinMosh.exe (under Windows) or mosh (under Linux) —the Modelica Shell).

The Windows version which at installation is made available in the start menu as openModelica->OpenModelica
Shell responds with an interaction window:

11

Bie St fww e

4 W @ T rmn

mlica 1.3
fupwright JUUECTU0L. PELAE. Linkoping University
To gae halp on weing Mash and DpasMedalica, typs "helpd}” and pracs anter.

essy i

We enter an assignment of a vector expression, created by the range construction expression 1 : 12, to be stored in the
variable x. The value of the expression is returned.

>> x := 1:12
{v, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>> loadFile ("C:/OpenModelical3/testmodels/bubblesort.mo")

true

The function bubblesort is called below to sort the vecto x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real[:], instantiated as Real [12], since this is the
declared type of the function result. The input Integer vector was automatically converted to a rReal vector
according to the Modelica type coercion rules. The function is automatically compiled when called if this has not been
done before.

>> bubblesort (x)
{12.0,ll.O,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>> bubblesort ({4,6,

({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

It is aso possible to give operating system commands via the system utility function. A command is provided as a
string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort .mo to the output stream. However, the cat command does not boldface
Modelica keywords — this improvement has been done by hand for readability.

>> cd("C:/OpenModelicall3/testmodels")
>> system("cat bubblesort.mo")

function bubblesort

input Real[:] x;

output Real[size(x,1)] y;
protected

Real t;

algorithm

12

y 1= X;

for i in 1l:size(x,1) loop
for j in 1l:size(x,1) loop
if y[i] > y[j] then

t = yl[il;
y[i]l := yI[jl;
yI[3l := t;
end if;
end for;

end for;

end bubblesort;

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would not be
returned. Only a success code (0 = success, 1 = failure) isreturned to the winmosh window. For example:

>> system("dir")

0

>> gystem("Non-existing command")

1

Another built-in command is cd, the change current directory command. The resulting current directory is returned as

astring.
>> cd()

"C:\OpenModelical3\testmodels"

>> cd("..")

"C:\OpenModelical3"

>> cd("C:\\OpenModelical3\\testmodels")
"C:\OpenModelical3\testmodels"

We load a model, here the whole Modelica standard library, which also can be done through the File->Load

Modelica Library menuitem:

>> loadModel (Modelica)

true

We also load afile containing the dcmotor model:

>> loadFile ("C:/OpenModelical3/testmodels/dcmotor.mo")

true
Itis simulated:
>> simulate (dcmotor, startTime=0.0, stopTime=10.0)
record
resultFile = "dcmotor res.plt"

end record

Welist the source code of the mode!:

>> list (dcmotor)

"model dcmotor

Modelica.

Modelica
Modelica

Electrical.Analog.Basic.Resistor rl(R=10);

.Electrical.Analog.Basic.Inductor 1i1;
.Electrical.Analog.Basic.EMF emfl;

Modelica.
Modelica.
Modelica.

Mechanics.Rotational.Inertia load;
Electrical.Analog.Basic.Ground g;
Electrical.Analog.Sources.ConstantVoltage

13

equation
connect
connect

v.p,rl.p);
v.n,g.p);
rl.n,il.p);

connect (il.n,emfl.p) ;
connect (emfl.n,g.p) ;
connect (emfl.flange b, load.flange a);
end dcmotor;

(
(
connect (
(
(

We test code instantiation of the model to flat code:

>> instantiateModel (dcmotor)

"fclass

rl.
rl.
rl.
rl.
rl.
rl.
parameter
il.
il.
il.
il.
il.
il.
parameter
parameter

Real
Real
Real
Real
Real
Real

Real
Real
Real
Real
Real
Real

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

emfl.
emfl.
emfl.
emfl
emfl.
emfl.
emfl

dc

85 B0 0 F<

85 B00 R

emfl.
emfl.
load.
load.

load

load.
load.
parameter

load.
load.

fi<<caa
s BieBe BN

V.

-b
.p.1 "Current flowing into the pin";

"Voltage drop between the two pins (=
"Current flowing from pin p to pin n";

n.

.V

.V

i
.V
i

v
i
w
.p.v "Potenti
p
n

motor

"Voltage drop between the two pins (
"Current flowing from pin p to pin n";

.v "Potential
.1 "Current £
.v "Potential
.1 "Current £

Real rl.R =

at the pin";

lowing into the pin";
at the pin";

lowing into the pin";
10 "Resistance";

"Voltage drop between the two pins (
"Current flowing from pin p to pin n";

.v "Potential
.1 "Current £
.v "Potential
.1 "Current £

Real il.L =
Real emfl.k
"Angular v

.1 "Current
.v "Potenti

.n.1 "Current

flange b.phi
flange b.tau
phi "Absolut
flange a.phi

.flange a.tau

flange b.phi
flange b.tau
Real load.Jd
w "Absolute
a "Absolute
"Potential

"Potential
"Current f1
"Potential
"Current f1

parameter Real v.V =1

at the pin";

lowing into the pin";
at the pin";

lowing into the pin";
1 "Inductance";

p.v - n.v)";

p.v - n.v)";

= 1 "Transformation coefficient";
"Voltage drop between the two pins";
"Current flowing from positive to negative pin";

elocity of flange b";
al at the pin";

flowing into the pin";
al at the pin";

flowing into the pin";

"Absolute rotation angle of flange";
"Cut torque in the flange";
e rotation angle of component (= flange a.phi
"Absolute rotation angle of flange";
"Cut torque in the flange";
"Absolute rotation angle of flange";
"Cut torque in the flange";

= 1 "Moment of inertia";

angular velocity of component';
angular acceleration of component";

at the pin";

at the pin";
owing into the pin";
at the pin";
owing into the pin";

p.v - n.v)";

"Value of constant voltage";

.V;

equation
rl.R * rl.i = rl.v;
rl.v = rl.p.v - rl.n
0.0 = rl.p.1i + rl.n.i;

flange b.phi)";

14

rl.i = rl.p.i;

i1.L * der(il.i) = il.v;

il.v = il1l.p.v - il.n.v;

0.0 = 1il.p.1 + il.n.i;

i1.i = i1.p.1i;

emfl.v = emfl.p.v - emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.i;

emfl.w = der(emfl.flange b.phi);

emfl.k * emfl.w = emfl.v;

emfl.flange b.tau = -(emfl.k * emfl.i);
load.w = der(load.phi);

load.a = der(load.w);

load.J * load.a = load.flange a.tau + load.flange b.tau;
load.flange a.phi = load.phi;
load.flange b.phi = load.phi;

g.p.v = 0.0;

v.v = v.V;

V.V = V.p.V - V.n.v;
0.0 = v.p.1 + v.n.1i;
v.i = v.p.1i;

emfl.flange b.tau + load.flange a.tau = 0.0;
emfl.flange b.phi = load.flange a.phi;
emfl.n.i + v.n.i + g.p.1i = 0.0;

emfl.n.v = v.n.v;

v.n.v = g.p.v;

il.n.i + emfl.p.1 = 0.0;
il.n.v = emfl.p.v;
rl.n.i + il.p.1i = 0.0;
rl.n.v = il.p.v;

v.p.1 + rl.p.i = 0.0;

vV.p.v = rl.p.v;

load.flange b.tau = 0.0;
end dcmotor;

We plot part of the simulated result:

>> plot ({load.w,load.phi})
true

£ tmpPlot.plt |_| |E| g|

File Edit Special

Plot by OpenModelica

loadw ®
load.phi ®
301 7

2481 7
201 7
1481 7
1.0[7

0ar 7
0.0

15

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica key-
words have been bold-faced by hand for better readability):

>> loadFile ("C:/OpenModelical3/testmodels/BouncingBall.mo")
true

>> list (BouncingBall)
"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der (v)=if flying then -g else 0;
der (h) =v;
when {(h <= 0.0 and v <= 0.0,impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit (v, v_new);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica
script) file sim_BouncingBall.mos that contains these commands:

loadFile ("BouncingBall.mo") ;
simulate (BouncingBall, stopTime=3.0) ;
plot ({h, flying}) ;

The runScript command:

>> runScript ("sim BouncingBall.mos")
"true
record

resultFile = "BouncingBall res.plt"
end record
true
true"

£ tmpPlot.plt B] |

File Edit Special

Plot by OpenModelica

flying ®

06 [1

04r 7

0271 7

0.0

0.0 0.5 1.0 1.5 20 25 3.0

16

Clear all loaded libraries and models;

>> clear ()
true

List the loaded models — but nothing | eft:

>> list ()

nn

We load another model, the vanberpPol model (or viathe menu File->Load Model):

>> loadFile ("C:/OpenModelical3/testmodels/VanDerPol.mo"))

true
It issimulated:
>> simulate (VanDerPol)
record
resultFile = "VanDerPol res.plt"

end record

Assign avector to avariable:

>> a:=1:5
{1,2,3,4,5}

Typein afunction:

>> function MySqgr input Real x; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:
>> b:=MySqr (2)
4.0

Look at the value of variable a:

>> a
{1,2,3,4,5}

Look at the type of a:

>> typeOf (a)
"Integer[]"

Retrieve the type of b:

>> typeOf (b)
n Real n

What is the type of Mmysqr? Cannot currently be handled.

>> typeOf (MySqr)
Error evaluating expr.

List the available variables:

>> listVariables ()
{currentSimulationResult, a, b}

Do code instantiation to flat forrm of the vanberpPol model:

17

>> instantiateModel (VanDerPol)

"fclass VanDerPol
Real x(start=1.0);
Real y(start=1.0);
parameter Real lambda = 0.3;
equation
der (x) Vi
der (y) -x + lambda * (1.0 - x * x) * y;
end VanDerPol;

Clear again:

>> clear ()
true

Leave and quit OpenModelica:

>> quit ()

1.3 Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

instantiateModel (modelname) Performs code instantiation of a model/class and return a string containing the flat
class definition.

simulate (modelname) Translate a model named modelname and simul ate it.

simulate (modelname[, startTime=<Real>] [, stopTime=<Real>] [, numberofIntervals
=<Integer>1) Translate and simulate a model, with optional start time, stop time,
and optional number of simulation intervals or steps for which the simulation
results will be computed. Many steps will give higher time resolution, but occupy
more space and take longer to compute. The default number of intervalsis 500.

plot (vars) Plot the variables given as avector or ascaar, 9. plot ({x1,x2}) Of plot (x1).

list () Return a string containing all loaded class definitions.

1ist (modelname) Return a string containing the class definition of the named class.

listVariables () Return a vector of the names of the currently defined variables.

typeOf (variable) Return the type of the variable as a string.

clear () Clear all loaded definitions.

clearVariables () Clear al defined variables.

timing (expr) Evaluate expression expr and return the number of seconds (elapsed time) the
evauation took.

cd () Return the current directory.

cd (dir) Change directory to the directory given as string.

system (Str) Execute str as a system(shell) command in the operating system; return integer
success value. Output into stdout from a shell command is put into the console
window.

readFile (Sir) Load file given as string str and return a string containing the file content.

18

runScript (Str)
loadModel (classname)
loadFile (Str)
saveModel (Str, modelname)

help ()
quit ()

Execute script file with file name given as string argument str.
Load model or package of name classname from MODELICAPATH.
Load Moddlicafile (.mo) with name given as string argument str.

Save the model/class with name modelname in the file given by the string argument
Str.

Print this helptext (returned as a string).
Leave and quit the OpenM odelica environment

19

Chapter 2

Getting Started with the Graphical Model Editor

This chapter gives a short introduction to graphical modeling. Y ou will learn how to build your own model using the
graphical model editor by using the drag-and-drop technique of already developed and freely available components
from the Modelica Standard Library.

NOTE: This chapter is apreliminary description which in the near future will be replaced by a separate manual for
the Graphical Model Editor.

The Modelica Standard Library is loaded into the OpenModelica environment when the model editor is started and
can be browsed using the class browser visible at the left of Figure 2-1 below.

ols Shape Window Kernel Help

e "meod AN QEm RB:oEP [HiaSLk W

Madelicatdd Modelica

Figure 2-1. The Graphical Model Editor with the class browser to the left, showing icons for the ModelicaAdditions
library and the Modelica Standard library.

To open the library, double click on the Modelica package icon in the class browser to the left. As shown by Figure
2-2, the Modelica Standard Library is hierarchically structured into sublibraries.

20

@ MathModelica

File Edit Yiew Tools Shape Window Kermel Help

=
2 E
Eug
=.
2

@

KE

Electrical

Slunits

t

o
g
2
o
5
b

H i@ oo " mHed AN QT KRB o3P HiadtL BN

Figure 2-2. The Graphical Model Editor with the class browser showing the Modelica Standard library opened up into

sublibraries.

The following list briefly describes the most important sublibraries in the Modelica standard library:

Thermal
Mechanics
Math
Electrical
Blocks
SIunits
Icons

Constants

Components for thermal systems.

Mechanical rotational and translational components.

Definitions of common mathematical functions, such as sin, cos, and log.
Common electrical components, such as resistors and transistors.
Continuous and discrete input/output blocks for use in block diagrams.
Type definitions with Sl standard names and units.

Graphical layout for many component icons

Common constants from mathematics, physics, etc.

2.1 Your First Model

We will introduce the model editor by showing how to build a model of a ssmple DC motor. Since the DC motor
includes both electrical and rotational mechanical components the example also illustrates multi-domain modeling.

21

2.1.1 Creating a New Model

To create a new model, select New Model inthe File menu. A dialog box will appear, in which you will be able to
specify aname of the new model. Enter Motor asModel name.

F New Model

kodel name:
kot
Description:
Extends:

Iknzert into:

Properties

[partial [encapsulated

I (114 I [Cancel]

Figure 2-3. Dialog box for creating a new model.

When clicking on the ox button of the dialog box a new window will appear. This window presents different views of
the model. A model has two graphical views (Icon and Diagram), and one text view (ModelicaText).

Your new Motor model will also appear at the top package level in the class browser. Since no icon for the model
has yet been created it is assigned a default icon (a question mark).

22

™ MathModelica - [Motor: Diagram View]

B File Edit Wiew Tools Shape ‘Window Kernel Help [=1IE)

BH imB oS \Hed AN Q& AR ([fHinSaei B

I I

Modelicaddd todelica

Figure 2-4. The Graphical Model Editor with the new Mot or model appearing as a question mark icon in the class
browser window to the | eft.

Now you can assemble the DC motor by drag-and-drop of components from the class browser to the diagram view
window to the right. The constant voltage source component can be found in the
Modelica.Electrical.Analog.Sources package whereas the rotational mass representing the motor shaft is
located in the Modelica.Mechanics.Rotational package. The other electrical components needed are located in
theModelica.Electrical.Analog.Basic package.

Components placed in the diagram layer window can be graphically transformed using the mouse and keyboard.
To move a component, select it and hold down the left mouse button while moving the mouse. The component will
follow the mouse cursor. Release the mouse button when the component is located at the desired position. If more
than one component is selected, al of them will be moved simultaneously.

Scaling of components is done using the handles that are visible when a component is selected. Place the mouse
cursor over one of the handles, click and hold down the left mouse button while moving the mouse.

Components can also be rotated freely using the handles visible when a component is selected. Place the mouse
cursor over one of the handles, click and hold down the left mouse button and the shift button on the keyboard while
moving the mouse. The mouse cursor will change its appearance while rotating the component.

Pressing the right mouse button when the mouse cursor is placed over a component brings up a menu with suitable
operations.

23

' MathModelica - [Motor: Diagram View]

B Ele Edit Yiew Tools Shape Window Kemel Help = X}

FH il oo (M NOOoOCARE QA BB ioBE|[#indLa BN

A

Examples

I @ resistor| inductort

Interfaces Sensors D T
L R=1 L=1

o
Inettia IdzalGiear

- L \l nemal
a2y =] : T

|dealPlanetary |dealGearR2T

“JUBISUOD

L ATA T B

Spring Damper I

-[g} '[g}ﬂ_l‘“ gro;u:ﬂ

Springlamper ElastoBackla...

S=

BearingFriction Clutch

L .
e = AAIFs >
#i 46,55 i -4.68

Figure 2-5. The Graphical Model Editor with several components dragged into the diagram view, and several
sublibraries and model classes visible in the class browser window to the | ft.

When the components have been placed on the drawing area, similar to the figure above, you have to draw the lines
that connect the components. Thisis done using the connector tool from the toolbar:

AN

To connect two components, select the connector tool and place the mouse cursor over a connector, i.e., the square
symbol on either side of the component. When you are close enough, the mouse cursor will change into a cross. Click
and a hold down the left mouse button, drag the cursor to the other connector and then release the mouse button when

the mouse cursor turns into a cross. Continue to connect al components until the model diagram resembles the one in
Figure 2-6 below.

24

' MathModelica - [Motor: Diagram View]

B Ele Edt View Tooks Shape Window Kernel Help
B R o
I C NTET

I @

Interfaces Sensors

i
e

Inertia IdealGear

<M
-

4
KRl
|dealPlanetary |dealGearR 2T
i =F=
Spring Damper

T

SpringDamper ElastoBackla...

= 4

BearingFriction Clutch

* ¥,

<

JUEjSUDD

o (hENOOO AR | &

VAR oG EiaSLAn W

resistari

inductart

A
R=1

~ g

L=1

ground?

inertiaf

b4
®:-11.39 17570

v

Figure 2-6. The Graphic Model Editor with components connected into a simple DC motor model.

2.1.2

To change a parameter value of a component, e.g. the resistance of the resistor, we need to switch to the Modelica

Changing Parameter Values of Components

Text View of the class. Click ontheModelica Text View button in the toolbar to switch to text mode:

=-EN=]

Whenever we switch from the graphical view to the Modelica Text View after making any changes to the model in
the graphical layers we need to update the text view. Click on the Refresh Class button, aso found in the toolbar:

After the text view has been updated it should look similar to the one in Figure 2-7. The order of the component
declarations and connection equations depend on in which order you placed them on the drawing area and connected

them.

25

™ MathModelica - [Mot

Modelica Text View]

Ewxarnples

Ele Edit Vew Tools Shape Window Kernel Help

FH IRE oo r Hed AN QA

EESETE

X hodel Motor

~ Modelica.Electrical. Analog.Sources. ConstantVoltage constantVoltagel

Modelica.Electrical. Analog.Basic. Ground groundl
Modelica.Electrical.Analog.Basic.Resistor resistorl
Modelica.Electrical. inalog.Basic. Inductor inductorl
Hodelica.lMechanics.Rotational. Inertia inertial

(i = a2 | W

(Placement (visibhle=t
(Placement (visible=true, transformation (x
(Placement (visible=tru=, transformati
(Placement (visible=trus, transformwati
(Flacement (visikhle=tru=, transformation (x=
(Placemwent (visible=true, cransformation (x=30, y=

o o

SpringDarmper ElastoBackla...

8 4

BearingFriction Chatch

* &,

3

Modelica.Electrical. Analog.Basic.EMF EMF1
@ squation

Irterfaces Sensors (ENF1l.flange_b,inertial.flange_a)
B (constantVoltagel.n, groundl.p)

J=J i_l_]i E_ igroundl.p,EMF1.n)

] — (EMF1.p, inductorl.n)

iresistorl.n, inductorl.p)

Ineitia IdealGear (resistorl.p, constantVoltagel.p)
L_:l end Motor:

=r 2

§ '
IdealPlanetary | dealGealR2T

e ke
Spring Dramper

(Line(visikle=trus=,points={4{40.0,10.0},{60.0,10.0}
(Line(visikhle=trus,points={{-70.0,0.0},{-70.0,-30.0}}
(Line(visihle=true, points={{-70.0,-30.0},{30.0,-30.0},{30.0,0.0%}
(Line(visibhle=trus,points={{30.0,20.0},{30.0,50.0},{10.0,50.0%}
{Lineivisible=true,points={{-30.0,50.0},{-10.0,50.0}}));

iLine (visible=trus,points={{-50.0,50.0},{-70.0,50.0

Ln1 Col 1

Figure 2-7. The Graphical Model Editor with the Modelica Text View mode showing the new Motor model. Thisview

also allows text editing of the model.

Locate the line that starts with Modelica.Electrical.Analog.Basic.Resistor. Put the text cursor right after
resistorl and add the text (rR=20). This text is a modification of the resistor component, changing its parameter r

(resistance) from the default value of 1 to 20. The Modelica Text View should now look similar to the one found in

Figure 2-8 below.

26

@ MathModelica - [Motor: Modelica Text View]

File Edit Yiew Tools Shape Window Kemel Help

|dealPlanetary ldealGeaiR2T
=Afe e
Spring
o o
SpringDamper ElastoBackla..

= 4

BeaingFiicton Clch

* &

Damper

Fd IRB oo " mes AN Q@[|RBicEH[Eiadaen uN
1 Bl | el Motor o
Modelica.Electrical.inaloy.Sources. ConstantVoltage constantVoltagel "* cnnotacion{Placement (visible=t

Modelica.Electrical.dnaloy.Basic.Ground groundl " annocation (Placement (visible=crus, transformation (x
Modelica.Electrical.inaloy.Basic.Resistor resistor " annotation (Placement (visiblestrus, transt)
Modelica.Electrical.inaloy.Basic. Inductor inductorl annotation (Placement (visiblestrus, transformari

Evamples Modelica.Mechanics.Rotational.nertia inertial ““ annotarion (Placewent (visiblestrue, transformation (x=

Modelica.Electrical.inalog.Basic.ENF EMF1 "" annotation (Flacement (visible=trus, transformation (x=30, y=

Interfaces Sersors connect (EMFL.flange b, inertial.flange aj =nnotation(Line(visible=true,points={{40.0,10.0},{60.0,10.0}

_ connect (constantVeltagel.n, groundl.p) snnotacion(Line (visible=trus,points={{-70.0,0.0},{-70.0,-30.01}

‘=J Ll_lii connect (groundl.p, ENFL.n) annccacion(Line (visible=trus, points={(-70.0,-30.0},{30.0,-30.0},{30.0,0.01}

] connect (EMFLLp, inductorl.n) anmocacion(Line (visiblescrus, points=¢{30.0,20.0},{30.0,50.0},{10.0,50.0}}
connect (resistorl.n, induetorl.p] annotation(Line (visiblestrue, pointe={{-30.0,50.0},(-10.0,50.0}}]);

Inenia Idealfies connect (resistorl.p,constantVoltagel.p) annotacioniLine (visible=true,points={{-50.0,50.0},{-70.0,50.0

ﬁ:s end Motor;

Ln4 Col 60

Figure 2-8. The Modelica Text View of the Motor model, with a modifier R=20 added for the resistor1 component.

When you make any changes to the model in the Modelica Text View you need to click on the apply Class
Definition button in the toolbar to confirm the changes:

When you have done this, change class view back to the Diagram View and study the icon of the resistor component.
It should show rR=20 instead of rR=1, i.e., the resistance of the resistor is now 20 chm.

= MathModalica - [Motor: Diagram View]
W Bie Bt Y Jook Shape Wiodow Kernel Help

(A i oo | pf NODOQAR SR « Ko BB
_t Library
Exanpies
Library m resistor] inductor
Inbefaces Sonsoes - * - -
k=20 L=1
=
Irettia IdesiGes -
]
J‘==_ § =
wE -5-) i 4
deaPlanstary |dealiea2T
B]
Sping [
-rg}* -13"],@ ground
SprgDanos Elastol ackla
g 4
BeamgFacton Chich
+ &
O
- = g

A= s W

Ineroal

W ERIT Vi POAT

27

Figure 2-9. The Diagram View showing R=20 for the resistorl component.

2.1.3 Translating and Simulating Using the Interactive View

Trandating and simulating is performed using the Interactive View of the ssimulation kernel window. To open the

kernel window, select open Kernel window in the File menu. Enter the command simulate (Motor) in the
interactive view to translate and simulate the model.

b Interactive Yiew

gimulate (Motor)
record

resultFile = "Motor_res.plt”

end record

gl
o

Figure 2-10. Theinteractive view of the simulation kernel window, with the simulation command
simulate (Motor).

2.1.4 Plotting

After the model has been translated and simulated, any of its variables can be plotted using the plot command.
Giving the command plot ({inductorl.w, inertial.a}) will bring up the window below.

B

& tmpP lot. plt
File Edit Special

Plot by OpenModelica

1.7 | inductart v =
inertial.a ®

0sr 7

0.0 _

[}
—
[
[
I
[}
=7}
-
o
[{=}
—
[}

Figure2-11. OpenModelica plot window created by the command: plot ({inductorl.w, inertial.a}), aftera
simulation of the Mot or model.

2.1.5 Saving and Loading

It is possible to save a model from the model editor. Saving a model will create a Modelica 2.0 standard output file
with the extension . mo. Thisfile can later be loaded back into the model editor.

28

2.2 Keyboard Command Shortcuts

The following are keyboard shortcut commands available in the different windows of the Graphical model editor,
including the text editing window.

221 Class Window — Common Shortcuts
CTRL + O Open aMoadelica (.mo) file.

CTRL + Q Quit the modéd editor.

2.2.2 Class Browser Window

LEFT ARROW Select the class to the left of the currently selected class.

RIGHT ARROW Select the classto the right of the currently selected class.

UP ARROW Select the class above the currently selected class.

DOWN ARROW Select the class below the currently selected class.

ENTER If the selected class is a package; open the package and view its contents, otherwise; open
the class for editing.

DELETE Delete the selected class.

2.2.3 Class Window — Graphical Layer View

CTRL + S Save class present in active class window.

CTRL + Z Undo last undo/redo supported operation.

CTRL + Y Redo last undo/redo supported operation.

CTRL + A Select all items.

DELETE Delete the selected items.

CTRL + W Zoom the view to fit the size of the window.

F5 Switch to afull screen view of the graphical layer.
ESC Deselect dl items, or if the Full Screen view is activated, return to normal view.
SPACE Pointer tool.

C Connector tool.

L Linetool.

R Rectangle tool.

E Ellipse tool.

P Polygon tool.

T Text tool.

B Bitmap tool.

+ Zoom Intool.

- Zoom Out tool.

LEFT ARROW Move selected items | eft, otherwise if no selection move view area left.
RIGHT ARROW Move selected items right, otherwise if no selection move view arearight.
UP ARROW Move selected items up, otherwise if no selection move view area up.

DOWN ARROW Move selected items down, otherwise if no selection move view area down.

CTRL + LEFT ARROW Move view areato theleft end of the diagram.

CTRL + RIGHT ARROW Moveview areato theright end of the diagram.

CTRL + UP ARROW Move view areato the top of the diagram.

CTRL + DOWN ARROW Move view areato the bottom of the diagram.

SHIFT + LEFT ARROW Small move of selected items left; if no selection move view area left.
SHIFT + RIGHT ARROW Small move of selected itemsright; if no selection move view arearight.

SHIFT + UP ARROW Small move of selected items up; if no selection move view area up.
SHIFT + DOWN ARROW Small move of selected items down; if no selection move view area down.
PAGE UP Move view area up.

PAGE DOWN Move view area down.

SHIFT + PAGE UP Move view area left.

SHIFT + PAGE DOWN Moveview arearight.

HOME Move view areato the upper left corner.

END Move view areato the lower left corner.

CTRL + HOME Move view areato the upper right corner.

CTRL + END Move view areato the lower right corner.

CTRL + L Rotate the selected items 90° to the left (anti-clockwise).
CTRL + R Rotate the selected items 90° to the right (clockwise).
CTRL + H Flip the selected items horizontally.

CTRL + J Flip the selected items vertically.

2.2.4 Class Window — Modelica Text View

CTRL + P Print the text.

CTRL + A Select all text.

CTRL + Z Undo last edit.

CTRL + Y Redo last edit.

CTRL + X Cut the selected text to the Clipboard.

CTRL + C Copy the selected text to the Clipboard.
CTRL + V Paste Clipboard contents into the text editor.
LEFT ARROW Move one character |eft.

RIGHT ARROW Move one character right.

UP ARROW Move oneline up.

DOWN ARROW Move one line down.

30

PAGE UP Move one page up.

PAGE DOWN Move one page up.

HOME Move to the beginning of the line.

END Move to the end of theline.

CTRL + HOME Move to the beginning of the text.

CTRL + END Move to the end of the text.

DELETE Delete the selected text, or if no text is selected, delete the character to the right.

2.25 Interative Kernel Window — Output View

CTRL +

(@]

Copy the selected text to the Clipboard.
CTRL + A Select dl text.

2.2.6 Interactive Kernel Window — Input Field

CTRL + X Cut the selected text to the Clipboard.

CTRL + C Copy the selected text to the Clipboard.

CTRL + V Paste Clipboard contents into the text field.

CTRL + Z Undo the last operation.

CTRL + Y Redo the last operation.

DELETE Delete the selected text, or if no text is selected, delete the character to the right.
CTRL + A Select dl text.

ENTER Evaluate given command.

UP ARROW Step backward in the history of commands.

DOWN ARROW Step forward in the history of commands.

31

Chapter 3

DrModelica Notebook and Model Editor

This chapter covers the OpenModelica electronic notebook and model editor subsystem, together with the
DrModelica tutoring system for teaching Modelica, which is based on such notebooks.

However, the OpenModelica notebook facility is work in progress, which currently is only partially completed
(see Section 0). For these reasons we first present the electronic notebook facility and DrModelica based on the
MathModelica implementation. The OpenModelica electronic notebooks is a simplified version of those notebooks,
that however still are able to handle the full DrModelica system.

3.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as well as
graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation scripting,
model documentation and storage, etc.

The Notebook facility is actually an interactive WYSIWYG (What-Y ou-See-Is-What-Y ou-Get) redization of
Literate Programming, a form of programming where programs are integrated with documentation in the same
document.

32

£} Evaluated Modeling. Code Generation, and... [H[=] [E3
.|

Modelin! E Evaluated Modeling, Code Generation. and._. =] [E3

Simulati w Al
Bl 1 Evaluated Modeling. Code Generation, and._. [El[=] [E3
Process I
e T eemusperim N
- using Mathe Rpferr wrern canr = T Linwasdand e - =
._,_. Evaluated Modeling, Code Generation, and.__ !El
S Srex v il s o .
A a— oz runakl ot w1 = |
e et | 2 The Seeszwdf < » LiRrqulntarsalnx|
Fa=311 ¥ Cwkopen LCRL =x {. phpxicaluslurx,
Pt In s mcoon s Clmgoneltetclx | {1, 5., 1, 5., @, @, &, 03],
Eertaiaan renckl e vaiine This can cumly e ckaured .1 Tarneisgrasein 12] 1
Griohe /-7, /I, Co W chen T e — < ¢ Mm%t clxlaem
pmccm Frgendy v =X« Linesclze |E,
the e mesperdr G CB fEc-PIED SN0 SLOOH OLCEGL SLSSOLE GO.E0O5 CoE0eD
P 0}. {d‘| SFLESELEY . OERN LML RIDE _EFO2ESE O L.XEEE O R.2DELD 5 3REAL |
o Tha Zyenes Tl o3,
Hap |Ma%clxlaem, 3 The conoud lus @ ke umed 0 u = =2 v, wher v T ricomscricnon of dhe macs Thas paves e
Bbstract L::c:;‘m:“-: Pllsemne clomd locg mazra oo mrada FK = £ Wb, - £ ok
.
The e o wrn wmiphe and can B F]
[rRTaE— Ul che Lk by " m
AMerenan 1pas H e
wwmzra o mT by skl
e, wherh pruck \ w ware an P
ok 1 umd e m neniirear ekl o ATaa dpaca |
gty wher e = o
ArvuAz bt e o
- -
) [N
=

Ll |

Figure 3-1. Examples of notebooks in the MathModelica modeling and simulation environment.

3.1.1 Tree Structured Hierarchical Document Representation

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document itself and its sections usually have headings as labels for
easier navigation. This kind of structure is also reflected in electronic notebooks. Every notebook corresponds to one
document (one file) and contains a tree structure of cells. A cell can have different kinds of contents, and can even
contain other cells. The notebook hierarchy of cells thus reflects the hierarchy of sections and subsections in a
traditional document such as a book.

33

=1 x|
[5utive | ASF | & A E| 4
I L E L B L Is i 1) B, i Pa

L —)

package MyPackage
ﬂ4yPaCkage.] model class3
Maodelica package|]

1 Introduction ‘ end class3;

model class2 ...

model classl ...

package MySubPackage
model classl

1.1 Notes 1]

2 package MyPackage

2.1 Begin package MyPackage
2.2 Class3
2.3 Class2
2.4 Class1

end classl;
end MySubPackage;
end MyPackage;

2.5 Package MySubPackage
2.5.1 Begin package MySubPackage
2.5.2 Classl
2.5.3 End package MySubPackage

2.6 End package MyPackage

0% = 4 +f

@ (b)

Figure 3-2. The package MyPackage in anotebook (a) and as Modelicatext (b).

Modelica packages including documentation and test cases can also be stored as notebooks, e.g. as in Figure 3-1 or
Figure 3-2. Those cells that contain Maodelica model classes intended to be used from other models, e.g. library
components or certain application models, can be marked as Modelica code cells. This means that it is possible to
export the Modelica cells in the notebook MyPackage.nb of Figure 3-2a, into a file MyPackage.mo with the
contents shown in Figure 3-2b.

3.2 The DrModelica Tutoring System

Understanding programs is hard, especially code written by someone else. For educational purposes it is essential to
be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code's execution. In modeling and simulation it is also
important to have the source code, the documentation about the source code, the execution results of the simulation
model, and the documentation of the simulation results in the same document. The reason is that the problem solving
process in computational simulation is an iterative process that often requires a modification of the original
mathematical model and its software implementation after the interpretation and validation of the computed results
corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing efficient
numerical algorithms rather than giving attention to the aspects that should facilitate the learning and teaching of the
language. There is a need for an environment facilitating the learning and understanding of Modelica. These are the
reasons for developing the DrModelica teaching material for Modelica and for teaching modeling and simulation.

34

£ DrModelica.nb * N =]

|»

DrModelica

Susanna Manernar
Eva-Lena Lenggquist Sandelin

This notebook is developed to facilitate the leaming of the Modelica language. 1t is a supplementayy material to
Peter Fyitzson's hook "Principles of Object-Oriented Modeling and Sirulation™ 5o the page references below
are from this book.

1 Getting Started 1l

2 A Quick Tour of Modelica]

2.1 Getting Started - First Basic Examples _\
There is a long tradition that the first sarnple program in any commputer language is a trivial program printing the sthag "Hello =_)

World" (p. 17). Since Modelica is an equation based language, printing a string does not tnake much sence. Instead, our Hello
World Modelica prograrn solves a trivial differential equation. The second example shows how you can write a model that solves a
Differential Algebraic Equation Systetn (p. 1773, In the Van der Pol (p. 19} example declaration as weell as initialization and prefix
usage are shown in a slightly more complicated way.

2.2 Classes and Instances]_

In Modelica objects are created implicitly just by Declaring Instances of Classes (p. 220 Almest anything in bodelica iz a class,
but there are some keywords for specific uge of the class concept, called Restricted Classes (p. 243 The concept Feuse of
Modeling Knowledge (p. 25) is an important part of Modelica. IModelica has several built-in types (like Feal, Mnteger, Boolean and
String), which has tnost of the properties a class has and it is possible to change the value of them during run-time, You can read
more about classes in chapter 3.

2.2.1 Exercises 1]
Exercise 1
Exercise 2
Exercise 3

2.3 Inheritance]_

Inheritance (p. 267 is the ability to extend the behavior and properties of an existing class. This way the properties of a specific
clazs can be reused. See chapter 4 for additional details concerning inheritance,

2.3.1 Exercises]]_

2.4 Generic Classes]_

In many situations it iz advantageous to be able to express Generic Patterns (p. 26) for programs. By doing so a substanitial
amount of coding and software maintenance can be avoided by directly expressing the general structure of the problem and
providing the special cases as pararneters. In Modelica the class construct is general enough to handle generic modeling and

rogratntning. In chapter 4 vou can learn mote abowt generic classes. .
100% ~ 4| | v

Figure 3-3. The front-page notebook of the DrModelica tutoring system.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a table of
contents that holds all other notebooks together by providing links to them. This particular notebook is the first page
the user will see (Figure 3-3).

35

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1" by Peter Fritzson. The summary
introduces some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords in
detail.

£ Helloworld.nb * _ (=] Y]

First Basic Class

1 Helloworld]

The program contains a declaration of a class called Hell oWorld with two fields and one equation. The first field is the varable x
which 15 mutialized to a start walue 2 at the time when the simulation starts. The second field 15 the wariable a, which is a constant that
is initialized to 2 at the beginning of the simulation. Such a constant is prefized by the keyword parameter in order to indicate that it 1s
constant during simulation but 15 a model parameter that can be changed between simulations.

The Modelica program solves a trivial differential equation: =" = - a * x. The variable xis a state variable that can change
value over tume. The x ' is the time denvatve of z.

zlass HelloWorld
Real xi{start = 1);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld

2 Simulation of Helloworld]

Simulate [HelloWorld, {t, O, 4}]

<f8imulationData: HelloWorld : 2002-10-31 11:
29:12 : {0., 4.} : 502 data points : 1 events : 3 wvariables:>

fa, =% x7}

PlotSimulation[x[t], {t, 0, 4}, AxesOrigin » {0, 0}]

—-x[t]

o o o O
Mok o M

t

b 2 3 4

[125 o~ 4] v
Figure 3-4. TheHelloWorld class smulated and plotted using the MathModelica version of DrModelica.

Now, let us consider that the link “HelloWorld” in DrModelica Section 2.1 in Error! Reference sour ce not found. is
clicked by the user. The new notebook, to which the user is being linked (see Figure 3-4), is not only a textual

36

description but also contains one or more examples explaining the specific keyword. In this class, Helloworld, a
differential equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write his’her own programs or copy
examples from other notebooks. This new notebook can be linked from existing notebooks.

{8 D1Modelica.nb I [=1 S|
S|l
9 Algorithms and Functions]
9.1 Algorithms]_

In Modelica, algorithmic statements can only oceur within Algorithm Sections (p. 2213, starting with the keyword algorithm.

Sirnple Assignrnent Statements (p. 222) is the most corrmon kind of staternents in algorithm sections. There is a special form of
assignment statement that is only used when the right hand side containg a call to a Function with DMultiple Results (p. 2237

The for-Statement (also called for-loop) is a convenient way of expressing iteration (p. 223). When using the for-loop for
iteration we tmust be able to express the range of walues ower which the iteration wariable should iterate in a closed form as an
iteration expression. For cases where this is not feasible there is also a While-loop iteration construct in Modelica (p. 2240, For
conditional expressions the if-Statement (p. 225) i3 used. When-Statements (p. 226) are used to express actions of event
instamts and are closely related to when-equations. The Eeinit (p. 229) statement can be uzed in when-statermnents to define new
values for continuous-time state variables of a model at an event.

The Assert (p. 231) staternent provides a convenient means for specifying checks on tnodel validity within a model.
The most common usage of Terminate (p. 231) is to give more appropriate stopping criteria for terminating a sitnulation than a
fized point in time.

9.1.1 Exercises 11

Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5

9.2 Functions]_

The body of a Modelica function is a kind of algorithm section that containg procedural algorithrnic code to be executed when the
function iz Called (p. 233). Since a function is a restricted and enhanced kind of class, it is possible to inherit an existing function
declaration in the declaration of a new function. In this way we can declare the common structure of a set of functions az a
Partial Base Function (p. 2343 which can be inherited into the functions we want to define. A function with more than one output
fortnal pararneter has Wultiple Results (p. 2353, It is possible to call functions defined outside of the Modelica language, so called
Esternal Functions (p. 237).

9.2.1 Exercises 11
Exercise 1
Exercise 2
Exercise 3

10 packages]

What is a Package?]

10.1 Packages as Abstract Datatypes]
The notion of a package partly originates from the notion of Abstract Data Type (p. 2470 j

| 100% - 4| | v

Figure 3-5. DrModelica Chapter 9 in the main page of the MathModelica version of DrModelica.

37

When a class has been successfully evaluated the user can simulate and plot the result, as depicted in Figure 3-4 for
the simple Hel1loWor1d example model..

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by doing
the exercises that concern the specific chapter. Exercises have been written in order to elucidate language constructs
step by step based on the pedagogical assumption that a student learns better “using the strategy of learning by
doing”. The exercises consist of either theoretical questions or practical programming assignments. All exercises
provide answersin order to give the user immediate feedback.

Figure 3-5 shows Chapter 9 of the DrModelica teaching material. Here the user can read about language
congtructs, like algorithm sections, when-statements, and reinit eguations, and then practice these constructs by
solving the exercises corresponding to the recently studied section.

1 Using Algorithm Sections]
Write a function, Sum, which caleulates the sura of nurabers, in an array of arbitrary size. j

Write a function, Averadge, which caleulates the average of mumbers, in an array of atbitrary size. Average should use make a function call to Sum.

Write a class, Largesthverage, that has two arrays and caleulates the sverage of each of thera. Then it corpares the awverages and sets a vaniable to tre if o
the first arvay iz larger than the second and otherwise false,

1.1 Answer i

| 100% ~ 4] | H o4

Figure 3-6. Exercise 1 in Chapter 9 of DrModelica.

Exercise 1 in Section 9.1.1 is shown in Figure 3-6. In this exercise the user has the opportunity to practice different
language constructs and then compare the solution to the answer for the exercise. Notice that the answer is not visible
until the Answer section is expanded. The answer is shown in Figure 3-7.

39

Exercizel.nb

1.1 Answer

1.1.1 Sum

function 3um
input Real[:] x:
output Real zum;

algorithm
for i in lisize(x,1l) loop
sum := sum + x[i]:
end for:
end Sum;

1.1.2 Average

function Awverage

input Real[:] x:

output Real awerage;
protected

Real sum;

algorithn

average = Sum(x) J size(®,1):
end Awverage;

1.1.3 LargestAverage

class Largestdverage

Real averageldl, averageldZ;
Boolean Allargest(start = false):

algorithm
averagedl := Average(il);
averaged? = Awverage (4Z):
if aweragedl > averaged? then
AlLargest 1= true;
else

AlLargest := false;
end if;
end Largestaverage;

parameter Integer[:] &l = {1, 2, 3, 4, 51:
parameter Integer[:] &2 = {7, 8, 9};

1.1.4 Simulation of LargestAverage

Simulate[Largesthverage, {t, 0, 11]

2§:45 @ {0., 1.} : 502 data points

z8imulationbData: Largestdwerage @ 2002-10-10 11:

153 warishles:>

{AL[QL] . AL[2], AL(Q3] . AL[040, AL[QS] . AlLargest, &2 [1] .
A2 [2] , AZ[3] , averagedl, averageids, —derdunny, —dunny

When we look at the values in the variables we see that 42 has the largest average (8) and therefore the vanable & 1Largest is

fulse (= 00).

(0., 3., 8.1

{AlLargest[1], averagehl[1] , averageR2[1]}

100% = 4

Figure 3-7. The answer section to Exercise 1 in Chapter 9 of DrModelica.

40

3.3 Using OpenModelica Notebooks on DrModelica

As mentioned in the introduction to this chapter, the OpenModelica notebook facility (OMNotebook) is
asimplified implementation of the basic electronic notebook facilities, but advanced enough to represent
hierarchical documents, simple type setting, text editing, etc., which is enough to be able to read in the
whole DrModelica teaching material .

I OMNotebook: DrModelica{rey).nb - i |EI|5|

File Edit Cell Format Help

Yersion 2004-02-13

DrModelica

Copyright: (¢) PELAB Linkopings Universitet, 2003
Confact: OpenModelica@ida liu se
Authors: Susanna Monemar, Eva-Lena Lengquist Sandeling Peter Fritzson, Peter Bunus
This notebook is developed to facilitate the learning of the Modelica language. Itis a supplementary
material to
Peter Fritzson's book "Principles of Object-Oriented Modeling and Simulation with
Modelica” (Wiley-IEEE Press, 2003)
sothe page references below are from this book.

Getting Started }

When starting to use this material it is necessary to first change the directory to the path where this file is
located. This is done in the setDirectory cell below. To evaluate a cell just click in the specific cell and
press shift + enter.

T

In this file, important cells are initialization cells, so when evaluating one cell a maessage will appear
asking: "Do you wiant to automatically evaluate all initialization cells in the notebook Driviodelica”. If you
want the cells to be evaluated just press "yes".

3+54758)
4249

A cell has to be evaluated before itis possible to simulate it. In the "File" menu under "Palsttes” there is a
tool called "MatModelicaPalstte”, which can be used as a shortcut to basic functionality, instead of typing
it by hand, a button can be clicked. To simulate a class, just press the Simulate[..] button in the
MathilodelicaPalette and add the class name instead of "[Placeholder]”. After simulating as class itis
possible to plot or just look at the valuss of the variables in the class. When writing Modelica code the
ctule nf the innit rell minist he channed from innint 1o kndelicalnnint Thie ran ha dnne in nnae nf isinseawe Ll
A

Ready

Figure 3-8. The start page (main page) of DrModelicain the OpenModelica notebook system.

This is exemplified by Figure 3-8, showing the DrModelica main page (start page) in the teaching
material.

As can be seen from Figure 3-9 and Figure 3-10, the OpenModelica notebook implementation can
aready represent the hierarchical structure of documents, cells, etc., but lacks some polishing in terms of
formatting and available commands. Also, no graphic information can currently be represented.

41

ol
File Edit Cell Format Help
B T =i T T d ;I
This notebook is developed to facilitate the learning of the Modelica language. Itis a supplementary
material to
Peter Fritzson's book "Principles of Object-Orientad Modeling and Simulation with
Modelica” (Wiley-IEEE Press 2003)
50 the page references below are from this book.
Getting Started]
A Quick Tour of Modelica]
Classes, Types and Declarations]
Inheritance, Modifications and Generics]
Components, Connectors and Connections]
Literals, Operators and Expressions]
Arrays]
Equations]
Algorithms and Functions]
Packages]
Annotations, Units and Quantities]
Svstem Modeling Methodology and Continuous Model
Representation
Modeling Discrete Events and Hybrid Systems]
Basic Laws of Nature]
L-‘&pplication Examples] =
Ready 4

Figure 3-9. The DrModelica main notebook in OpenMaodelica with most cells closed, only showing the
title of each cell, thus creating a form of table-of-contents for the notebook.

Figure 3-9 shows the main notebook of DrModelica will al cells closed, only showing the heading of
each cell/section. This looks like a kind of table-of-contents, which is convenient for navigation in the
notebook. To read a closed section, just click on it and it will open.

42

Il OMNotebook: DrModelica(rev).nb o]

File Edit Cell Format Help

This notebook is developed to facilitate the learning of the Modelica language. It is a supplementary
material to

Feter Fritzson's book "Principles of Object-Oriented Modeling and Simulation with
Modelica" (Wiley-IEEE Press 2003)

50 the page references below are from this bool.

Getting Started]

When starting to use this material it is necessary to first change the directory to the path where this file is
located. This is done in the setDirectory cell below. To evaluate a cell just click in the specific cell and
press shift + enter.

b

In this file, important cells are initialization cells, so when evaluating one cell a message will appear
asking: "Do you want to automatically evaluate all initialization cells in the notebook Driodelica”. If you
wiant the cells to be evaluated just press "yes".

5+7

12

A cell has to be evaluated before itis possible to simulate it. In the "File" menu under "Palettes” there is a
tool called "MathodelicaPalette”, which can be used as a shortcut to basic functionality, instead of typing
it by hand, a button can be clicked. To simulate a class, just press the Simulate[..] button in the
MathilodelicaPalette and add the class name instead of "[Placeholder]”. After simulating as class it is
possible to plot or just look at the values of the variables in the class. When writing Modelica code the
style of the input cell must be changed from input to Modelicalnput. This can be done in one of two ways,
either by selecting the cell brackst of an existing cell, then click the right mouse-button and choose "Style”
-= "Modelicalinput”. Or by clicking the Modelicalnput-button on the MathModelicaPalette, which will create
a new cell of the style Modelicalnput.

A Quick Tour of Modelica
Classes, Types and Declarations

R S -

||

Ready 4

T 1 s o LEr. . L]

Figure 3-10. The OpenModelica DrModelica notebook, showing the evaluation of a simple expression
(5+7) inacell in the middle, followed by the creation of an output cell to contain the result: 12..

The OpenModelica Notebook facility is coupled to the OpenModelica compiler and simulator, thus
alowing evaluation of expressions, simulation of models, and interactive session commands as specified
in Section 1.3.

3.4 OpenModelica Notebook Commands

The current prototype (2005-05-11) of OpenM odelica notebooks support the following operations:

e Opening and closing groups of cells by double clicking the hierarchical tree view (to the right).

e FEvauation of Modelica code, commands, and expressions in input cells by typing
SHIFT+RETURN. The evaluation results are shown in a created output cell.

e Opening and loading notebook files stored in XML-format (Command: cTrRL+0, Menu: File >
Open).

e Opening and loading notebook files stored in FullForm Mathematica notebook format
(Command: cTrRL+0, Menu: File > Open).

e Saving notebook filesin XML format (Command: cTrRL+S, Menu: File > Open or File > Save
As).

e Close current document (Command: CTRL+W oOf ALT+F4, Menu: File > Close).

e Terminating the notebook subsystem (Command: ALT+Q, Menu: File > Quit).

e Sdlectacell, by asingle click on the cell in the tree view to the right.

e Select more cells by a single click on the cell in the tree view to the right and holding cTRL
pressed down.

e Possihility to edit the style template to change the appearance of different cell types. Thisis done
by editing the file stylesheet.xml.

e Move cursor, by CTRL + UP ARROW Of CTRL + DOWN ARROW, or Menu: Cell > Next Cell or Cell >
Privous Cell.

e Select and copy text inside acell.
e Color marking and indentation of Modelica code.

e Show how text is stored inside a cell, by menu Edit -> View Expression.

e Addanew cell (Command: cTrRL+a, Menu: Cell > Add).

e Create ainput cell for openmodelica code (Command: CTRL+SHIFT+I, Menu: Format > Input
cell).

e Undo on text changesinside a cell (Command: CTRL+2).

e Create a group cell around the cell selected by the cursor (Command: CTRL+SHIFT+G, Menu:
Format > Group cell).

¢ Remove selected cell/cells (Command: cTRL+SHIFT+D, Menu: Cell > Delete).

e Cut selected cell/cells (Command: cTRL+SHIFT+X, Menu: Cell > Cut Cell).

o Copy selected cell/cells (Command: cTRL+SHIFT+C, Menu: Cell > Copy Cdll).

e Paste cut or copyed cell/cells (Command: cTRL+SHIFT+V, Menu: Cell > Paste Cell).

e Changetext style for acell, with menu Format -> Styles-> (select style).
o Clickable active links that opens the linked document when clicked on the link. Links can only
be opend if the cell containing the link is not selected.

The following functionality is ongoing work and is currently being implemented:

e Addown linksto the text.

e Moving acell by dragging it in the tree view.

e Pasting graphic images into special graphic cells.

e Display ploted imagesin special graphic cells.

e Change text settings on individual words and letters.
e Export document text to pure text form with no structure saved.
e Undo/Redo for cell changes.

e Search and replace functions.

e Print function.

e Change between different stylesheets at runtime.

e Change syntax highlighting colors at runtime.

e Magnification on the document.

e Convert the cell type from one type to another type.

Chapter 4

Emacs Textual Model Editor/Browser

The Emacs Modelica mode provides facilities for keyword highlighting, suppressing annotations, etc.

(?? Need to describe those facilities, including how the Modelica mode is started).

=T [7 abeyn.rmi

<43 yaccpar || Fle Edit Options Buffers Tools Help
[+] Maksfile end
[+] Makefile.in
[-] shsyn.rml {(** relation:
{-} Types %
{+} L to Direction ** Helper relation to path_string
{2318 H*)
> Externallecl relation path stringZ: (Path, string) => string =
> Exp
> Elementictribuces axiom path string2 (IDENT(s),) => s
> Each
> Elementirg rule path stringZ(n,str) => ns &
> Equation string_append(s,str] =» =51 £
» EquationItem string_append(sl,ns) => =3
> ElementSpec
> Element path_stringZ (QUALIFIED (s,n), str] =» ss
> ElementItem
> Enumliteral end
{+} Functiondrgs to Uithin
{=} Relations (** relation: path_last_ident
> element_spec name o
> path string ** Returns the last ident (After last dot) in a paht
> opt_path string)

> path_strings
s{lpath_last_ident

Another quite useful facility is the Speedbar menu, depicted in Figure 4-1. (?? This Screendump shows
the same facility used for RML code, not Modelica code. Needs to be updated)

=loix|

> path first ident rule path last_identip) => res
> gev.cref fromexp (WM 0 e T Tl
» get_cref from farg = path_last_ident (QUALIFIED(,p)) => res
> get_cref from narg
> join_paths axiom pach_lastc_ident (IDENT(n)) =» n
> strip_last
> cref_to_path end
> path _to_cref _|
> cref_get first (¥* relation: path first ident
> restr_string T
> print_restr #% Returns the last ident (After last dot) in a pahe
> last_classname £
> print_sbsyn exp relation path first ident : Path =» Ident =
> cref egual
[+] algorithm.rml axiom pach first ident (QUALIFIED (n,p)) => n
[+] builtin.rml
[+] ceval.rml axiom path first_ident [IDENT(n)} => n
[+] classinf.rml _
[+] classloader.rml
[+] codegen.rml (** relavion: get_cref_from_exp
[+] connect.rml T ;l
[+] corba.rml)|~ fmnixi—— absyn.sm (RML Win C¥S-1.86 Fill)--L464--70%]
= SPEEDBAR 40 > =

Figure 4-1. Emacs with a speedbar menu to the left, which alows clicking on file names (for expansion

or closing the file contents menu). An expanded file shows all function, class, and type declarations. By

clicking on one of those, you can position the editor at the appropriate definition.

Give the command M-x speedbar to start the Speedbar menu. See Section 6.1 for an explanation to the

notation M-x, €tc.

When you open files the speedbar menu will automatically update itself. You can double-click with
the left mouse button or single-click with the middle button to expand trees, and jump between files and

program definitions.

45

At the top you see the search path to the current directory, where you can click on the directory
names at different levels to jump back and forth in the hierarchy. Subdirectories are visible in the tree as
expandable nodes.

It isalso possible to right-click in the speedbar window to have a menu appear.

46

Chapter 5

Eclipse Plugin Model Editor/Browser

The Eclipse plugin is currently in a prototype stage. The following functionality is available, but need to
be dlightly improved before the first release:

o A Modelica package browser is available for browsing packages and classes.

e Integration with the Eclipse text editor is available.

e The Eclipse editor works well and has been extended with Modelica syntax highlighting and
automatic indentation.

e Thebasic platform functionality is available but need to be improved.

e The compilation support is fully functioning.

47

Chapter 6

Modelica Algorithmic Subset Debugger

This chapter presents a comprehensive Modelica debugger for an extended algorithmic subset of the
Modelica language. This replaces debugging of algorithmic code using primitive means such as print
statements or asserts which is complex, time-consuming and error- prone.

The debugger is portable since it is based on transparent source code instrumentation techniques that
are independent of the implementation platform.

The usual debugging functionality found in debuggers for procedura or traditional object-oriented
languages is supported, such as setting and removing breakpoints, single-stepping, inspecting variables,
back-trace of stack contents, tracing, etc.

We presents the debugger functionality by a debugging session on a short Modelica example. The
functionality of the debugger is shown using pictures from the Emacs debugging mode for Modelica
(modelicadebug-mode).

Note 1: The current (March 2005) implementation of the debugger only works together with the
Modelica compiler version that supports an extended algorithmic subset of Modelica, without equations
and simulation, but including meta-programming support. Both compiler versions will be merged into a
single version in the near future.

Note 2: when applying the debugger to debug the OpenModelica compiler itself, give the make
debug command to compile the code with debugging turned on, or just the command: make, to compile
it without debugging support.

6.1 The Debugger Commands

The Emacs Modelica debug mode is implemented as a specidization of the Grand Unified Debugger
(GUD) interface (gud-mode) from Emacs. Because the Modelica debug mode is based on the GUD
interface, some of the commands have the same familiar key bindings.

The actual commands sent to the debugger are also presented together with GUD commands
preceded by the Modelica debugger prompt: mdbes.

If the debugger commands have severa aternatives these are presented using the notation:
alternativel|alternative2]|....

The optional command components are presented using notation: [optionall.

In the Emacs interface: M-x stands for holding down the Meta key (mapped to a1t in general) and
pressing the key after the dash, here x, c-x stands for holding down the control (ctrl) key and
pressing x, <RET> iSequivalent to pressing the Enter key, and <spC> to pressing the space key.

6.2 Starting the Modelica Debugging Subprocess

The command for starting the Modelica debugger under Emacs is the following:

M-x modelicadebug <RET> executable <RET>

48

6.3 Setting/Deleting Breakpoints

A part of a session using this type of commands is shown in Figure 6-1 below. The presentation of the
commands follows.

macs@kafka.carafe.idaliv.se =101 %[

File Edit Options Buffers Tools Complete InfOut Signals Help

D@ x LRRdZ?

function eval
input Exp exp_l:
output Real rval_1:
algorithn
rval_1 1=
match exp_1
local Integer wl.v2:
Exp el e2:
case RCONST{wl} then vi:
caze PLUS{el.e2) equation
vl = svaliell: w2 = evalie2}:
then wi+v2:
caze SUE{el.eZ) equation
vi[E evaliell: w2 = evalie2):

-—({00S!-- eval.no {Modelica?--1 14--C8--Top-—-=-=------
Current. directory iz Jocygdrive/c/home/adrpo/doc/projecta mod @
?licaSHDdelicaEDnFerenceEOOEKtests/

Init

mob@> - Modelica debugzer

mob@> - 2002, 2003, 2004, LIU/IDAPELAE. adrpo@ida,liu,se
modbl@> - debugging process 2800

moblE> - on ttyiddew/ttyl

nob@>Breskpoint oni [eval.mo:9] added to breskpoints list,
ncdbE>Breakpoint on: [eval.mo:l1l] added to breskpoints list,
noh@>Breakpoint on: [eval,mo:ld] added to breskpoints list,
nckb@>show

—————————— CURREMT BREAKPOIMTS ---------

#) -» eval,moi9

#1 -> eval,moill

#2 -» eval,moild

nchb@>clear
Breskpoints list cleared
bl
lilt** wgud*x iDebuggeriruny —-L18--C5--A1]l-—-—------

Figure 6-1. Using breakpoints.
To set abreakpoint on the line the cursor (point) is at:

C-x <SPC>
mdb@> break on file:lineno|string <RET>

To delete a breakpoint placed on the current source code line (gud - remove):

C-c C-d
C-x C-a C-d
mdb@> break off file:lineno|string <RET>

Instead of writing break one can use dternativeSbr | break | breakpoint.
Alternatively one can delete all breakpoints using:

mdb@> cl|clear <RET>
Showing all breakpoints:

mdb@> sh|show <RET>

6.4 Stepping and Running

To perform one step (gud-step) in the Modelica code:

C-c C-s
C-x C-a C-s
mdb@> st|step <RET>

To continue after a step or abreakpoint (gud-cont) in the Modelica code:

49

C-c C-r
C-x C-a C-r
mdb@> ru|run <RET>

Examples of using these commands are presented in Figure 6-2.

:emacs@kaﬂ(a.fa rafeidalinse =100l

File Edit Oplions Buffers Tools Complete In/Cut Signals Help

Cwx LI E?

function eval
imput Exp exp_l:
output Real rval_l:
algorithm

rual_1 3=
matoh exp_1
local Integer wl.w2:
Exp el.e2:

case[JRCONST(vl) then vl
caze FLUS{el,e2} equation
vl = evalleld: w2 = evalle2)!
then wl+vz2:
ca=e SlUB{el,e2) eguation
ul = evalleld: w2 = evalie2):
then wi-va:
caze MIL{el.e2) equation
wl = evalleld: w2 = evalie2):
then wisvd:
case DIViel.e2) equation
--{005:-- ewval.no {Modelical--L9--CE--Top-===========--- |
Current directory is foygdrivelc/homedadrpoddoc/projects/modelica @
ModelicaConference2005/tests/
[Init]

mobE> - Modelica debugzer

nolo@> - 2002, 2003, 2004, LIU/IDA/PELAB. adrpoBida,liu,se
madblE> - debugzing process 3716

mobE> - on ttyildewdtibyl

medo@>Breakpoint ont [eval.mo39] added to breskpoints list,
mdold>Breakpoint ont [eval,mo3ll] added to breskpoints list,
nclb@>[Parse]

4-16/2%x3+10

[Evall

Breakpoint [1]. on eval.motll reached
eval motll, 7RevalBoallievaliel) =3 (vl
moErun

Breakpoint [0, on eval.mo:3 reached
eval.mo:d . Bevalfaxion:RCONSTvl) => (wl}
modbE

lilt** *gudx Debuggerjrunt--L20--C5--All-—=-=--------- |

Figure 6-2. Stepping and running.

6.5 Examining Data
There are no GUD keybindings for these commands but they are inspired from the GNU Project
debugger (GDB).
To print the contents/size of a variable one can write:

mdbe> pr|print variable name <RET>
mdb@> sz|sizeof variable name <RET>

at the debugger prompt. The size isdisplayed in bytes.
Variable values to be printed can be of a complex type and very large. One can restrict the depth of
printing using:
mdb@> [set] de|depth integer <RET>

Moreover, we have implemented an externa viewer written in Java called ModelicaDataviewer to
browse the contents of such alarge variable. To send the contents of avariable to the external viewer for
inspection one can use the command:

mdb@> bw|browse|gr|graph var_name <RET>

50

at the debugger prompt. The debugger will try to connect to the ModelicabDataviewer and send the
contents of the variable. The external data browser has to be started a priori. If the debugger cannot
connect to the external viewer within a specified timeout a warning message will be displayed. A picture
of the external ModelicaDataviewer tool ispresented in Figure 6-3.

=
| | Modelica Data Viewer
IJ:'|—_| Modelica Yariables
I.J—J—_| el:Exp
=] SUBrecord
| RCOMST:record
L% 4Real
;] MUL: record
;l Dl record
| RCOMST:record
L—# 16:Real
| RCOMST:record
L 2Real
| RCONST:record
L% 3Real

EH_ | eZExp
E-) RCONST:record
L # 10Real

|»

Modelica Data Viewer (Browser) Help

Quick crash-course on Modelica variable exploring

Start the wiewer before starting the debugger

& (this cowld be rectified in the fisture so that the
viewer iz started by the debugger)

Click on wvariable namne inside the tree to explore a variahle -
[Ilore could be added here in the future] d|

Figure 6-3. ModelicaData Viewer (Browser) for data structures, here asmall abstract syntax tree.

If the variable which one tries to print does not exist in the current scope (not a live variable) a notifying
warning message will be displayed.

Automatic printing of variables at every step or breakpoint can be specified by adding a variable to a
display list:
mdb@> di|display variable name <RET>
To print the entire display list:
mdb@> di|display <RET>
Removing a display variable from the display list:
mdb@> un|undisplay variable name <RET>
Removing all variables from the display list:
mdb@> undisplay <RET>
Printing the current live variables:
mdb@> 1li|live|livevars <RET>
Instructing the debugger to print or to disable the print of the live variable names at each step/breapoint:
mdbe> [set] li|live|livevars [on|off]<RET>

Figure 6-4 shows examples of some of these commands within a debugging session:

51

:emacs@kaﬂ(a.fa rafeidalinse =100l

File Edit Oplions Buffers Tools Complete In/Cut Signals Help

Cwx LI E?

output Real rval_l:
algorithm
rval_1 3=
match exp_1
local Integer wl.w2:
K el.e2:
case RCOMST(vl) then wlz
caze FLUS{el,e2} equation
wl = evalleldr w2 = evalle2)!
then wl+vz:
ca=e SlUB{el,e2) eguation
vl = evallely: (M2 = eval(e2):

then wl-v2:
L | caze MIL{el.e2) equation
--(D05)-- eval.no (Modelical--L14--C21-= Ff————-—-=--=—= -l

Breakpoint [1]. on eval.mo:ll reached
eval,moill,7Bevalécallievaliel) => (vl}
noloErun

Breskpoint [0], on eval.mo:9 reached
eval . moid, BevalfaxionRCONSTvl) => (w1}
mcl@xprint vl

Resultsi[not in current context]
Paramsters ivl=4

nclE st

eval, moild,23@evalloallievalie2) = (u2)

mobE:print e2

Resultz:[not in current context]

Parameters 1e2=MUL (DIV(RCOMST (16) .RCOMST (23) (RCOMSTE3))
mobExdisplay e2

Resultz:[not in current context]

Parameters 1e2=MUL {DIV{(RCOMST{16) .RCOMST (23) [RCOMSTE3))
Variable: [e?] added to display variabile list,

mobE>d isplay
—————— LIST OF DISPLAY WARIABLES ------
#0 -> &2
mobE-undisplay
List of display variables cleared.
mclbiE >l
——ixx kguds Debuggerjrunt--L38--C5--Bot———-=--------- |

Figure 6-4. Examining variable values using print and display commands.

6.6 Additional commands

The stack contents (backtrace) can be displayed using:
mdb@> bt|backtrace <RET>

Because the contents of the stack can be quite large, one can print afiltered view of it:
mdb@> fbt |fbacktrace filter string <RET»>

Also, one can restrict the numbers of entries the debugger is storing using:
mdb@> maxbt |maxbacktrace integer <RET>

For displaying the status of the Modelica runtime:
mdb@> sts|stat|status <RET>
The status of the extended Modelica runtime comprises information regarding the garbage collector,

allocated memory, stack usage, etc.
The current debugging settings can be displayed using:

mdb@> stg|settings <RET>

The settings printed are: the maximum remembered backtrace entries, the depth of variable printing, the
current breakpoints, the live variables, the list of the display variables and the status of the runtime
system.

One can invoke the debugging help by issuing:

mdb@> he|help <RET>

For leaving the debugger one can use the command:

52

mdb@> qu|quit|ex|exit|by|bye <RET>

A session using these commands is presented in Figure 6-5 below:

emacs@kafka.carafe.idalinse

File Edit Options Buffers Tools Complete In/Out Signals Help

=18l

Cwx & @G P2

output. Real rval_1:
algorithn
rval_1 1=
match exp_1
local Integer vl w2:
xp el e2:
case RCOMST(v1) then wif
caze FLUS{el. e2) equation
vl = evallellr w2 = evaltle2):
then vl+u2:
caze SE{el.eZ) equation
vl = evallel)s [v2 = evalie2};
then vi-v2:
caze MlL{el,eZ) equation
vl = evallells w2 = evalled):
then vl=wZ:
caze 0IV{el.e2) equation
{0053-- ewal.no

(Mode 1168} ==l 1d=-C01== E¥=mmm=mmmmmmmmommmnae 4

nob@>display

LIST OF DISPLAY YARIABLES ------
#0 > &2

nob@Eyundisplay

List of display varisbles cleared,
nclb@>hk

STACK

ndb@>stgll

#0 -reval,wo:ll,7,11,20 relation[evall,gosllcallievaliel) = {(v1}]
#1 -reval,mo:ld,7,14,.20 relation[evall,goallcallievaliel) => {(v1}]
#2 -»eval,moi9,8,9,17 relstion[evall ,zoallaxioniRCONSTEw1y => (v13]
#3 -reval.mo:ld,23,14,36 relation[eval]l.goallcallievalie2) => (v21]

--------------------- CURRENT SETTINGS
max backtrace entries: 100
depth of variable print:

execution type: step
print names of livevars each step; false
Varishles printed at each step/breakpointt
LIST OF DISPLAY YARIABLES --—----
Mo display varishles are set

breaskpoints?

********** CURRENT BREAKPOINTS ----—----
#0 - eval,moi9

#1 - eval.mo:ll

thyi Sdeultbyl

Debugger irun?—-Ld45--CB--45% -~ ~——————-———-——————— 4

——ixx kgudk

Figure 6-5. Additional debugger commands.

6.7

In order to faster get to an interesting place when debugging a large program such as the OpenModelica
compiler itself, you can put a breakpoint at the place where you would like to start the investigation, but
give the fast debug command when starting the execution from the beginning. In that case the
debugger will avoid saving backtrace and variables up to this breakpoint. Then you can turn off
backtrace and run the debugger as usual.

6.8

Hints for Debugging Large Programs

Summary of Debugger Commands

The following is acomplete list of the current debugger commands

br|break |breakpoint string [on|off]
cl|clear

sh|show

bt |backtrace

fbt | fbacktrace filter

Setting/unsetting breakpoints
Clear all breakpoints

Show all breakpoints

Print the backtrace (stack)
Print filtered backtrace (stack)

mb |maxbacktrace int (0=full, default=0) Set the maximum of backtrace entries (stack).

ca|callchain

fca|fcallchain filter

Print the call chain
Print filtered call chain

53

mc | maxcallchain integer

[set] de|depth integer
[set] ms|maxstring integer

set st|step [on]|off]
st|step|<ENTER> | <CR>
ne | next

ru|run

stg|settings

he | help
sts|stat|status

1li|live|livevars

[set] 1li|live|livevars [on]|off]

pr|print var_name
sz|size|sizeof var_name
di|display var_name
ud|undisplay var_name
di|display
ud|undisplay

gr|graph var_name
pty|printtype identifier
fa|fast

qu|quit|ex|exit|by|bye

Index

literate programming, 31

Set the maximum of callchain entries. (O=full, default=100)

Set the depth of variable printing. (O=full, default=10)

Set how may chars we print from long strings. (O=full,
default=60)

Set the execution mode.

Perform one step.

Jump over next statement.

Run the program.

Print the current settings.

Showing help.

Printing the status of Modelica runtime.
Print the names of live variables.

On/Off printing names of livevars each step.
Print the live variable.

Print sizeof the live variable.

Display the live variable each step.
Un-display the live variable.

Show display variables.

Un-display ALL display variables.

Send the live variable to external viewer.
Print typeinfo on any Modelicaid.

FAST debugging: no backtrace, calchain, livevars.
Exiting the debugger/program.

