OpenModelica Users Guide

Version 2009-11-09
for OpenModelical.5

November 2009

Peter Fritzson
Adrian Pop, Peter Aronsson,
David Akhvlediani, Bernhard Bachmann, Vasile Baluta,

Simon Bjorklén, Mikael Blom, Willi Braun, David Broman, Stefan Brus,
Francesco Casella, Filippo Donida, Henrik Eriksson, Anders Fernstrom, Jens
Frenkel, Pavel Grozman, Daniel Hedberg, Michael Hanke, Alf Isaksson, Kim

Jansson, Daniel Kanth, Tommi Karhela, Joel Klinghed, Juha Kortelainen,

Alexey Lebedev, Magnus Leksell, Oliver Lenord, Hakan Lundvall, Henrik
Magnusson, Eric Meyers, Hannu Niemisto, Kristoffer Norling, Atanas Pavlov,
Pavol Privitzer, Per Sahlin, Wladimir Schamai, Gerhard Schmitz, Klas Sj6holm,
Martin §j6lund, Kristian Stavaker, Mohsen Torabzadeh-Tari, Niklas Worschech,
Robert Wotzlaw, Bjorn Zackrisson

Copyright by:

Linkdping University, Sweden
Department of Computer and Information Science

Supported by:

Open Source Modelica Consortium

Copyright © 1998-2009, Linkdpings universitet, Department of Computer and Information Science.
SE-58183 Linkoping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF THIS OSMC PUBLIC LICENSE (OSMC-PL).
ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM CONSTITUTES RECIPIENT'S
ACCEPTANCE OF THE OSMC PUBLIC LICENSE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-
PL) are obtained from Linkopings universitet, either from the above address, from the URL:
http://www.ida.liu.se/projectsOpenModelica, and in the OpenM odelica distribution.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is aregistered trademark of Modelica Association.
MathModelica® is aregistered trademark of MathCore Engineering AB.

Mathematica”® is aregistered trademark of Wolfram Research Inc.

Table of Contents

TADIE O CONLENES.....c.eeeeetietee ettt bbb e bt b bbbt bt et b e b e sb et et esb e s b et b b b neens 3
Preface 7
(O gF=T o] (= g A 1 1 o U Tt o o PP 9
11 S0 0 KOV V= S 10
111 Implementation SLAIUS.........ccccieeeieiiiieiere et see ettt s re e aestesae e e eaesneeneennens 11
1.2 Interactive Session With EXBMPIES........cccoiiiieiriresee e 12
121 Starting the INEractive SESSIONcceererereeeerere e see e 12
1.2.2 Trying the BubbleSort FUNCLION..........c.cceiiiirieeerie e 12
1.2.3 Trying the system and cd COMMENGS.........ccoeririerieiininereiee e nes 13
1.24 ModelicaLibrary and DCMoOtOr MOE!coooieieriiiinieese e 14
2 I o TR 7 T 0 g o) S 16
1.2.6 BouncingBall and SWitCh MOUEIS..........cooiiuiiiciee e 17
127 ClEar All MOOEIS ...ttt 18
1.2.8 VanDerPol Model and Parametric PIOLcccooirieiiiinienceereee s 19
1.2.9 Scripting with For-Loops, While-Loops, and If-Statements............ccoevevevecececceciecne, 20
1.2.10 Variables, Functions, and Types of Variables............cccooveveiiiiiiciiiie e, 21
1.2.11 USiNg EXIENal FUNCHIONScceiiiieeeeceiese et nee e 22
1.2.12 Cadling the Model Query and Manipulation APlccccviieieiene e 22
V2 IS B @ U @ o= 11V, oo (= o W 23
1.2.14 Dump XML REPIESENTALIONeiviieeeeieiesiesieeeesiesee st eesee st seesee e saeeeeneesresseeneeneeseenes 23
1.2.15 Dump Matlah REPreSENtalioN.........cccveiererieeceesie e eeeeete e sae e st ee e 23
13 Summary of Commands for the Interactive Session Handlercoooveeeeeieiececciececee, 24
14 REFEIBINCES. ..ot bbbt bbbt e bt b e e 25
Chapter 2 Using the Graphical Model EItOrccccviieieiiiicecese e 26
21 LT L] 00 RS - (= o 26
22 Creating @NEW PIOJECEccveiereeeeierie st eeeeeste st see e e te e re e e e tesresseeseesbesbesseeneestesbesseeneenennees 27
Chapter 3 2D Plotting and 3D ANIMALIONcceeiveiiiieieese et enas 31
31 Enhanced Qt-based 2D Plot FUNCLONAlILYcccceeviiiiiieece e 31
3.2 S o =2 =) T 32
3.21 All Plot Functions and their OpLioNS.........ccooiviiieererene et see e eeeneas 35
A Ao o) 1 11 1o RSOOSR 37
3.23 Plotting all variables of amOdelcccoiiieiririee e 38
3.24 Plotting DUriNg SIMUIBLION.cceeieiiriseeeese e se e sre e eesre e 38
3.25 Programmable Drawing of 2D GraphiCs.........cccoovviririeeiese s 39
3.26 Plotting Of talE Aatal......cviiieeeeeer e et 40
33 Java-based PtPIOt 2D PIOINGeeueeeieseeeeeere et sre e e e e 41
34 3D ANIMELION. ...cut ittt bbbt bbbt b e b e b et bbb e ne bbb 41
34.1 Object Based ViSUBlIZaLioNccceevieiiiiieicsie e ceeeesie st e et a e e eneas 42
3.4.2 BOUNCINGBAIo ittt sttt e e e nrenne s 42
3421 AdAiNg ViSUAIZALION........eeceeieeieeeeee e eneeeesreeneas 43

34.22 Running the Simulation and Starting Visualizationcccccccveveveiececceececesee 43

3.4.3 Pendulum 3D EXAMPIE.......ccoviieieiecieceee ettt sttt re e renne s 44
3431 Addingthe ViSUaliZatiON.........ccvierieirirereeeeeesie e e s 45

35 REFEIBINCES. ...t b bbb et b e e e 46
Chapter 4 OMNotebook With DrMOAElICa.cccvieeiiiicccecee e s 48
41 Interactive Notebooks with Literate Programming..........ccccceceveeeevesiesieseere e seeee e 48
411 MathematiCaNOLEDOOKS.........ciiiieertirieieeee ettt 48
412 OMNOEDOOK..... .ottt bbbt bbb bbb b nee e 48
4.2 The DrModelica Tutoring System —an Application of OMNOtebooK...........c.cccevvreecverienen. 49
4.3 OpenModelica NotehoOK COMMEANGAS..........coeeririerieiee e 55
I 1 R O | SO TP P SOV PTUPSRRRURTRPN 56
G B O 1 £ o = PP U PR PRT RPN 56
44 SeleCtion Of TEXL OF CElIS.....oiiiceeee et e 56
AAT FIHEIMENU ..ottt bbb bbbt bbb b et b renne e 57
QA2 EQIE IMBNU ..ottt b bbb bt bt b e bt b e et b e bt b et be b nbe e 57
B O | 1Y = O PRSP 58
N o 41 0T= = 0T TP 58
S 1 0 = 1 01V = o U PP 59
446 WINAOW MENU ...ttt bt b e b bt b e b b e e e b sb et et ebesbeneaneas 59
A o 1 o 1Y/ 0T O 59
448 AditioNal FEALUIESc.oieieieiiieeeee ettt et be bbb 60
45 REFEIBINCES. ...ttt et e et b e st e et b e b et b e sbe b seenen 61
Chapter 5 MDT —The OpenM odelica Development Tooling Eclipse Plugin.........cccccocvveeveneenee. 62
51 [T Lo 0[N i1 o] o OSSPSR 62
5.2 (1= 1 = (o o TSR 62
53 (CTc g To S - (= [P 63
5.3.1 Configuring the OpenModelica COMPITEScccoovreeiererereeee e 63
5.3.2 Using the ModeliCaPerspeCtiVe........ccoviuieeeiicececeesese st 63
533 Selecting aWorkspace FOITES ..o e 63
5.34 Creating one or more ModeliCaPrOjECES........cocuivreriererereeeee e 64
5.3.5 Building and RUNNING @PrOJECL.........cccuiiiieeesere et snenneas 65
5.3.6 Switching to ANOther PErSPECLIVEcc.ccuiieeceecece e 66
5.3.7 Creating @PaCKagecovvirieiere ettt st ee st sresae et sresneeeesrennens 67
5.3.8 CreatiNg @CI8SS......cciiieisieceieie ettt sttt sttt be st et et re e aenne s 67
5.3.9 SYNtaxX ChECKING......ceeieitiitiitieee ettt sttt st s reeae e s e s besresseennesrenneas 68
5.3.10 Automatic INdentation SUPPOITcccurereeeiererieeeesieseeeeseseeseeesseseessesessesseseesessessessenens 68
L300 3¢ I R @0 o (=X @0 oo = o o PSSRSO 69
5.3.12 Code Assistance on Identifiers when HOVEring...........ccccveeevieieiecicsese e 70
5.3.13 GO tO DEfiNItION SUPPOIToveeeeieeisieiecetese ettt st ene e e 70
5.3.14 Code Assistance on Writing RECOIS........c.cocviiieeiereneseeieseseseeeesee st eesee e e eeeneas 70
5.3.15 Usingthe MDT Console for PlOtINGc.covveviieeieiicese e 71
Chapter 6 Modelica Algorithmic Subset DEDUGESccoovveeeeeeeee e 73
6.1 The Eclipse-based debugging enVirONMENtcceoereiiieeienene e e eee e 73
6.2 Starting the Modelica Debugging Perspective..........ooveivveieceeeese e 74
6.2.1 Setting the debug CONfiGQUIAtioN..........ooveiriiireeere e 74
6.2.2 Setting/Deleting BreaKpOiNtS........ocvieeiierere et nee s 76
6.2.3 Starting the debugging session and enabling the debug perspective..........ccccevvvvvrveivennnns 76
6.3 The Debugging PerSPECIIVEcccuiieieceeee ettt sttt sre e aesrenneas 77
Chapter 7 Interoperability — C, Java, and PYTNONcccciiiiiiinneeeeceese e 79
7.1 Calling EXternal C fUNCLIONS........cccoviuieieriesese et ae e e 79
7.2 Calling External Java FUNCLIONS...........cccciiiiiiiiieieiesie et 80

7.3 Python INtEroperabilitycooovieeeeie s 81

Chapter 8 Frequently Asked QUESHIONS (FAQ) ..ottt e 83

8.1 OPENMOUEICAGENEIA ..o s ae e nre e e 83
8.2 OMMNOEEDOOK ...ttt bbb et b bt b e st b b e bt b nn e 83
8.3 OMDev - OpenModelica Development ENVIFONMENtccecveverereeiereseseeeesee e 84
Appendix A Major OpenM odeliCa REIEASES...........ccoveririreeeese e 85
A.l OpenModelica 1.5 ??Beta, September 2009ccooeiiiineeieniseseee e 85
A.1.1 OpenModelica Compiler (OMQC)......cciiiiiirieieerieseeeesee e se e eee e s sreeee e saennes 85
A2 OpenModelica 1.4.5, January 2009.........ccceceiieeeieieieeeeieeseese s eee e sre e e eeesresre e enesreseas 85
A.21 OpenModelica COMPIEr (OMEC)..c..ciiiiiiieieiesierieiee et sae e e 85
A.2.2 OpenModelica Notebook (OMNOLEDOOK)cceruerueeieeriesiesieeeeeesie e sreeee e e sreeeenee e e 86
A.23 OpenModelica Shell (OMShEID) ..o e 86
A.2.4 OpenModelica Eclipse PIUG-iN (MDT) ..cooiiiiieine e s 86
A.25 OpenModelica Development Environment (OMDEV)coceeeeveerenenceienese e 86
A3 OpenModelical.4.4, FED 2008.........c.ooeeieiicieeeeese ettt sre e 86
A.31 OpenModelica COMPIEr (OMEC)..c..ciiiiiiieieiesiereieese et sae e e 86
A.3.2 OpenModelica Notehook (OMNOLEDOOK)ccvrvereeeeereenienieeeeeesee e seeeee e see e eeenee e eees 86
A.3.3 OpenModelica Shell (OMShEID) ..o 86
A.3.4 OpenModelicaEclipse PIUg-iNn (MDT)cooi ittt 86
A.3.5 OpenModelica Development Environment (OMDEV)coceeeeveernnencerene e 87
A4 OpenModelica 1.4.3, JUNE 2007ccveeeeeereerieseeeeseese e seeseesessesseeeeseesresseeeestessesseessessesees 87
A.41 OpenModelica Compiler (OMQC)......ccoiieiieiieiere ettt ens 87
A.42 OpenModelica Notehook (OMNOLEDOOK)cerereeeriirienieiresie e 87
AA43 OpenModelica Shell (OMShEND) ..o e 87
A.4.4 OpenModelicaEclipse PIUg-iNn (MDT) ...c.coiiiiiiieie ettt 88
A.45 OpenModelica Development Environment (OMDEV)ccccvviverieenenenieere e 88
A5 OpenModelica1.4.2, OCtODEr 2006cccuiveeeereriereeeeeseseseeseese e sreeseesee e sseeseessessesseensenes 88
A.51 OpenModelica Compiler (OMQC)......ccoiiiiiiiieerie ettt enas 88
A.5.2 OpenModelica Notehook (OMNOLEDOOK)cererieereirienieisesierieeeie e 88
A.53 OpenModelicaEclipse PIUg-iN (MDT)cooiiiiirieresese et 88
A.5.4 OpenModelica Development Environment (OMDEV)ccccveveveevvneeeeriene e 88
A.6 OpenModelica1.4.1, JUNE 2006..........cceeveerrerrerreeiereesteseeeeseesteseeseesae e sresseessestesresreesesresees 89
A.6.1 OpenModelica Compiler (OMQC).......cooiiiiirierieresieeeeree et ee e sse e e e enes 89
A.6.2 OpenModelicaEclipse PIUg-iN (MDT) ...ccoiviiieeiere et e st 89
A.6.3 OpenModelica Development Environment (OMDEV)cceeveveeiecieeeciese e 89
A7 OpenModelica 1.4.0, M@y 2006.........ccccururereeerierieeeesiesieneee et see e seessessesesseseeseenens 89
A.7.1 OpenModelica Compiler (OMQC)......ccoiiiririeierieseseeee e see s see e e e e saennes 89
A.7.2 OpenModelica Shell (OMShEID)coo e 89
A.7.3 OpenModelica Notehook (OMNOLEDOOK)ceruereeeriirienieiresieree e 89
A.7.4 OpenModelica Eclipse PIUg-iN (MDT)ccooiiiiiieneieseeeese st 90
A.7.5 OpenModelica Development Environment (OMDEV)cceeveveeveieeeeciese e 20
A.8 OpenModelica1.3.1, November 2005ccccecieiiiieceeiesesie et 90
A.8.1 OpenModelicaCompiler (OMQC).......ccoiriririereresteeeereese et ee e nee e enes 20
A.8.2 OpenModelica Shell (OMShEN) ..o e 90
A.83 OpenModelica Notehook (OMNOLEDOOK)cererieeririenieeriesie e 20
A.8.4 OpenModelicaEclipse PIUg-iN (MDT)cooviiiiiieresese et 91
A.85 OpenModelica Development Environment (OMDEV)cccveeeveevvnereeriene e 91
Appendix B Contributorsto OpenMOCEliCaccccviuirieiiiiireee e 92
B.1 OpenModelica Contributors 2009...........ooeeeiririereeee e e sre e 92
B.2 OpenModelica ContribULOrs 2008...........cceieiireeieere e se e eee e sre et eenee e ses 93
B.3 OpenModelica ContribULOrs 2007ccceiiiiiiieeere s sre e 93
B.4 OpenModelica ContribUtOrs 2006............coeeeiriererieere e e sre e 94
B.5 OpenModelica ContribULOrs 2005..........ccoiiirerieeere e e 94

B.6 OpenModelica ContribUtOrs 2004...........ccueiueiiieieeeie et ae e e 9

B.7 OpenModelica Contributors 2003...........cceiiiiiieeere e e sre e 95

B.8 OpenModelica ContribUtOrs 2002.........c.ooueieiririeeeeee et sre e 95
B.9 OpenModelica ContribULOrs 2001..........ccceiireeieeere e e e 95
B.10 OpenModelica Contributors 2000............ceouerierererieerieseseeseesee e seeeeseesreseeeessesresseeseessessens 95
B.11 OpenModelica Contributors 1999............cceeieiieiieiee ettt ae e sre 95
B.12 OpenModelica ContribULOrs 1998.........cceeeeiererieieiese e see e e see e e sre e eneesresrens 95

Index 97

Preface

This users guide provides documentation and examples on how to use the OpenModelica system, both for
the Modelica beginners and advanced users.

Chapter 1

Introduction

The OpenM odelica system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as arather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical algorithms, e.g. for control
system design, solving nonlinear equation systems, or to develop optimization algorithms that are
applied to complex applications.

The longer-term goal is to have a complete reference implementation of the Modelica language,
including simulation of equation based models and additional facilities in the programming
environment, as well as convenient facilities for research and experimentation in language design or
other research activities. However, our goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can handle large models requiring
advanced analysis and optimization by the Modelica compiler.

The long-term research related goas and issues of the OpenMaodelica open source implementation of a
M odelica environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic
semantics. Such a specification can be used to assist current and future Modelica implementers by
providing a semantic reference, as akind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
anaysis, system identification, etc., as well as modeling problems that require extensions such as partia
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier
to use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.
Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be
submitted to the Modelica Association for consideration regarding possible inclusion in the official Modelica
standard.

10

The current version of the OpenModelica environment alows most of the expression, agorithm, and
function parts of Modelica to be executed interactively, as well as equation models and Modelica functions to
be compiled into efficient C code. The generated C code is combined with alibrary of utility functions, a run-
time library, and a numerical DAE solver. An external function library interfacing a LAPACK subset and other
basic algorithmsis under development.

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1
below.

MDT Eclipse Plugin Graphical Model
Editor/Browser \ Editor/Browser
Interactive I
Emacs «— | session handler Textual
Editor/Browser M Model Editor
OMNotebook / \
DrModelica Execution | Modelica
Model Editor Compiler
Modelica
Debugger

Figure 1-1. The architecture of the OpenM odelica environment. Arrows denote data and control flow. The
interactive session handler receives commands and shows results from eval uating commands and expressions that
are trandlated and executed. Several subsystems provide different forms of browsing and textual editing of
Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica. The
graphical model editor is not really part of OpenModelica but integrated into the system and available from
MathCore without cost for academic usage.

The following subsystems are currently integrated in the OpenModelica environment:

e An interactive session handler, that parses and interprets commands and Modelica expressions for
evauation, simulation, plotting, etc. The session handler aso contains ssmple history facilities, and
completion of file names and certain identifiersin commands.

e A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing
definitions of classes, functions, and variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica interpreter for interactive usage and
constant expression evaluation. The subsystem aso includes facilities for building simulation
executables linked with selected numerical ODE or DAE solvers.

e An execution and run-time module. This module currently executes compiled binary code from
translated expressions and functions, as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling facilities will be included for the discrete and
hybrid parts of the Modelica language.

11

e Emacs textual model editor/browser. In principle any text editor could be used. We have so far
primarily employed Gnu Emacs, which has the advantage of being programmable for future extensions.
A Gnu Emacs mode for Modelica has previously been developed. The Emacs mode hides Modelica
graphical annotations during editing, which otherwise clutters the code and makes it hard to read. A
speedbar browser menu allows to browse a Modelica file hierarchy, and among the class and type
definitionsin thosefiles.

e Eclipse plugin editor/browser. The Eclipse plugin caled MDT (Modelica Development Tooling)
provides file and class hierarchy browsing and text editing capabilities, rather analogous to previously
described Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse
framework has the advantage of making it easier to add future extensions such as refactoring and cross
referencing support.

e OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor,
compared to the more advanced Mathematica notebooks available in MathModelica. This basic
functionality still alows essentially the whole DrModelica tutorial to be handled. Hierarchical text
documents with chapters and sections can be represented and edited, including basic formatting. Cells
can contain ordinary text or Modelica models and expressions, which can be evaluated and simulated.
However, no mathematical typesetting or graphic plotting facilities are yet available in the cells of this
notebook editor.

e Graphical model editor/browser. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading
and picking component models. The graphical model editor is not really part of OpenModelica but
integrated into the system and provided by MathCore without cost for academic usage. The graphical
model editor also includes a textual editor for editing model class definitions, and a window for
interactive Modelica command eval uation.

e Modelica debugger. The current implementation of debugger provides debugging for an extended
algorithmic subset of Modelica, excluding equation-based models and some other features, but
including some meta-programming and model transformation extensions to Modelica. This is
conventional full-feature debugger, using Emacs for displaying the source code during stepping, setting
breakpoints, etc. Various back-trace and inspection commands are available. The debugger also
includes a data-view browser for browsing hierarchical data such as tree- or list structures in extended
Modelica

1.1.1 Implementation Status

In the current OpenModelica implementation version 1.5 (November 2009), not all subsystems are yet
integrated as well asisindicated in Figure 1-1. Currently there are two versions of the Modelica compiler, one
which supports most of standard Modelica including simulation, and is connected to the interactive session
handler, the notebook editor, and the graphic model editor, and another meta-programming Modelica compiler
version (called MetaModelica compiler) which is integrated with the debugger and Eclipse, supports meta-
programming Modelica extensions, but does not allow equation-based modeling and simulation. Those two
versions have in OpenModelica 1.5 merged into a single Modelica compiler version. All MetaModelica
constructs now work inside OpenM odelica, but more bugfixing and performance tuning remains.

12

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OpenModelica
notebook UsersGuideExamples.onb inthe testmodels directory, see also Chapter 4.

1.2.1 Starting the Interactive Session

The Windows version which at instalation is made available in the start menu as OpenModelica-
>OpenModelica Shell which responds with an interaction window:

{ifi oMshell - Opentodelica Shell =10l x|
File Edit WView Help
s B @32 0Ol

CpenModelica 1.4.5 =

Copyright (c) o0OSMC 2002-2008

To get help on using CMShell and OpenModelica, type "help()"

and press snter.

3

L

Ready &

We enter an assignment of a vector expression, created by the range construction expression 1: 12, to be stored
in the variable x. The value of the expression is returned.

>> x := 1:12
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

1.2.2 Trying the Bubblesort Function
Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly
giving the command:

>> loadFile ("C:/OpenModelical.5/testmodels/bubblesort.mo")

true

13

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real[:], instantiated as Real [12], since thisis
the declared type of the function result. The input Integer vector was automatically converted to a Real
vector according to the Modelica type coercion rules. The function is automatically compiled when called if
this has not been done before.

>> bubblesort (x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>> bubblesort ({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

It is also possible to give operating system commands via the system utility function. A command is provided
as a string argument. The example below shows the systemn utility applied to the UNIX command cat, which
here outputs the contents of the file bubblesort . mo to the output stream. However, the cat command does not
boldface Modelica keywords — this improvement has been done by hand for readability.

>> cd("C:/OpenModelical.5/testmodels™")
>> system("cat bubblesort.mo")

function bubblesort
input Reall[:] x;
output Real[size(x,1)] vy;
protected
Real t;
algorithm
y = X;
for i in 1l:size(x,1) loop
for j in 1l:size(x,1) loop
if y[i] > yI[j] then
t = yl[il;
ylil yIl3l;
y I3l t;
end if;
end for;
end for;
end bubblesort;

1.2.3 Trying the system and cd Commands

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would
not be returned. Only a success code (0 = success, 1 = failure) is returned to the winmosh window. For
example:

>> gystem("dir")
0

>> system("Non-existing command")
1

Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.

>> cd()
"C:\OpenModelical.5\testmodels"

14

>> cd("..")
"C:\OpenModelical.5"

>> cd("C:\\OpenModelical.5\\testmodels™")
"C:\OpenModelical.5\testmodels"

1.2.4 Modelica Library and DCMotor Model
We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menuitem:

>> loadModel (Modelica)
true

We also load afile containing the dcmotor model:

>> loadFile ("C:/OpenModelical.5/testmodels/dcmotor.mo")

true
Itissimulated:
>> simulate (dcmotor, startTime=0.0, stopTime=10.0)
record
resultFile = "dcmotor res.plt"

end record

We list the source code of the model:
>> list (dcmotor)

"model dcmotor
Modelica.Electrical.Analog.Basic.Resistor rl(R=10);
Modelica.Electrical.Analog.Basic.Inductor il;
Modelica.Electrical.Analog.Basic.EMF emfl;
Modelica.Mechanics.Rotational.Inertia load;
Modelica.Electrical.Analog.Basic.Ground g;
Modelica.Electrical.Analog.Sources.ConstantVoltage v;

equation
connect (v.p,rl.p);
connect (v.n,g.p) ;
connect (rl.n,il.p);
connect (il.n,emfl.p) ;
connect (emfl.n,g.p) ;
connect (emfl.flange b,load.flange a);

end dcmotor;
n

We test code instantiation of the model to flat code:
>> instantiateModel (dcmotor)

"fclass dcmotor

Real rl.v "Voltage drop between the two pins (= p.v - n.v)";
Real rl.i "Current flowing from pin p to pin n";
Real rl.p.v "Potential at the pin";

Real rl.n.v "Potential at the pin";

Real rl.n.i "Current flowing into the pin";

parameter Real rl.R = 10 "Resistance";

Real il.v "Voltage drop between the two pins (= p.v - n.v)";

v
i
p

Real rl.p.i "Current flowing into the pin";
n
n

Real il.i "Current flowing from pin p to pin n";
Real il.p.v "Potential at the pin";

Real il.p.i "Current flowing into the pin";

Real il.n.v "Potential at the pin";

Real il.n.i "Current flowing into the pin";

parameter Real i1i1.L = 1 "Inductance";
parameter Real emfl.k = 1 "Transformation coefficient";
Real emfl.v "Voltage drop between the two pins";

Real emfl.i "Current flowing from positive to negative pin";
Real emfl.w "Angular velocity of flange b";

Real emfl.p.v "Potential at the pin";

Real emfl.p.i "Current flowing into the pin";

Real emfl.n.v "Potential at the pin";

Real emfl.n.i "Current flowing into the pin";

Real emfl.flange b.phi "Absolute rotation angle of flange";
Real emfl.flange b.tau "Cut torque in the flange";

Real load.phi "Absolute rotation angle of component (= flange a.phi = flange b.phi)";
Real load.flange a.phi "Absolute rotation angle of flange";
Real load.flange a.tau "Cut torque in the flange";

Real load.flange b.phi "Absolute rotation angle of flange";
Real load.flange b.tau "Cut torque in the flange";
parameter Real load.J = 1 "Moment of inertia";

Real load.w "Absolute angular velocity of component";

Real load.a "Absolute angular acceleration of component";

Real g.p.v "Potential at the pin";

Real g.p.i "Current flowing into the pin";

Real v.v "Voltage drop between the two pins (= p.v - n.v)";
Real v.i "Current flowing from pin p to pin n";

Real v.p.v "Potential at the pin";

Real v.p.1i "Current flowing into the pin";

Real v.n.v "Potential at the pin";

Real v.n.i "Current flowing into the pin";
parameter Real v.V = 1 "Value of constant voltage";
equation

rl.R * rl.i = rl.v;

rl.v = rl.p.v - rl.n.v;

0.0 = rl.p.1 + rl.n.i;

rl.i = rl.p.1i;
i1.L * der(il1.i) = 1i1.v;
il.v = il.p.v - il.n.v;

0.0 = il.p.1 + 1il.n.1i;

il.i = il.p.1i;

emfl.v = emfl.p.v - emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.i;

emfl.w = der(emfl.flange b.phi);

emfl.k * emfl.w = emfl.v;

emfl.flange b.tau = -(emfl.k * emfl.i);

load.w = der(load.phi) ;

load.a = der(load.w) ;

load.J * load.a = load.flange a.tau + load.flange b.tau;
load.flange a.phi = load.phi;

load.flange b.phi = load.phi;

.p.v 0.0;

v = Vv.V;

.V = V.p.V - Vv.n.
.0 = v.p.1i + v.n.
1= v.p.i;
emfl.flange_b.tau + load.flange_a.tau = 0.0;
emfl.flange b.phi load.flange a.phi;

N

4 o< <
L.

16

emfl.n.i + v.n.i + g.p.i = 0.0;
emfl.n.v = v.n.v;

V.n.v = g.p.v;

il.n.i + emfl.p.i = 0.0;
il.n.v = emfl.p.v;

rl.n.i + il.p.i = 0.0;

rl.n.v = il.p.v;

v.p.1 + rl.p.i = 0.0;

V.p.v = rl.p.v;

load.flange b.tau = 0.0;
end dcmotor;

We plot part of the simulated result:

>> plot ({load.w,load.phi})
true

Il Flot Window - 0| x|
File Edit Insert Tools Help
J_| Open; Save | Print | Select | Zoom Pan | Grid | Hold | Preferences | Active | Image
Plot by OpenlModelica
3.5
3
2.5 @ load.w
2
1.5
@ oad.phi
1
0.5
1]
2 4 B 3
time
Connection closed 4

1.2.5 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation
result variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

17

1.2.6 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
key-words have been bold-faced by hand for better readability):

>> loadFile ("C:/OpenModelical.5/testmodels/BouncingBall.mo")
true

>> list (BouncingBall)
"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der (v)=if flying then -g else 0;
der (h) =v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v _new > 0;
reinit (v, v_new);
end when;
end BouncingBall;"

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos
(Modelicascript) file sim BouncingBall.mos that contains these commands:

loadFile ("BouncingBall.mo") ;
simulate (BouncingBall, stopTime=3.0) ;
plot ({h, flying}) ;

The runScript command:

>> runScript ("sim BouncingBall.mos")
"true
record

resultFile = "BouncingBall res.plt"
end record
true
true"

£ tmpPlot.plt] 3]
File Edit Special

Plot by OpenModelica

lying ®
08 7

047 7

0.0

18

We enter a switch model, to test if-equations (e.g. copy and paste from another file and push enter):

>> model Switch
Real v;
Real 1i;
Real 11;
Real itot;
Boolean open;
equation
itot = i + 11;

if open then

v = 0;
else

i=0;
end if;

1 - i1 = 0;

1 -v - 1= 0;
open = time >= 0.5;
end Switch;
Ok

>> simulate (Switch, startTime=0, stopTime=1) ;
Retrieve the value of itot at time=0 using the va1(variableName,time) function:

>> val (itot, 0)
1

Plot itot and open:

>> plot ({itot,open})
true

e tmpPlot.plt
File Edit Special

Plot by OpenModelica
2':' | T T T T T] Dpen =
itot

1.8 7

0af ! | ! ! .

0.0

oo 01 02 03 04 05 06 0OF 08 09 10

We note that the variable open switches from false (0) to true (1), causing i tot to increase from 1.0 to 2.0.

1.2.7 Clear All Models

Now, first clear all loaded libraries and models:

>> clear|()

true

List the loaded models — nothing left:

>> list ()

1.2.8 VanDerPol Model and Parametric Plot

We |oad another model, the vanberpPol model (or viathe menu File->Load Model):

>> loadFile ("C:/OpenModelical.5/testmodels/VanDerPol.mo"))
true

It issimulated:
>> gimulate (VanDerPol)
record
resultFile = "VanDerPol res.plt"

end record

It is plotted:

plotParametric(x,y) ;

i tmpPlot.plt O] =]

File Edit Special

Plot by OpenModelica

-2.0 -1.58 -1.0 -0.5 0.0 0.4 1.0 1.5 2.0

Perform code instantiation to flat forrm of the vanberpPol model:
>> instantiateModel (VanDerPol)

"fclass VanDerPol
Real x(start=1.0);
Real y(start=1.0);

parameter Real lambda = 0.3;
equation
der(x) = vy;
der(y) = -x + lambda * (1.0 - x * x) * y;

end VanDerPol;
n

20

1.2.9 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):
>> k := 0;
for i in 1:1000 loop
k := k + 1i;
end for;

>> k
500500

A nested loop summing reals and integers::

>> g := 0.0;
h := 5;
for i in {23.0,77.12,88.23} loop
for j in i:0.5:(i+1) loop
g =g+ Ji
g:=g+h/2;
end for;
h :=h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>> h;g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>> i:="";
lst := {"Here ", "are ","some ", "strings."};
s 1= llll;
for i in 1lst loop
S =8 + 1;
end for;

>> S
"Here are some Strings."

Normal while-loop with concatenation of 10 "abc " strings:
>> g:="";
i:=1;
while i<=10 loop
s:="abc "+s;
i1:=1i+1;
end while;

>> s
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with el seif:

>> i1f false then

21

a :=5;
elseif a > 50 then
b:= "test"; a:= 100;
else
a:=34;
end if;

Take alook at the variables aand b:

>> a;b

100
"tegt"

1.2.10 Variables, Functions, and Types of Variables

Assign avector to avariable:

>> a:=1:5
{1,2,3,4,5}

Typein afunction:

>> function MySqgr input Real x; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:

>> b:=MySqgr(2)
4.0

Look at the value of variable a:

>> a
{1,2,3,4,5}

Look at the type of a:

>> typeOf (a)
"Integer[]"

Retrieve the type of b:

>> typeOf (b)
llReal n

What is the type of Mysqr? Cannot currently be handled.

>> typeOf (MySqgr)
Error evaluating expr.

List the available variables:

>> listVariables()
{currentSimulationResult, a, b}

Clear again:

>> clear|()
true

22

1.2.11 Using External Functions

See Chapter 7 for more information about calling functions in other programming languages.

1.2.12 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or alows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC)
server. Current examples or such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
MathModelica Lite graphic model editor, etc. This APl is untyped for performance reasons, i.e.,, no type
checking and minimal error checking is done on the calls. The results of a call is returned as a text string in
Modelica syntax form, which the client has to parse. An example parser in C++ is available in the
OMNotebook source code, whereas another example parser in Javais availablein the MDT Eclipse plugin.
Below we show a few calls on the previously simulated BouncingBall model. The full documentation on
this APl is available in the system documentation. First we load and list the model again to show its structure:

>>loadFile ("C:/OpenModelical.5/testmodels/BouncingBall .mo")
true

>>1list (BouncingBall)

"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der (h) =v;
when {h <= 0.0 and v <= 0.0,impact} then
v_new=1if edge (impact) then -e*pre(v) else 0;
flying=v _new > 0;
reinit (v, v_new);
end when;

end BouncingBall;
n

Different kinds of calls with returned results:

>>getClassRestriction (BouncingBall)
"model"

>>getClassInformation (BouncingBall)
{"modelm", nn, v {false,false, false}, {"writable",1,1,18,17}}

>>isFunction (BouncingBall)
false

>>existClass (BouncingBall)
true

>>getComponents (BouncingBall)
{{Real,e,"coefficient of restitution", "public", false, false, false,
"parameter", "none", "unspecified"},

23

{Real,g,"gravity acceleration",

"public", false, false, false, "parameter", "none", "unspecified"},
{Real,h, "height of ball", "public", false, false, false,
"unspecified", "none", "unspecified"},

{Real,v,"velocity of ball",

"public", false, false, false, "unspecified", "none", "unspecified"},
{Boolean, flying, "true, if ball is flying", "public", false, false,
false, "unspecified", "none", "unspecified"},

{Boolean, impact, "",

"public", false, false, false, "unspecified", "none", "unspecified"},
{Real,v_new,"", "public", false, false, false, "unspecified", "none",

"unspecified"}}

>>getConnectionCount (BouncingBall)
0

>>getInheritanceCount (BouncingBall)
0

>>getComponentModifierValue (BouncingBall,e)
0.7

>>getComponentModifierNames (BouncingBall,e)

{}

>>getClassRestriction (BouncingBall)
"model"

>>getVersion() // Version of the currently running OMC
lll'5|l

1.2.13 Quit OpenModelica

Leave and quit OpenModelica:

>> quit ()

1.2.14 Dump XML Representation

The command dumpxMLDAE dumps an XML representation of a model, according to severa optional
parameters.

dumpXMLDAE (modelname[,asInSimulationCode=<Boolean>] [,filePrefix=<String>]
[, storeInTemp=<Boolean>] [,addMathMLCode =<Booleans>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asIinsimulationCode defines where to stop in the trandation process (before
dumping the model), the other options are relative to the file storage: filePrefix for specifying a different
name and storeInTemp t0 use the temporary directory. The optiona parameter addMathMLCode gives the
possibility to don't print the MathML code within the xml file, to make it more readable.Usage is trivia, just:
addMathMLCode=true/false (default value is false).

1.2.15 Dump Matlab Representation

The command export dumps an XML representation of amodel, according to several optional parameters.

24

exportDAEtoMatlab (modelname) ;

This command dumps the mathematical representation of amodel using a Matlab representation. Example:

$ cat daequery.mos

loadFile ("BouncingBall.mo") ;
exportDAEtoMatlab (BouncingBall) ;
readFile ("BouncingBall imatrix.m");

$ omc daequery.mos
true
"The equation system was dumped to Matlab file:BouncingBall imatrix.m"

)

% number of rows: 6

M={[3,-6],[1,{'if', 'true','==' {3},{},}1.,[2,{ 'if', 'edge(impact)'
{3},{s},}1,14,21,1[5,{'if", 'true','==' {4},{},}1,16,-51};

VL = {'foo','v_new', 'impact', 'flying','v','h'};

EgStr = {'impact = h <= 0.0;','foo = if impact then 1 else 2;', 'when {(h <= 0.0 AND v
<= 0.0,impact} then v new = if edge(impact) then (-e) * pre(v) else 0.0; end
when; ', 'when {h <= 0.0 AND v <= 0.0, impact} then flying = v_new > 0.0; end
when;','der(v) = if flying then -g else 0.0;','der(h) = v;'};

0l1dEgStr={'£fclass BouncingBall', 'parameter Real e = 0.7 "coefficient of

restitution";', 'parameter Real g = 9.81 "gravity acceleration";',6 'Real h(start = 1.0)
"height of ball";',6 'Real v "velocity of ball";', 'Boolean flying(start = true) "true,
if ball is flying";', 'Boolean impact;', 'Real v_new;', 'Integer foo;', 'equation','
impact = h <= 0.0;',' foo = if impact then 1 else 2;',' der(v) = if flying then -g
else 0.0;',' der(h) = v;',' when {h <= 0.0 AND v <= 0.0,impact} then',' v _new = if
edge (impact) then (-e) * pre(v) else 0.0;',' flying = v new > 0.0;',"'
reinit(v,v_new);',' end when;', 'end BouncingBall;',"};"

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate (modelname) Translate amodel named modelname and simulate it.

simulate (Mmodelname[, startTime=<Real>] [, stopTime=<Real>] [, numberOfIntervals
=<Integer>1) Trandate and simulate a model, with optional start time, stop
time, and optional number of simulation intervals or steps for which the
simulation results will be computed. Many steps will give higher time
resolution, but occupy more space and take longer to compute. The default
number of intervalsis 500.

plot (vars) Plot the variables given as a vector or a scalar, eg. plot ({x1,x2}) or
plot (x1).

plotParametric (varl,var2) Plot var2 relative to varl from the most recently simulated model, eg.
plotParametric(x,y).

cd () Return the current directory.
cd (dir) Change directory to the directory given as string.
clear () Clear all loaded definitions.

25

clearVariables ()

dumpXMLDAE(modelname, ...)

Clear all defined variables.

Dumps an XML representation of a model, according to several optiona
parameters.

exportDAEtoMatlab(name) Dumpsan Matlab representation of a model.

instantiateModel (modelname) Performs code instantiation of a model/class and return a string containing

list ()

1list (modelname)
listVariables ()
loadModel (classname)

loadFile (Str)
readFile (Str)
runScript (Str)
system (Str)

timing (€Xpr)

typeOf (variable)
saveModel (Str, modelname)

help ()
quit ()

1.4 References

the flat class definition.

Return a string containing all loaded class definitions.

Return a string containing the class definition of the named class.
Return avector of the names of the currently defined variables.

Load model or package of name classname from the path indicated by the
environment variable OPENMODELICALIBRARY.

Load Modelicafile (.mo) with name given as string argument str.
Load file given as string str and return a string containing the file content.
Execute script file with file name given as string argument str.

Execute str as a system(shell) command in the operating system; return
integer success value. Output into stdout from a shell command is put into
the console window.

Evaluate expression expr and return the number of seconds (elapsed time)
the evaluation took.

Return the type of the variable as a string.

Save the model/class with name modelname in the file given by the string
argument str.

Print this helptext (returned as a string).
Leave and quit the OpenM odelica environment

Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrom, Adrian Pop, Levon Saldamli, and David Broman. The
OpenModelica Modeling, Simulation, and Software Development Environment. In Simulation News Europe, 44/45,
December 2005. See aso: http://www.openmodelica.org.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., ISBN 0-471-
471631, Wiley-1EEE Press, 2004.

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007. http://www.modelica.org.

26

Chapter 2

Using the Graphical Model Editor

This chapter just presents a very simple example of using graphical modeling of Modelica models using the
SimForge graphical editor that can be used together with OpenModelica. More detailed documentation is
availableat: http://trac.elet.polimi.it/simforge.

A model is built using the graphical model editor by using drag-and-drop of already developed and freely
available model components from the Modelica Standard Library.

2.1 Getting Started
Install Java, OpenModelica and SimForge according to the Installation Notes.

Important: when launching SimForge for the first time, go to Tools|Settings, and set the paths.
On Windows machines:

e OPENMODELICAHOME contains the OpenModelicaroot directory, e.g., C:\OpenModelica1.5

e OPENMODELICALIBRARY points to the directory which contains the Modelica directory of your
favourite Modelica Standard Library package; you can use the one provided with the OpenModelica
installation, e.g., C:\OpenModelica1.5\ModelicaLibrary

e LD LIBRARY_PATH isirrelevant
On linux machines:

e OPENMODELICAHOME must point to the directory which contains the bin subdirectory where the
omc (OpenModelica compiler) executable is located, e.g., /usr/share/openmodelica-1.4/

e OPENMODELICALIBRARY points to the directory which contains the Modelica directory of your
favourite Modelica Standard Library package, e.g., /usr/share/openmodelica-1.4/modelica-2.2/

e LD _LIBRARY_PATH points to the directory containing the libmico library; you can use the one
provided by your OpenModelicainstallation, e.g. /usr/lib/mico-openmodelica-1.4

These will be the default choices for all the new projects which are created. They can be overridden within each
project by using project-specific settings.

27

2.2

Creating a new project

Go to File]New project. Choose a name for the project - this will be the name of the directory containing all
project files, so it must be alegal directory name - and select the path where you want this new directory to be

created.
SF SimForge EIEIZI
File Tools Help
Ll) L0 |
4 -
M =
H | A |
= B
(5 Desktop 3 SimpleFluid
Documents Templates
SF Creating project E = =i
[Examples gtmp
Project name:
=3 flexdock g varken
Path: Browse g Music [videos
[Pictures 3 Work
Cancel 5 Public g workspace
(g SimForge-0.8
Folder name: |,'homeifi\do ‘
Files of Type: |AII Files |-|
>

I

I

SimForge will create the project directory, which contains: the IEC61131 directory, for IEC 61131 controllers
code, the Modelica directory, for Modelica code, the Results directory, for permanent storage of simulation
results, the Temp directory for temporary files, and the Properties.xml file for the project properties.

Double-click on the Modelica node of the project tree. The three nodes contain the following elements:

e Used external packages: all the packages which are used by the project, but which are not part of the
project itself, so they are read-only, and are not contained within the project directory. Examples. the
Modelica Standard Library, or any other free or commercial third-party library that will be used by the
current project.

e Modelica classes: atree view of al the models and packages defined within the project, irrespective of
their actual representation as single files or structured entities (i.e., sub-directories). Models within this
tree can be edited in both graphics and textual modes.

e Modelica files: aview of all the .mo files contained in the project. Can be useful to inspect files, and
rearrange the file contents. Text-only editing.

28

SimtEorge = /home/hldo/tmp/NewProject : : X7

File Edit Vview Tools Window Help

0 |

MNewProject |v M

5 Modelica

o 9 Used external packages
[S| Modelica classes

D Modelica files

=3 /EC61131-3

D SFC

0 Ladder

D Dictionary
D Connections

[y [simulation result

[

4]

At this point you can create one or more top-level models or packages, which will be saved in the Modelica
subdirectory of the project. For instance, right-click on Modelica classes and type TestPackage as the package
name, Package as the class type. If you leave 'structured entity' unchecked, the package will be saved as a
single .mo file, otherwise it will be saved as a sub-directory containing a package.mo file plus files for all other
contained classes.

SF SimForge - fhome/fildo/tmp/NewProject EIEIE
File Edit View Tools Window Help

e i R |

NewProject |- : 1=
g Modelica E

o [Used external packages
[] Modelica classes

[y Modslica files

= IEC61131-3

D SFC

[y Ladder

D Dictionary

D Connections

D Simulation result

Name: ‘Test?ackage ‘

Type: ‘Fa:kage |'|

[Structured entity (directory) h

|

29

Now right-click on TestPackage in the project tree, select '‘Add class, then type in Model A and select model as
the type of class.

SF SimForge - fhome/fildo/tmp/NewProject EE]E
File Edit View Tools Window Help

el B |

NewProject |v () =

M e

=5 Modelica
o 9 Used external packages
¢ [Modelica classes
[TestPackage
[Modelica files
7 /EC61131-3
D SFC
0O Ladder
D Dictionary
[Connections Name: ‘MOdeIA |

N} Simulation result

Type: ‘Mude\ |v‘

O Structured entity (directory)

| B

-

<] [

Double-click on the Model A node to open the text and graphical editors. Y ou can now start editing your model.
The three icons on the right of the tool bar can be used to check the model, compile and simulate it, and to
show the omc console.

SimEorge = /home/fldo/tmp/NewProject

Eile Edit View Tools Window Help

D dn | B2 | vmorsAAR | QB8 H | = | 4@

NewProject ‘

diagram

b jg Text editor: MewProject - TestPackage.Modela

[Modelica | Eile Edit Search Markers Folding V“iew Utilities Magros Plugins Help

¢ [Used external pack
¢ [Modelica classes o :::E;D:Z:?A =
¢ [TestPackage : ‘
[y Modela f
o [Modelica files i h
3 IEC61131-3
D SFC
0y Ladder
D Dictionary i
D Connections H =

a Modelica: NewProject - TestPackage. Modela

[Simulation result

4 [] [

[4]

30

You can now customize the project properties. Click on ToolgProject properties. The General tab provides
information about the project's path, as well as some user-defined comments to the project.

SF SimForge - /home/fildo/tmp/NewProject [=1C=]r]
File Edit View Tools Window Help
DeAds | B0 | wE@me A B | Q8| He | g@F degen |

NewProject " jg Text editor: MewProject - TestPackage.Modela

—j Modelica i File Edit Search Markers Folding View Utilities Macros Plugins Help

¢ [Used external packages

¢ [Modelica classes

General [Modelica

¢ [TestPackage

[y Modela

: QPENMODELICAHOME: thomeffilda/Work/QpenModelicatrunk/build O Browse.,,
- Modelica files

=7 /EC61131-2 g
[y s¢ H OPENMODELICALIBRARY: fhomeffildo/Work/OpenMedelica/trunk/build/Modelicalibrary =
O Lacder LD_LIBRARY_PATH: fusrilocalilib | Browse... o' F X
[y Dictionary A - - e i
[Connections 3] =
[y Simulation resutt : Load Modelica Standard Library
External libraries
:: s Add
Kl
Check PATHs settings ‘ | Close | | Save PATHs' settings ‘
: 1] T] DI
4 o]

The Modelicatab contain the following settings:

e The OPENMODELICAHOME, OPENMODELICALIBRARY, and LD_LIBRARY_PATH paths for
this project. By default these are set to the tool settings, but it is possible to customize them by clicking
on the checkbox and providing a new path, so that each project can use its own version of OMC,
Modelica Standard Library, and OMC runtime libraries.

e A checkbox to load the Modelica Standard Library. If you want to use the Modelica Standard Library
for your project, you have to set this checkbox explicitly when you first create the project, and make
sure you then click on the Reload omc button, so that omc loads the standard library, and makes it
visible immediately in the project tree. This is not necessary when you later re-open the project, as the
required Modelicalibrary will be loaded automatically.

e Additional external libraries: you can add them here by giving the paths of the packages. They will
show up under the Used external packages node of the project tree, as read-only classes.

Note that it is possible to load multiple projects at the same time in SimForge. They can be selected by the
drop-down menu on top of the project tree. Each project talks to a separate instance of OMC, so it ispossible to
open different projects using different versions of OpenModelica and standard library at the same time within a
single instance of the SimForge application. It is also possible to load two different projects that contain two
different versions of the same package (thus with the same name). All the class editing windows contain
information about the project name, so that there's no chance of being confused.

31

Chapter 3

2D Plotting and 3D Animation

This chapter covers 2D plotting available from OMNotebook, OMShell or programmable plotting from your
own Modelicamodel. The 3D animation is currently available only from OMNotebook (and not on Mec).

3.1 Enhanced Qt-based 2D Plot Functionality

Starting with OpenModelica 1.4.5, new enhanced plotting functionality is available (Eriksson, 2008). The new
plotting is implemented based on a Qt-based (Trolltech, 2007) GUI package. This new plotting functionality
has additional features compared to the old Java-based PtPlot plotting. The simulation data is sent directly to
the plotting window in OMNotebook (or a popup window if caled from OMShell), which handles the
presentation (see Figure 3-1). As OMNotebook now has access to al source data it is now be possible to
manipulate diagrams, e.g. zoom or change scales.

To alow the use of graphics functions from within Modelica models a new Modelica interface has been
developed. This utilizes an externa library to communicate with OMNotebook. In addition to this, a number of
new functions that can be used for drawing geometric objects like circles, rectangles and lines have been added.

The following is a summary of the capabilities of the new 2D graphics package:

e Interaction with OMNotebook. The graphics package has been developed to be fully integrated with
OMNotebook and allow modifications of diagrams that have been previously created.

e Usage without OMNotebook. If the functionality of the graphics package is used without OM Notebook,
anew window should be opened to present the resulting graphics.

e Logarithmic scaling. Some applications of OpenModelica produce simulation data with large value
ranges, which is hard to make good plots of. One solution to this problem is to scale the diagram
logarithmically, and this is allowed by the graphics package.

e Zoom. To alow studying of small variations the user is allowed to zoom in and out in a diagram.

e Support for graphic programming. To alow creation of Modelica models that are able to draw
illustrations, show diagrams and suchlike, it is possible to use the graphics package not only from the
externa APl of OMC, but aso from within Modelica models. To accomplish this a new Modelica
interface for the graphi cs package has been created.

e Programmable Modelica API. The Modelica APl is defined by a number of Modelica functions, located
in the package Modelica.Graphics.Plot, Which use externa libraries to access functionality of the
graphics package.

The programmable Modelica API functions include the following:

e plot(x). Drawsatwo-dimensional line diagram of x as afunction of time.
e plotParametric (x,y). Drawsatwo-dimensional parametric diagram with y as afunction of x.

32

e plotTable([X1, .., ¥1; .. Xn, .., Yn]). Draws atwo-dimensiona parametric diagram with y as a function
of x.

e drawRect(X1, X2, ¥1, y2). Draws arectangle with verticesin (x1, y1) and (x2, y2).

e drawEllipse(X1, X2, ¥1, y2). Draws an ellipse with the size of a rectangle with verticesin (x1, y1) and
(x2, y2).

e drawLine(x1, x2, y1, y2). Draws aline from (x1, y1) to (x2, y2).

CORBA: answer. i.e. done

h |
TCP/IP: simulation data
OoMC = GraphWidget
= Resutiie
. GraphCell
CORBA: plot OMMNotebook

Figure 3-1. Plotting architecture with the new 2D graphics package.

3.2 Simple 2D Plot

To create asimple time plot the model He1l1loWor1d defined in DrModelicais simulated. To reduce the amount
of simulation data in this example the number of intervas is limited with the argument
numberOf Intervals=10. The simulation is started with the command bel ow.

simulate (HelloWorld, startTime=0, stopTime=4, numberOfIntervals=10) ;

When the simulation is finished the file HelloWorld res.plt contains the simulation data. The contents of
the fileis the following (some formatting has been applied).

0 1
4.440892098500626e-013 0.9999999999995559
0.4444444444444444 0.6411803884299349
0.8888888888888888 0.411112290507163
1.333333333333333 0.2635971381157249
1.777777777777778 0.1690133154060587
2.222222222222222 0.1083680232218813
2.666666666666667 0.06948345122279623
3.111111111111112 0.04455142624447787
3.555555555555556 0.02856550078454138
4 0.01831563888872685

Diagrams are now created with the new graphics package by using the following command.

plot (x) ;

seems to correspond well with the data.

33

Plot by OpenModelica

1
0.8
0.6
[T
0.4
0.2
‘-_\-_\-‘—\—______—____—______
-____‘—\—_
0.5 1 1.5 Z 2.5 3 3.5 4

time
Figure 3-2. Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, e.g. using the default 500 intervals, a much smoother
plot can be obtained.

simulate (HelloWorld, startTime=0, stopTime=4, numberOfIntervals=500) ;
plot (x) ;

plot (x)

true

BN

0.6
\ | | ®x
0.4

0.2 T

Plot by OpenModelica

0.5 1 1.5 2 2.5 3 3.5 4
time

Figure 3-3. Simple 2D plot of the HelloWorld example with larger number of points.
Additional features of the new plotting are shown in Figure 3-4 and Figure 3-5.

=

File Edit Insert Tools Help

J_| Open Save | Print | Select | Zoom Pan | Grid | Preferences | Active

Plot by OpenModelica

r.
|T Show line
|T Show data points

Change color

time

4

Figur e 3-4. Features of the new Qt-based Plotting Package: Show data points, Change line colors, etc.

35

Il graphWindow =10 x|

File Edit Insert Tools Help

J_| Open Save | Print | Select | Zoom Pan | Grid | Preferences || Active

Plot by OpenModelica
0,38 \\

S
0.35
\ Pan |

0.34 v Foom
v (Grid
[B
Clear
0.33
Hold

Antialiasing \
0.32 Save parameters
Simulation data \\
Preferences 1

1.04 1.06& 1.08 1.1 1.12 1.14 1.1&
time

Figure 3-5. Features of the new Qt-based Plotting Package: Zoom, Fit in view, Grid, etc.

3.2.1 All Plot Functions and their Options

The plot functions can be used in a number of ways, depending on the arguments that are included with the

cal. The following calls are supported.

36

Command Description

plot (x) Creates a diagram with data from the last simulation that
had a variable named x.

plot ({x,y,..., z}) Like the previous command, but with several variables.

plot (model, x)

Creates a diagram with data from the previously simulated
model model.

plot (model, {x,vy,..., z})

Like the previous, but with several variables.

plotParametric(x, y)

Creates a parametric diagram with data from the last
simulated variables named x and y.

plotParametric (model, x, | Createsa parametric diagram with datafrom the previously
y) simulated model model.
plotall () Creates a diagram with all variables from the last simulated

model as functions of time.

plotAll (model)

Creates a diagram with all variables from the model mode1
as functions of time.

All of these commands can have any number of optional arguments to further customize the the resulting
diagram. The available options and their allowed values are listed below.

Option Default value Description

grid true Determines whether or not a grid is shown in the
diagram.

title "Plot by OpenModelica" | Thistext will be used asthe diagram title.

interpolation | linear Determines if the ssmulation data should be interpolated
to alow drawing of continuous lines in the diagram.
"linear" results in linear interpolation between data
points, "constant" keeps the value of the last known data
point until a new one is found and "none" results in a
diagram where only known data points are plotted.

legend true Determines whether or not the variable legend is shown.

points true Determines whether or not the data points should be
indicated by a dot in the diagram.

logx false Determines whether or not the horizontal axis is
logarithmically scaled.

logY false Determines whether or not the vertica axis is
logarithmically scaled.

xRange {0, 0} Determines the horizonta interval that is visible in the
diagram. {0, O} will select a suitable range.

yRange {0, 0} Determines the vertical interval that is visible in the
diagram. {0, O} will select a suitable range.

antiAliasing false Determines whether or not antialiasing should be used
in the diagram to improve the visual quality.

vTitle This text will be used as the vertical label in the
diagram.

hTitle “time” This text will be used as the horizontal label in the

37

| diagram.

3.2.2 Zooming

The left mouse button can for instance be used for zooming in on interesting parts of the diagram.The same
result can be achieved by using the optional parameters xRange and yRange. The plotParametric
command would then look like the following.

plotParametric(x, y, xRange={0.9, 1.95}, yRange={-1.5, 1.35})

B
S OMNotebook: (untitled)®
File Edit Cel Format Insert ‘Window Help

I Qe e
plotParametric(x,y)

True

2H

1.5

8 t

=

k(S Q

-1

A5
2

Ready Ln 1, Col 20

Figure 3-6. Zooming in an Input cell.

[
&I OMNotebook: (untitled)*
File Edit Cel Format Insert Window Help
N EH =B ey [(= U]« |
| plotParametric(x,v)

true

0.5}

0.5}

time

Ready Ln 1, Col 20

Figure 3-7. Magnified input cell.

38

3.2.3 Plotting all variables of a model

A command, plotall, has been introduced to plot al the variables of a model. This can be useful if a model
contains many interesting variables, as it might be easier to remove variables that are not important than to list
al those who are. The commands available for this are plotall () and plotall (model). If the optional
model parameter is omitted the last simulated model will be used. The command below applies plotAll to the
model HellowWorld. The result is shown in Figure 3-8. The simplest way to remove unimportant variables is to
use the Remove command in the Legend menu..

plotAll (HelloWorld) ;

plothAll (HelloWorld)
true
Plot by OpenModelica
TF] T | 1 T
|

- | @ sdummy

0. 5HEE __..._..-_'..::.'"_"'.;n..__.;. AEERANERNRERE INRESduUnUBERAH 114 ik
I el | | [[I
Ao et defete4b 4ot =1k 1t 4t +f 14 -‘__‘-_\-“_-_'_‘.l—‘l—n____-_“_-l : 1 I : -+ 1 1 { IR Y 4 i .:‘:
I TITTT e L 1] |
|:| i Hi rlEH] 1 HH {RERERE i L I R SR 00 5 8 s s o e P P i
s et R D
..... LR _drfrméﬁ—“T‘_F_fmj | LU @ der{sdummy)
e _."",

-0.5 ___.-’);_,..r"'f:__-.._ '""'“'""'i"""-"""""""'!‘:"'-"."'_"""“'i"%""'“"-‘"“'"““"" HULELHERE UL

% | | @ der{x)

B2
Vs . |
1 ! ! }
} 1 1.5 2 2.5 3 ~ 4
time

Figure 3-8. Result of the plotAll command.

3.24 Plotting During Simulation

When running long simulations, or if plotting without need for commands like plot Or plotParametric iS
desired, the interface for transfer of simulation data during running simulations can be used. Thisis enabled by
running the following command.

enableSendData (true)

The same command, but with the parameter false, is used to disable the interface. Enabling of the interface has
some drawbacks though. The simulation time will be longer as the transfer of data will require some resources.

If the smulation data would have been plotted anyway, some of this time will be saved later however. To
reduce the amount of data that has to be transferred, and thereby reduce the time needed to do so, the
interesting variables in the model can be specified with the command setvariableFilter. If for instance the
model HelloWorld isto be simulated the following commands can be used.

class HelloWorld
Real x(start = 1);

parameter Real a = 1;
equation
der(x) = - a * x;

end HelloWorld;

enableSendData (true) ;

setVariableFilter ({x});
simulate (HelloWorld, startTime=0, stopTime=25) ;

When the simulation data has been transferred the button D will appear to the right of the input field. By

pressing thisthediadlog simulation data will appear, where new curves can be created.

3.25 Programmable Drawing of 2D Graphics

The graphics package provides functions for drawing of basic geometrical objects in the graphics area. These
can be used from Modelica models and are executed when the model is simulated. To avoid name conflicts, the
functions have been put in the package Modelica.pltpkg. The functions of the Modelica programmable
plotting interface are described below.

plot(model, "X"). Creates a diagram with data from the variable x in the previoudy simulated model
model.

plot(model, "X, ¥"). Like the function above, but with more than one variable.

plotParametric(model, "X", "y"). Creates a parametric diagram with data from the variables x and y
in the previously simulated model mode1.

plotTable([x1, y1, z1, ...; X2, y2, 22, ...;...]). Drawsy and z as functions of x..

clear().Clears the active GraphWidget.

rect(X1, X2, Y1, y2). Draws arectangle with verticesin (x1, y1) and (x2, y2).

ellipse(X1, X2, y1, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1) and (x2,
y2).

1line(x1, x2, y1, y2). Draws aline from (x1, y1) to (x2, y2).

hold(Boolean on). Determines whether or not the active GraphWidget should be cleared before new
graphicsis drawn.

wait(ms). Waits for (at least) ms milliseconds.

The following model shows how these functions can be used to draw ellipses, rectangles, and lines.

model testGeom
parameter Integer n=10;
protected
Boolean b[n,n];
equation
for x in 1:n loop

for y in 1:n loop

when initial() then
if((y == 1) or (y == 10) or (x == 1) or (x == 10)) then
blx,y] = pltpkg.rect(x, y, x+1, y+1, fillColor = "blue",
color = "green");
else if(y >= 4 and y <= 5 and x >= 4 and x <= 5) then
blx,y] = pltpkg.line(x, y, x+1, y+1, color = "red");
else
blx,y] = pltpkg.ellipse(x, y, x+1, y+1, fillColor = "yellow",
color = "black");
end if;
end if;
end when;
end for;
end for;

end testGeom;

Y EVAYEYAYAYaNA)

Plot title

- > <> <
- <> <> <
- > <> <
- > <+ <
- > <> <
- > <+ <
-+ > <+ <
S il il |

2

Figur e 3-9. Programmable drawing of rectangles and ellipses.

3.2.6 Plotting of ta

ble data

10

Another way to visualize data provided by the graphics package is plotting of table data. Thisis done by using
the command pltpkg.plotTable, Which expects a matrix of Real values as a parameter. The rows of this
matrix represent variable values. The first column is the time variable and the other columns contains values at
these pointsin time. The names of the variables can be specified with the argument variableNames, which is
a String list. The following model demonstrates how this command can be used.

model table

protected
Boolean b;
algorithm
b := pltpkg.pltTable([0, 0.95, 20, 25;
10, 0.94, 0.92, 23, 28;
20, 0.94, 0.91, 32, 35;
30, 0.93, 0.90, 43, 46]);
end table;
Theresult is shown in Figure 3-10
45
T A
4|:| i
35 —]
’_'_,_._o—'—'_'_'_:'_'_'___“__'__'_'_,_,_o—"'_'_
30 __J___,__,__,_‘J——a——d—-*——““"4}'d_rfd_r’_ ——
25|
—t _ﬁ-_'_
20 [—
15
10
A
o

5

10

Figure 3-10. Plotting of table data..

15

25

41

3.3 Java-based PtPlot 2D plotting

The plot functionality in OpenModelica 1.4.4 and earlier was based on PtPlot (Lee, 2006), a Java-based plot
package produced within the Ptolemy project. To plot one uses plot commands within input cells which it
evaluates. Available plotting commands which calls Java-based plotting are as follows, still available but
renamed with a suffix 2:

// normal one variable plotting, time on the X axis

plot2(variable);

// normal multiple variable plotting, time on the X axis
plot2({variablel, variable2, variable3, .. variableN});

// to plot dependent values
plotParametric2 (variableX, variableY);

For example:

simulate (HelloWorld, startTime=9, stopTime=4) ;
plot (x) ;

B tmpPlot.plt -10| x|

File Edit Special

Plot by OpenModelica

0.0

0.0 0.5 1.0 1.8 2.0 25 a.n 34 4.0

Figure 3-11. Java-based PtPlot plot window.

34 3D Animation

There are two main approaches to add 3D graphics information to Modelica objects:

e Graphical annotations
e Graphical objects

Both of these approaches were investigated, but the second was finally chosen.

42

3.4.1 Object Based Visualization

Since one important goal of this work is to come up with a system for visualization that might be used for
simulations done with the Modelica MultiBody library (Otter, 2008), it follows that much can be learned from
investigating currently available solutions. There are commercial software packages available that can visualize
MultiBody simulations.

The MultiBody package is well suited for visualization. Entities in a MultiBody simulation correspond to
physical entities in a real world and as such have many of the properties needed to correctly display them
within a visualization of the simulation, such as position and rotation. Other properties such as color and shape
can easily be added as properties or be decided based on the object type.

Instead of using annotations to encode information about how a certain object is supposed to look when
visualized, object based visualization creates additional Modelica objects of a predetermined type that can be
known to the client actually doing the visualization. These objects contain variables such as position, rotation
and size that can be connected to the simulated variables using ordinary Modelica equations. When asked to
visualize a model, the OpenModelica compiler can find variables in the model that are in the visualization
package and only send only those datasets over to the client doing the visualization, in this case OMNotebook.

Taking inspiration from the MultiBody library, a small package has been designed that provides a minimal
set of classes that can be connected to variables in the simulation. It is created as a Modelica package and can
be included in the Modelica Library. The package is called simplevisual, and consists of a small hierarchy
of classesthat in increasing detail can describe properties of avisualized object. It isimplemented on top of the
Qt graphics package called Coin3D (Coin3D, 2008). More information is available in (Magnusson, 2008). A
comprehensive earlier work on integrating and generating 3D graphics from Modelica models is reported in
(Engelson, 2000).

This section gives a short introduction to how the simplevisual packageis used.

3.4.2 BouncingBall

The bouncing ball model is a simple example to the Modelica language. Adding visualization of the bouncing
ball using the SimpleVisual package is very straightforward.

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=10) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der (v)=1if flying then -g else 0;
der (h) =v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=1if edge(impact) then -e*pre(v) else 0;
flying=v _new > 0;
reinit (v, v_new);
end when;
end BouncingBall;

To run asimulation of the bouncing ball, create a new InputCell and call the simulate command. The simulate
command takes a model, start time, and an end time as arguments.

43

simulate (BouncingBall, start=0, end=5s);

3.4.2.1 Adding Visualization

The bouncing ball will be simulated with a red sphere. We will let the variable h control the y position of the
sphere. Since the ball has a size and the model describes the bouncing movement of a point, we will use that
size to trandate the visudization dightly upwards. First, we must import the simplevisual package and
create an object to visualize. That is done by adding afew lines to the beginning of the BouncingBall model,
which we rename to BouncingBal13D to emphasize that we have made some changes:

model BouncingBall3D

import SimpleVisual.*
SimpleVisual.PositionSize ball "color=red;shape=sphere;";

The string "color=red;" is used to set the color parameter of the object and the shape parameter controls how
we will display this object in the visualization.

The next step is to connect the position of the ball object to the simulation. Since Modelica is an equation
based language, we must have the same number of variables as equations in the model. This means that even
though the only aspect of the ball that is really interesting is its y-position, each variable in the ball object must
be assigned to an equation. Setting a variable to be constant zero is a valid equation. The SimpleVisual library
contains a number of generic objects which gives the user an increasing amount of control.

SimpleVisual.Position
SimpleVisual.PositionSize
SimpleVisual.PositionRotation

SimpleVisual.PositionRotationSize
SimpleVisual.PositionRotationSizeO set

Since we are realy only interested in the position of the ball, we could use simplevisual.Position, but to
make it alittle bit more interesting we use Simplevisual.PositionSize and make the ball alittle bigger.

obj.size[1l]=5; obj.size[2]=5; obj.size[3]=5;
obj.frame alll=0; obj.frame a[2]=h+obj.size[2]/2; obj.frame al3]1=0;

A simplevVisual.PositionSize oObject has two properties, size and frame a. All are three dimensional
real numbers, or Real[3] in Modelica.

e size controlsthe size of the visual representation of the object.
e frame a containsthe position of the object.

3.4.2.2 Running the Simulation and Starting Visualization

To be able to simulate the model with the added visualization, OpenModelica must load the SimpleVisual
package.

loadLibrary (Modelica.SimpleVisual)

Now, call simulate once more. This time the simulation will generate values for the added SimpleVisual object
that can be read by the visualization in OMNotebook.

simulate (BouncingBall3D, start=0, end=5s);

To display the visualization, create an input cell and call the visualize in the input part of the cell.

visualize (BouncingBall3D) ;

L. GMNoteliool: bouncinegballiexample-onb) __J _J *3
File Edit Cell Format Insert Window Help
e .
2 Simulation
zimulats (BouncingBall, startTime=0, stopTime=10};
[done]
wvisualize(BouncingBall);
[done]
L]
0,753
Ready Dane Ln 1, Col 25

Figure 3-12. 3D animation of the bouncing ball model.

3.4.3 Pendulum 3D Example

This example explores a slightly more complex scenario where the visualization uses al the properties of a
SimpleVisua object. The model used is asimple ideal 2D pendulum, not modeling properties like friction, air
resistance etc.

class MyPendulum3D "Planar Pendulum"
constant Real PI=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;

Real x(start=5),y(start=0);

Real vx,vy;

equation
m*der (vx) =- (x/L) *F;
m*der (vy) =- (y/L) *F-m*g;
der (x) =vx;
der (y) =vy;

x*2+y*2=L"2;
end MyPendulum3D;

Start by identifying the variables in the model that will be needed to create a visual representation of the
simulation.

¢ Real x and Real y hold the current position of the pendulum.

45

¢ Red L isaparameter which holds the length of the pendulum.

3.4.3.1 Adding the Visualization
As before, to be able to use the SimpleVisual package we must import it.

class MyPendulum3D "Planar Pendulum"
import Modelica.SimpleVisual;

Adding a sphere to represent the weight of the pendulum is done in the same way the BouncingBall was
visualized. The variables x and y hold the position.

Real vx,vy;

SimpleVisual.PositionSize ball "color=red;shape=ball;";

equation
ball.size[1l]=1.5; ball.size[2]=1.5; Dball.size[3]=1.5;
ball.frame a[l]l=x; ball.frame al[2]=y; ball.frame a[3]=0;
m*der (vx)=- (x/L) *F;

The next step is to create a visualization of the "thread” that holds the pendulum. It will be represented by a
small elongated cube connected to the ball in one end and in the fixed center of the pendulum movement. We
will want the object to rotate with the pendulum motion so create a Simplevisual.
PositionRotationSize oObject.

SimpleVisual.PositionRotationSize thread "shape=cube;"

To specify the rotation of an object, the visualization package uses two points. Oneis the position of the object,
frame_a, that has been demonstrated earlier. The other position, frame b, isinterpreted as the end point of a
vector from frame_a This vector is used as the new up direction for the object. In this example, defining
frame b is simple. The cube that represents the thread will aways be pointing to (0, O, 0). We already know
the length of the thread from the parameter L.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
thread.frame a[l]l=x; thread.frame a[2]=y; thread.frame al[3]
3]

0;
thread.frame b[1]=0; thread.frame b[2]=0; thread.frame b 0

Running this simulation and starting the visualization, we notice that everything is not quite right. The thread is
centered around the pendulum. We could calculate a new position by translating the x and y coordinates along
the rotation vector, but there is a better way. Change the object type t0 Simplevisual.
PositionRotationSizeOffset. The offset parameter is atranslation within the local coordinate system of
the object. To shift the center of the object to be at the bottom of the thread we add an offset of L/2 to they
component of offset.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]1=0.05;

thread.frame a[ll=x; thread.frame a[2]=y; thread.frame a[3]=0;
thread.frame b[1]=0; thread.frame b[2]=0; thread.frame b[3]=0;
thread.offset[1]1=0; thread.offset[2]=L/2; thread.offset[3]=0;

In the final model, a simple static fixture has also been added.

class MyPendulum3D "Planar Pendulum"
import Modelica.SimpleVisual;
constant Real PI=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;
Real x(start=5),y(start=0);
Real vx,vy;

46

SimpleVisual.PositionSize ball "color=red;shape=ball;";
SimpleVisual.PositionSize fixture "shape=cube;";
SimpleVisual.PositionRotationSizeOffset thread "shape=cube;";
equation
fixture.size[1]1=0.5; fixture.size[2]=0.1; fixture.size[3]=0.5;
fixture.frame a[l1l]=0; fixture.frame a[2]=0; fixture.frame a[3]=0;
ball.size[1]=1.5; ball.size[2]=1.5; ball.size[3]=1.5;
ball.frame a[l]l=x; ball.frame a[2]=y; ball.frame a[3]=0;
thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
thread.frame a[l]l=x; thread.frame a[2]=y; thread.frame a[3]=0;
thread.frame _b[1]=0; thread.frame_b[2]=0; thread.frame b[3]=0;
thread.offset [1]1=0; thread.offset[2]=L/2; thread.offset[3]=0;
m*der (vx)=- (x/L) *F;
m*der (vy) =- (y/L) *F-m*g;
der (x) =vx;
der (y) =vy;
x*2+y*2=1L"2;
end MyPendulum3D;

We simulate and visualize as previously:

I—-.... 3
L MNOTE B ooy P e D | T SeXamplcson D, J _; Q‘I

fle Edt el Formar Insert wWindow Help
loadModel (Modelica. 3implevVisual)
[done]
sirulate (MyPendulum, startTime=0, stopTime=5);
[done]
wvisualize (MyPendulim) 1
[one]
X Skop
L |
1.1
Rearly Mhne Int, inl 27

Figure 3-13. Visualization with animation of 3D pendulum.

3.5 References

Trolltech. Qt. http://www.trolltech.com/, accessed July 2007.
Coin3D. www.coin3d.org, accessed August 2008.

47

Henrik Eriksson. Advanced OpenMoaodelica Plotting Package for Modelica. Master Thesis, LIU-IDA/LITH-EX-A-
08/036-SE, Linkdping University Electronic Press, www.ep.liu.se, June 22, 2008.

Henrik Magnusson. Integrated Generic 3D visualization of Modelica Models. Master Thesis, LIU-IDA/LITH-EX-A-
08/035-SE, Linkdping University Electronic Press, www.ep.liu.se, June 27, 2008.

Martin Otter. The Modelica MultiBody Library. http://www.modelica.org/librariesModelica,
Modelica.Mechanics.MultiBody, accessed August 2008.

Vadim Engelson. Tools for Design, Interactive Simulation, and Visualization of Object-Oriented Models in
Scientific Computing. Ph.D. Thesis. Linkdping Studies in Science and Technology, Dissertation No. 627,
http://www.ida.liu.se/~vaden/thesis/, 2000.

Edward Lee et a. The PtPlot package The Ptolemy Project. http://ptolemy.berkeley.edu/body.htm, accessed July
2007.

Chapter 4

OMNotebook with DrModelica

This chapter covers the OpenModelica electronic notebook subsystem, called OMNatebook, together with the
DrModelicatutoring system for teaching Modelica, which is using such notebooks.

4.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as
well as graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation
scripting, model documentation and storage, etc.

411 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with
documentation in the same document. Mathematica notebooks (Wolfram 1997) is one of the first WY SIWY G
(What-Y ou-See-Is-What-Y ou-Get) systems that support Literate Programming. Such notebooks are used, e.g.,
in the MathModelica modeling and simulation environment, e.g. see Figure 4-1 below and Chapter 19 in
(Fritzson 2004)

4.1.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernstrom 2006) is a new open source free software that gives an
interactive WY SIWYG (What-Y ou-See-Is-What-Y ou-Get) realization of Literate Programming, a form of
programming where programs are integrated with documentation in the same document.

The OMNotebook facility is actually an interactive WYSIWYG (What-Y ou-See-ls-What-Y ou-Get)
realization of Literate Programming, a form of programming where programs are integrated with
documentation in the same document. OMNotebook is a simple open-source software tool for an electronic
notebook supporting Modelica.

A more advanced electronic notebook tool, aso supporting mathematical typesetting and many other
facilities, is provided by Mathematica notebooks in the MathModelica environment, see Figure 4-1.

49

E Evaluated Modeling. Code Generation, and... =] [E3 |
Modellnl £ Evaluated Modeling, Code Generation, and.. N _ (Ol =] |
Simulati
: i'"l
Ewvaluated Modeling. Code Generation, and..
Process A = _B[SIES

e e £

- using Mathe Reherr wmeralt canr - Tim Limastasd deent

2 Evaluated Modeling. Code Generation. and... [H[=] [E3

FrUT—— Sirze e wall dempn L een
e —— mare ekl oFee mwn

(26000 SR ILIEE LU G L3S G Sdal
C3.GELET 6 00ME LM.RIIE _ 30,35 L.GERNN N J3MLI O 5. ONEML

The conernd lus m be e 1n ab = —2 vH, wherr vH A ncamscricno o de e This piee de
Phllcka g cloard loog m o m mrae = # K- 2RI

= Palimimden

Figure 4-1. Examples of Mathematica notebooks in the MathM odelica modeling and simulation environment.

Traditional documents, e.g. books and reports, essentialy always have a hierarchical structure. They are
divided into sections, subsections, paragraphs, etc. Both the document itself and its sections usually have
headings as labels for easier navigation. This kind of structure is also reflected in electronic notebooks. Every
notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can have different
kinds of contents, and can even contain other cells. The notebook hierarchy of cells thus reflects the hierarchy
of sections and subsections in atraditional document such as a book..

4.2 The DrModelica Tutoring System —an Application of OMNotebook

Understanding programs is hard, especially code written by someone else. For educational purposes it is
essential to be able to show the source code and to give an explanation of it at the same time.

Moreover, it isimportant to show the result of the source code’ s execution. In modeling and simulation it is
also important to have the source code, the documentation about the source code, the execution results of the
simulation model, and the documentation of the simulation results in the same document. The reason is that the
problem solving process in computational simulation is an iterative process that often requires a modification
of the original mathematical model and its software implementation after the interpretation and validation of
the computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing
efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning and
teaching of the language. There is a need for an environment facilitating the learning and understanding of
Modelica. These are the reasons for developing the DrModelica teaching material for Modelica and for
teaching modeling and simulation.

50

An earlier version of DrModelica was developed using the MathModelica environment. The rest of this
chapter is concerned with the OMNotebook version of DrModelica and on the OMNotebook tool itself.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a
table of contents that holds all other notebooks together by providing links to them. This particular notebook is
the first page the user will see (Figure 4-2).

E DMNotebook: DrModelica.onb™®

File Edit Cell Format Insert ‘Window Help

Version 2006-04-11 |

DrModelic gmodelica Edition

Copynght () Linképing University, PELABR, 2003-2006, Wiley-IEEE Press, Modelica Assonation.
Contact: Openlfodelica@ida v se, Opentdodelica Project web site:

www ida v sefprojectsiOpentdo delica

Book web page: www mathcore. com/driodelica, Book author: Peter Fritzson(@ida . se

Dilvlodelica Authors: (2003 versiomn) Susanna Monemar, Eva-Lena Lengouist Sandelin, Peter Fritzson, Peter Bunus
Dillodelica Avuthors: (2005 and later updates): Peter Fritzson

This DrModelica natebook has been developed o facilitate learning the Modelica language as well as
praviding an iniraduction to object-oriented modeling and simulation. &t is based an and is
supplementary material to the Modelica hook: Feter Fritzson: " Frinciples af Ohject-Oriented
Modeling and Simulation with Modelica" (2004), 040 pages, Wiley-IEEE Press, ISBN (-471-471631.
Al of the examples and exercises in DrModelica and the page references are from that ook, Most of
the texi in DrMadelica iz also based on that boal.

Detailed Copyright and Acknowledgment Information
Getting Started Using OMNotebook
OpenModelica commands
Berkeley license Openhodelica
1 A Quick Tour of Modelica
1.1 Getting Started - First Basic Examples
Thete iz a long tradition that the first sample program i any computer language 12 a trivial program

phinting the g "He]lo TWetld" (p) 9 in Peter Fritzson's book). Since Modelica 15 an equation based

langnage, prntng T StroTe oo not make rmuch sence. Instead, our Hello World Modelica program solves

a triwal differential equation. The second ezample shows how you can write a model that solves a
Differential Algebraic Equation System (p. 19). In the Van der Pol (p. 22) example declaration as well as
mitiahzation and prefiz usage are shown in a slightly more complicated way.

1.2 Classes and Instances

In Modelica objects are created mmplicitly just by Declanng Tnstances of Classes (p. 26). Almost anything
n Modelica is a class, but there are some keywords for specific use of the class concept, called =

Ready

Figur e 4-2. The front-page notebook of the OMNotebook version of the DrModelica tutoring system.

51

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The summary
introduces some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords
in detail.

T oMNotebook: Helloworld.onb® [=1ES)
File Edit Cel Format Insert Window Help

First Basic Class

1 HelloWorld

The program contains a declaration of a class called HelloWorld with two fields and one equation. The first field 15
the variable x which is inifialized to a start value 2 at the time when the simulation starts. The second field is the vanable
a, which 15 a constant that is iitialized to 2 at the begitning of the simulation. Such a constant i3 prefiwed by the
keyword parameter i order to ndicate that it 15 constant durmg simulation but 15 a model parameter that can be
changed between simulations.

The Modelica program solbves a trivial differential equationn %™ = - a * =®. The variable x1is a state variable
that can change value over time. The x ' iz the titme derivative of =

class HelloWorld
Real x{start = 1);

parameter Real a = 1;
eguation
der(x) = - a * x;

end HelloWorld;

Ok

2 Simulation of HelloWorld

simulate{ HelloWorld, startTime=0, stopTime=4 };

[done]

plotl{ = };

Plot by OpenModelica

047

ool

Ready

Figure 4-3. TheHelloWor1ld class simulated and plotted using the OM Notebook version of DrModelica.

Now, let us consider that the link “HelloWworld” in DrModelica Section is clicked by the user. The new
HelloWorld notebook (see Figure 4-3), to which the user is being linked, is not only a textual description but

52

aso contains one or more examples explaining the specific keyword. In this class, Hel1loWorld, a differential
equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write hisher own programs or
copy examples from other notebooks. This new notebook can be linked from existing notebooks.

I3 oMNotebook: drmodelica.onb o] |
File Edit el Format Insert window Help
Algorithms and Functions
Algorithms
In Modelica, algoritlunic statements can only occur w1t1ml Algorithim Sections (p. 285),
starting with the lceyword algorithm. Simple £ i g (p. 287) 1= the
most common kind of statements in algorithm s:e-::tmns: Tllele ig a special form of
assignment statement that is only used when the right hand =ide contains a call to a
Function with Multiple R esults (p. 287).
The for-Statement (alzo called for-loop) is a convenient way of expressing iteration (p.
288). When using the for-loop for iteration we must be able to express the range of
values over which the iteration variable should iterate in a cloged form ag an iteration
expression. For cases where this is not feasible there iz also a While-loop iteration
construct m Modelica (p. 290). For conditional expressions the f-Statement (p. 292) i
uzed. When-Statements (p. 203} are uzed to express actions af event instants and are
clozely related to when-equations. The Reinit (p. 296) statement can be used in
when-statements to define new values for continuous-time state variables of a model at
an event.
The Assert (p. 298) statement provides a convenient means for specifying checls on
model validity within a model.
The most common usage of Tenminate (p. 298) is to give more appropriate stopping
criteria for terminating a simulation than a fixed pomt in fime.
Exercises J
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise S
Functions
The body of a Modelica function ig a kind of algorithm gection that containg procedural
algorithmic code to be executed when the function is Called (p. 300). Since a function is
a resfricted and enhanced kind of clazz. it iz no=sible to inherit an exiztme fimction El
Ready a4

Figure 4-4. DrModelica Chapter on Algorithms and Functionsin the main page of the OMNotebook version of
DrModelica

53

When a class has been successfully evaluated the user can simulate and plot the result, as previously depicted
in Figure 4-3 for the simple He11oWorld example model..

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by
doing the exercises that concern the specific chapter. Exercises have been written in order to elucidate language
constructs step by step based on the pedagogical assumption that a student learns better “using the strategy of
learning by doing”. The exercises consist of either theoretical questions or practical programming assignments.
All exercises provide answers in order to give the user immediate feedback.

Figure 4-4 shows part of Chapter 9 of the DrModelica teaching material. Here the user can read about
language constructs, like algorithm sections, when-statements, and reinit equations, and then practice
these constructs by solving the exercises corresponding to the recently studied section.

[oMNotebook: Exercisel.nb -0l x|

File Edit Cell Format Insert ‘Window Help

Exercise 1

Using Algorithm Sections

Write a function, Sum, which calculates the sum of numbers, in an array of arbitrary size.

Whte a fonction, Ave rage, which calculates the average of munbers, m an array of arbitrary size. Average
should use make a finction call to Sum.

|]

Write a class, Large st Average, that has two arrays and calculates the average of each of them. Then 1t
cotpares the averages and sets a vartable to true if the frst array iz larger than the second and otherwise falze.

|]

Answer

Ready o
Figure 4-5. Exercise 1 in Chapter 9 of DrModelica.
Exercise 1 from Chapter 9 is shown in Figure 4-5. In this exercise the user has the opportunity to practice

different language constructs and then compare the solution to the answer for the exercise. Notice that the
answer is not visible until the Answer section is expanded. The answer is shown in Figure 4-6.

55

Il OMNotebook: Exercisel.nb*® =10l x|

File Edit el Format Insert ‘Window Help

|
Answer

Sum

function Sum
input Reall[:] x;
output Real sum;
algorithm
for i in l:sizei(x,1) loop
sum := sum + x[i];
end for;

end Sum;

Average

function Average
input Reall[:] x;
output Real average;
protected
Real sum;
algorithm
average := Sumix) / size(x,1);

end Average;

LargestAverage

class LargestAverage
parameter Integer[:] &A1l = {1, Z, 3, 4, 5};
parameter Integer([:] AZ = {7, 8, 9}:
Real awverageil, awveragelZ;
Boolean AlLargest(start = false);

algorithm

averagedl = Average (Al);

averageAZ 1= Average (AZ);

if awverageil > averageAZ then
AlLargest := true;

el=e
AlLargest := false;

end if;

end LargestAverage;

Sunulation of LargestAverage

simulate| LargestiAverage J; }

When we look at the values m the vanables we see that A2 has the largest average (2) and therefore the
variable A 1Largest iz false (= 0.

Ready

s L

Figure 4-6. The answer section to Exercise 1 in Chapter 9 of DrModelica

4.3 OpenModelica Notebook Commands

OMNotebook currently supports the commands and concepts that are summarized in this section.

56

43.1

Cells

Everything inside an OMNotebook document is made out of cells. A cell basically contains a chunk of
data. That data can be text, images, or other cells. OMNotebook has four types of cells: headercell,
textcell, inputcell, and groupcell. Cells are ordered in a tree structure, where one cell can be a
parent to one or more additional cells. A tree view is available close to the right border in the notebook
window to display the relation between the cells.

4.3.2

Textcell — This cell type are used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cell’s style can be changed in the menu Format->Styles,
example of different stylesare: Text, Title, and Subtitle. The Textcell type aso has support
for following links to other notebook documents.

Inputcell — This cell type has support for syntax highlighting and evaluation. It is intended to be
used for writing program code, e.g. Modelica code. Evaluation is done by pressing the key
combination Shift+Return or Shift+Enter. All the text in the cell is sent to OMC (OpenModelica
Compiler/interpreter), where the text is evaluated and the result is displayed below the inputcell. By
double-clicking on the cell marker in the tree view, the inputcell can be collapsed causing the result
to be hidden.

Groupcell — This cell typeis used to group together other cell. A groupcell can be opened or closed.
When a groupcell is opened all the cells inside the groupcell are visible, but when the groupcell is
closed only the first cell inside the groupcell is visible. The state of the groupcell is changed by the
user double-clicking on the cell marker in the tree view. When the groupcell is closed the marker is
changed and the marker has an arrow at the bottom.

Cursors

An OMNotebook document contains cells which in turn contain text. Thus, two kinds of cursors are needed
for positioning, text cursor and cell cursor:

4.4

Textcursor — A cursor between characters in a cell, appearing as a small vertical line. Position the
cursor by clicking on the text or using the arrow buttons.

Cellcursor — This cursor shows which cell currently has the input focus. It consists of two parts.
The main cellcursor is basically just athin black horizontal line below the cell with input focus. The
cellcursor is positioned by clicking on a cell, clicking between cells, or using the menu item ce11 -
>Next Cell Of Cell->Previous Cell. The cursor can also be moved with the key combination
Ctrl+Up or Ctrl+Down. The dynamic cellcursor is a short blinking horisontal line. To make this
visible, you must click once more on the main cellcursor (the long horizontal line). NOTE: In order
to paste cells at the cellcursor, the dynamic cellcursor must be made active by clicking on the main
cellcursor (the horisontal line).

Selection of Text or Cells

To perform operations on text or cells we often need to select arange of characters or cells.

Select characters — There are several ways of selecting characters, e.g. double-clicking on a word,
clicking and dragging the mouse, or click followed by a shift-click at an adjacent positioin selects
the text between the previous click and the position of the most recent shift-click.

Select cells — Cells can be selected by clicking on them. Holding done Ctrl and clicking on the cell
markers in the tree view alows several cells to be selected, one at a time. Several cells can be
selected at once in the tree view by holding down the Shift key. Holding down Shift selects al cells

57

44.1

between last selected cell and the cell clicked on. This only works if both cells belong to the same
groupcell.

File Menu

The following file related operations are available in the file menu:

4.4.2

Create a new notebook — A new notebook can be created using the menu File->New or the key
combination Ctrl+N. A new document window will then open, with a new document inside.

Open a notebook — To open a notebook use File->Open in the menu or the key combination
Ctrl+O. Only files of the type .onb or .nb can be opened. If a file does not follow the
OMNotebook format or the FullForm Mathematica Notebook format, a message box is displayed
telling the user what is wrong. Mathematica Notebooks must be converted to fullform before they
can be opened in OMNotebook.

Save a notebook — To save a hotebook use the menu item File->Save Or File->Save As. If the
notebook has not been saved before the save as dialog is shown and a filename can be selected.
OMNotebook can only save in xml format and the saved file is not compatible with Mathematica.
Key combination for save is Ctrl+S and for save as Ctrl+Shift+S. The saved file by default obtains
the file extension . onb.

Print — Printing a document to a printer is done by pressing the key combination Ctrl+P or using the
menu item File->Print. A normal print dialog is displayed where the usually properties can be
changed.

Import old document — Old documents, saved with the old version of OMNotebook where a
different file format was used, can be opened using the menu item File->Import->01d
OMNotebook file. Old documents have the extension .xm1.

Export text — The text inside a document can be exported to a text document. The text is exported to
this document without amost any structure saved. The only structure that is saved is the cell
structure. Each paragraph in the text document will contain text from one cell. To use the export
function, use menu item File- >Export - >Pure Text.

Close a notebook window — A notebook window can be closed using the menu item File->Close
or the key combination Ctrl+F4. Any unsaved changes in the document are lost when the notebook
window is closed.

Quitting OMNotebook — To quit OMNotebook, use menu item File->Quit or the key
combination Crtl+Q. This closes all notebook windows; users will have the option of closing OMC
aso. OMC will not automatically shutdown because other programs may still use it. Evaluating the
command quit() has the same result as exiting OM Notebook.

Edit Menu

Editing cell text — Cells have a set of of basic editing functions. The key combination for these are:
Undo (Ctrl+Z), Redo (Ctrl+Y), cut (Ctrl+X), copy (CtrI+C) and paste (Ctrl+V). These functions
can also be accessed from the edit menu; Undo (Edit->Undo), Redo (Edit->Redo), Cut (Edit-
>Cut), Copy (Edit->Copy) and Paste (Edit->Paste). Selection of text is done in the usual way
by double-clicking, triple-clicking (select a paragraph), dragging the mouse, or using (Ctrl+A) to
select al text within the cell.

Cut cell — Cells can be cut from a document with the menu item Edit->Cut or the key combination
Ctrl+X. The cut function will always cut cells if cells have been selected in the tree view, otherwise
the cut function cuts text.

58

4.4.3

4.4.4

Copy cell — Cells can be copied from a document with the menu item Edit->Copy or the key
combination Ctrl+C. The copy function will always copy cellsif cells have been selected in the tree
view, otherwise the copy function copy text.

Paste cell — To paste copied or cut cells the cell cursor must be selected in the location where the
cells should be pasted. This is done by clicking on the cell cursor. Pasteing cells is done from the
menu Edit->Paste or the key combination Ctrl+V. If the cell cursor is selected the paste function
will always paste cells. OMNotebook share the same application-wide clipboard. Therefore cells
that have been copied from one document can be pasted into another document. Only pointers to
the copied or cut cells are added to the clipboard, thus the cell that should be pasted must still exist.
Consequently a cell can not be pasted from a document that has been closed.

Find — Find text string in the current notebook, with the options match full word, match cell, search
within closed cells. Short command Ctrl+F.

Replace — Find and replace text string in the current notebook, with the options match full word,
match cell, search+replace within closed cells. Short command Ctrl+H.

View expression — Text in acell is stored internally as a subset of HTML code and the menu item
Edit->View Expression let the user switch between viewing the text or the internal HTML
representation. Changes made to the HTML code will affect how the text is displayed.

Cell Menu

Add textcell — A new textcell is added with the menu item ce11->Add cell (previous cell style) or
the key combination Alt+Enter. The new textcell gets the same style as the previous selected cell
had.

Add inputcell — A new inputcell is added with the menu item cell->Add Inputcell or the key
combination Ctrl+Shift+].

Add groupcell — A new groupcell is inserted with the menu item cell->Groupcell or the key
combination Ctrl+Shift+G. The selected cell will then become the first cell inside the groupcell.

Ungroup groupcell — A groupcell can be ungrouped by selecting it in the tree view and using the
menu item Cell->Ungroup Groupcell Of by using the key combination Ctrl+Shift+U. Only one
groupcell at atime can be ungrouped.

Folit cell — Spliting a cell is done with the menu item cel1->split cell or the key combination
Ctrl+Shift+P. The cell is splited at the position of the text cursor.

Delete cell — The menu item cell->Delete Cell will delete all cells that have been selected in
the tree view. If no cell is selected this action will delete the cell that have been selected by the
cellcursor. This action can also be called with the key combination Ctrl+Shift+D or the key Del
(only works when cells have been selected in the tree view).

Cellcursor — This cell type is a special type that shows which cell that currently has the focus. The
cell is basicaly just a thin black line. The cellcursor is moved by clicking on a cell or using the
menu item Cell->Next Cell Of Cell->Previous Cell. The cursor can aso be moved with the
key combination Ctrl+Up or Ctrl+Down.

Format Menu

Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cells style can be changed in the menu Format->Styles,
examples of different styles are; Text, Title, and Subtitle. The Textcell type aso have
support for following links to other notebook documents.

59

Text manipulation — There are a number of different text manipulations that can be done to change
the appearance of the text. These manipulations include operations like: changing font, changing
color and make text bold, but also operations like: changing the alignment of the text and the
margin inside the cell. All text manipulations inside a cell can be done on single letters, words or
the entire text. Text settings are found in the Format menu. The following text manipulations are
availablein OM Notebook:

> Font family

> Font face (Pain, Bold, Italic, Underline)

> Font size

> Font stretch

> Font color

> Text horizontal alignment

> Text vertical alignment

> Border thickness

> Margin (outside the border)

> Padding (inside the border)

445 Insert Menu

Insert image — Images are added to a document with the menu item Insert->Image or the key
combination Ctrl+Shift+M. After an image has been selected a dialog appears, where the size of the
image can be chosen. The images actua size is the default value of the image. OMNotebook

stretches the image accordantly to the selected size. All images are saved in the same file as the rest
of the document.

Insert link — A document can contain links to other OMNotebook file or Mathematica notebook and
to add anew link a piece of text must first be selected. The selected text make up the part of the link
that the user can click on. Inserting a link is done from the menu Insert->Link or with the key
combination Ctrl+Shift+L. A dialog window, much like the one used to open documents, allows the
user to choose the file that the link refersto. All links are saved in the document with arelative file
path so documents that belong together easily can be moved from one place to another without the
links failing.

4.4.6 Window Menu

4.4.7

Change window — Each opened document has its own document window. To switch between those
use the Window menu. The window menu lists al titles of the open documents, in the same order
as they were opened. To switch to another document, simple click on the title of that document.

Help Menu

About OMNotebook — Accessing the about message box for OMNotebook is done from the menu
Help->About OM Notebook.
About Qt — To access the message box for Qt, use the menu Help->About Qt.

Help Text — Opening the help text (document oMNotebookHelp.onb) for OMNotebook can be
done in the same way as any OMNotebook document is opened or with the menu Help->Help
Text. The menu item can aso be triggered with the key F1.

60

4.4.8

Additional Features

Links— By clicking on alink, OMNotebook will open the document that is referred to in the link.

Update link — All links are stored with relative file path. Therefore OMNotebook has functions that
automatically updating links if a document is resaved in ancther folder. Every time a document is
saved, OMNotebook checks if the document is saved in the same folder as last time. If the folder
has changed, the links are updated.

Evaluate several cells — Several inputcells can be evaluated at the same time by selecting them in
the treeview and then pressing the key combination Shift+Enter or Shift+Return. The cells are
evauated in the same order as they have been selected. If a groupcell is selected al inputcells in
that groupcell are evaluated, in the order they are located in the groupcell.

Command completion — Inputcells have command completion support, which checks if the user is
typing a command (or any keyword defined in the file commands.xml) and finish the command. If
the user types the first two or three letters in a command, the command completion function fillsin
the rest. To use command completion, press the key combination Ctrl+Space or Shift+Tab. The
first command that matches the letters written will then appear. Holding down Shift and pressing
Tab (aternative holding down Ctrl and pressing Space) again will display the second command that
matches. Repeated request to use command completion will loop through all commands that match
the letters written. When a command is displayed by the command completion functionality any
field inside the command that should be edited by the user is automatically selected. Some
commands can have several of these fields and by pressing the key combination Ctrl+Tab, the next
field will be selected inside the command.

> Active Command completion: Ctrl+Space/ Shift+Tab

> Next command: Ctrl+Space/ Shift+Tab

> Next field in command: Ctrl+Tab’

Generated plot — When plotting a simulation result, OMC uses the program Ptplot to create a plot.
From Ptplot OMNotebook gets an image of the plot and automatically adds that image to the output
part of an inputcell. Like all other images in a document, the plot is saved in the document file
when the document is saved.

Stylesheet -OMNotebook follows the style settings defined in stylesheet.xml and the correct styleis
applied to acell when the cell is created.

Automatic Chapter Numbering — OMNotebook automatically numbers different chapter,
subchapter, section and other styles. The user can specify which styles should have chapter
numbers and which level the style should have. This is done in the stylesheet.xml file. Every style
can have a <chapterL evel> tag that specifies the chapter level. Level 0 or no tag at all, means that
the style should not have any chapter numbering.

Scrollarea — Scrolling through a document can be done by using the mouse wheel. A document can
a so be scrolled by moving the cell cursor up or down.

Syntax highlighter — The syntax highlighter runs in a separated thread which speeds up the loading
of large document that contains many Modelica code cells. The syntax highlighter only highlights
when letters are added, not when they are removed. The color settings for the different types of
keywords are stored in the file modelicacolors.xml. Besides defining the text color and
background color of keywords, whether or not the keywords should be bold or/and italic can be
defined.

Change indicator — A star (*) will appear behind the filename in the title of notebook window if the
document has been changed and needs saving. When the user closes a document that has some
unsaved change, OMNotebook asks the user if he/she wants to save the document before closing. If
the document never has been saved before, the save-as dialog appears so that a filename can be
choosen for the new document.

61

e Update menus — All menus are constantly updated so that only menu items that are linked to actions
that can be performed on the currently selected cell is enabled. All other menu items will be
disabled. When atextcell is selected the Format menu is updated so that it indicates the text settings
for the text, in the current cursor position.

4.5 References

Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In
Proceedings of the 33rd ACM Technical Symposium on Computer Science Education (SIGCSE 2002) (Northern
Kentucky — The Southern Side of Cincinnati, USA, February 27 — March 3, 2002).

Ingemar Axelsson. OpenModelica Notebook for Interactive Structured Modelica Documents. Final thesis, LITH-
IDA-EX—-05/080-SE, Linkdping University, Linkdping, Sweden, October 21, 2005.

Anders Fernstrom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop. OMNotebook — Interactive
WY SIWYG Book Software for Teaching Programming. In Proc. of the Workshop on Developing Computer
Science Education — How Can It Be Done?. Linkdping University, Dept. Computer & Inf. Science, Linkdping,
Sweden, March 10, 2006.

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica Documents.
Final thesis, LITH-IDA-EX--06/057—SE, Dept. Computer and Information Science, Linkdping University,
Sweden, September 4, 2006.

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages, ISBN 0-
471-471631, Wiley-|EEE Press. Feb. 2004.

Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97-111, May 1984.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica— A Web-Based
Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian Conference on Simulation and
Modeling (SIMS 2003), available at www.scan-sims.org. V asterads, Sweden. September 18-19, 2003.

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

Stephen Wolfram. The Mathematica Book. Wolfram Media Inc, 1997.

62

Chapter 5

MDT — The OpenModelica Development Tooling
Eclipse Plugin

5.1

Introduction

The Modelica Development Tooling (MDT) Eclipse Plug-In as part of OMDev — The OpenModelica
Development Environment integrates the OpenModelica compiler with Eclipse. MDT, together with the
OpenModelica compiler, provides an environment for working with Modelica devel opment projects.

The following features are available:

5.2

Browsing support for Modelica projects, packages, and classes

Wizards for creating Modelica projects, packages, and classes

Syntax color highlighting

Syntax checking

Browsing of the Modelica Standard Library or other libraries

Code completion for class names and function argument lists.

Goto definition for classes, types, and functions.

Displaying type information when hovering the mouse over an identifier.

Installation

The ingtallation of MDT is accomplished by following the below instalation instructions. These
instructions assume that you have successfully downloaded and installed Eclipse (http://www.eclipse.org).

gD RE

©ooN®

Start Eclipse

Select Help->Software Updates->Find and Install... fromthe menu

Select ‘ Search for new featuresto install’ and click ‘ Next’

Select ‘New Remote Site...’

Enter ‘MDT’ as name and * http://www.ida.liu.se/labs/pel ab/modelica/OpenModelicalMDT' as
URL and click ‘OK’

Make sure ‘MDT’ is selected and click ‘ Finish’

In the updates dialog select the ‘MDT’ feature and click ‘ Next’

Read through the license agreement, select ‘| accept...” and click ‘Next’

Click *Finish’ to install MDT

63

5.3 Getting Started

5.3.1 Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the compiler. It uses the environment variable
OPENMODELICAHOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is pointing to the folder
where the Open Modelica Compiler is installed. In other words, OPENMODELICAHOME must point to
the folder that contains the Open Modelica Compiler (OMC) binary. On the Windows platform it’'s called
omc.exe and on Unix platformsit’s called omc.

5.3.2 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica perspective. To switch
to the Modelica perspective, choose the window menu item, pick Oopen Perspective followed by
Other... Select theModelica option from the dialog presented and click ox..

5.3.3 Selecting a Workspace Folder

Eclipse stores your projects in afolder called a workspace. Y ou need to choose a workspace folder for this
session, see Figure 5-1

& Modelica - Eclipse SDK — =2l =
File Edit Refactor MNavigate Search Project Run Window Help
New Alb+shift+ b) | = - [E | [Modelica >
Open File...
=8
close Chrl4F4
Close Al Chrl4-ShiftHE
| Chrl45
M Sove as...
i S=ve Al Chrl+Ehift+S
Revert
MovE. ..
Renams... 2
Refresh F3
Convert Line Delimiters To 4
ol Frint.. Chrl+F
E & workspace Launcher x|
g Import...
7 Export... Select a workspace
. Edipse SDK stores your projects in a folder called a workspace.
Frioperics AleEritse ose a workspace folder to use for this session.
1 README. txt [06_OMCAndCorba]
2 SOLUTION. txt [01_experiment]
3 Functions.mo [05_advanced]
4 SOLUTION. bt [05_advanced] Q-ri-7d
Exit _I
-
oK I Cancel I
=l _'l_I

o

Figure5-1. Eclipse Setup — Switching Workspace.

5.3.4 Creating one or more Modelica Projects
To start a new project, use the New Modelica Project Wizard. It is accessible through File->New->
Modelica Project Or by right-clicking in the Modelica Projects view and selecting New->Modelica

Project.

& Modelica - Eclipse SDK

_18] x|
Fle Edit Refactor Navigate Search Project Run Window Help
Alt4shift+N ¥ | g Project... i | E Modelica |
Open File...
3 Modelica Package =04
Close Chrl+4 o
Close Al st Qaslea Class
(% Folder
| B Clrlts e
W Save s
—_ 5 Fwam
& New Project & New Modelica Project x|
Select a wizard . Create a Modelica project —
Create a new Modelica project. I Create a Modelica project in the workspace.

Wizards: / Project name: | 01_experiment]

I Plug-in Project

B C++

B s

= Edipse Modeling Framew
- EB

E} Functional Prograi
- J2EE
B Java
E| == Modelica
Modelica Project
: 7= Plug-n Developgent
{z= Simple

H-{Z= Web

B Examples

g—

< Back Next > 3 Finish | Cance < Back | [ext = | Einish I Cancel
> 4

Figure5-2. Eclipse Setup — creating a Modelica project in the workspace.

Y ou need to disable automatic build for the project(s) (Figure 5-3).

& Modelica - Eclipse SDK

=lEix]
Fle Edit Refactor Navigate Search | Project Run Window Help
Ici- EXL -SRI B =
pe— Close Project
i Modelica Pr... % = =5
" —— mBuid Al Cirl+B
] 02a expl Build Praject
L] 02b_exp2 Build Working Set 3
+ 27 03_assignment Clezn,.,
2] 04a_assigntwotype Buid Automatically
H g E;h‘:ndassf"bmtwa Convers bo)a Dynamic Web project, .
: _advance
{11 06_OMCAndCorba Properties
121 07_pam
100 08_pamded
{127 09_pamtrans
151 10_petrol
B et

Build Automatically
should be DISABLED
for al projects

problems | Bl console 2 _Errer Log ‘ searchl

Eebil|tB-r5-=0
SVMN

=

L o o

Figure5-3. Eclipse Setup — disable automatic build for the projects.

65

Repeat the procedure for al the projects you need, e.g. for the exercises described in the MetaM odelica
users guide: 01_experiment, 02a_expl, 02b_exp2, 03_assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the others!

5.3.5 Building and Running a Project

After having created a project, you eventually need to build the project (Figure 5-4).

sl

Fic B8t Refactr Mavgele Seorch | Project Run
C FE = N > il

Window Help

il

beeemct tretertatem 13 | 72 sudeicn »

1 ¢b_modessgnimatype
1 05 _sdvarced
1 06_OMCareiCorba

"mm_'Elcm 5 Bml.egsum-

1 07_pam

1 08 _pamded

1 09 _pamtrans

3 10_persl

e

]

o
Jl

Wrisable Insert 1:1

Figure5-4. Eclipse MDT — Building a project.

There are several options: building, building from scratch (clean), running, see Figure 5-5.
e x|

File Edit Refactor MNavigate Search Project Rum ‘Window Help

Ics-Calmlre @G-8 |+ S8 8 xS - - - | corectindentation 5 [5 Modelea o

E- 122 01_experiment

(= .externalToolBuilders
[Functions.mo

1] Main.ma

[Types.mo

[¥] .project

5] SOLUTION, txt
=i, Standard Library
157 02a_exp1
157 02b_expz
157 03_assignment
107 04a_assigntwotype
120 04b_modassigntwotype
127 05_advanced
120 06_OMCANndCorba
17 07_pam

-2 08_pamded

~[ZJ 09_pamtrans

-2 10_petrol

15 etc

package Functions

el Building project...
iy 6P

end test;

—
leave empty — builds the project | =

clean — cleans the project

run — runs the program

debug — builds in debug mode

function 2 punning OMDev-MINGW. ..

input Int
output In

algorithm
outvalue Cancel Details >> |
loecal I
B N e & Variable input x|
case n then n*factoria =
- Dl icatt = vakie 4'_|
= »

| =
Problems | &l Console 32 “_Error Log | € Ex B ‘ = BA-r5-20

The problemsarein

the Problems view
after the build

[e

The build and run results
are displayed in the console

‘ Writable | Insert ‘ 1:1 | Build Project: (0%) m o

Figure5-5. Eclipse— building and running a project.

66

Y ou may also open additional views, e.g asin Figure 5-6.

& Modelica - Functions.mo - Eclipse SDK 1= x|
File Edit Refactor Navigate Search Project Run | Window Help _I
& Show View x
J[:ﬁ - @‘ larg J i J% - J El J ¥ J :aw \A:j\.ndcw - J Correct Indentation »
= lew Editor
[ModeicaPr... 52 = O MR, A |8
SPERRAEPECE > [E1-[= Basic L
=1 01_experiment package Fur: [(1% Modelica Projects H
externalToolBuiders : (Il Bookmarks
- [M) Functions.mo // impert T| Customize Perspective [2 Problems i Classic Search
Main.mo st Save Perspective As... _7 W=] ool
te:
Types.mo “‘l‘: 32“5; Reset Perspective (@ Internal Web Browser
%] .project o " Close Perspective
cutput In
- @ Make.mk. algorithm Close All Perspectives
:;:)i!lzbct x := matel yoyigation 3
cai [i)
- SOLUTION. txt ool — " Flugin Dependencies (GEF Example)
- mh Standard Library o) I—— (%1 Problems
-7 02a_exp1 ca: Preferences... & Progress
7 02b_exp2 elae OF E Properties
~~120 03_assignment end matchcontinue; 7 Search
57 042 _assigntwotype end test; Efﬁr
~~12] 04b_modassigntwotype |5 Snippets
157 05_advanced function factorial] Tasks
121 06_OMCAndCorba input Integer 1n'Ja}ue;) -2 CjC++
£ 07 pam output Integer cutValus; 5= Cheat Shests | |
1 08_pamded algorithm
& 09_pamtrans cutValue := matchoontinue inValue B[CVS
- 10_petrel local Integer n; - Data
ke case 0 then 1; [#-(= Debug
b case n then m*fzetorizlin-1); -) H
il [#-[= Functional Programming
q
Bl-{= Help =
="
Problems | & console 52 . Error Lug‘SEard’|| -2 Java (]
<terminated> OMDev-MINGW/ [Program] c:\OMDevtools\msysbin\make. exe B[Java Browsing
rm -f 2.0Ut COre mMON.CUT QMON.OUt mMain main.exe Main.oc Types.o Fu [H-[= Make -
-2 Modelica b
[t Modelica Projects
. . B[PDE
To open additional views: (= PDE Runtime
o = [#-[= Readme
Window->ShowView->Other Bl RML =l
aes |-
4 |

[é 1 Wiritable | Insert w: 28 |

Figure 5-6. Eclipse— Opening views.

5.3.6 Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g. to the Java perspective for working
with an OpenModelica Java client asin Figure 5-7.

e Ddt Refactor Mavigate Seacch Project Fun Window Help
[l e Q-0]+ | BAB8 |G-
1 01_saperment
028 el
B 0 e
1 03_assigrenent
0 04 _sssgrimatype
1 04 _modassoniwtype
151 05 _advarced
1 j05_oMCanaCerha)
- selis
#- orp
% dossoath
¥, .project
[0 mEADME txt
B 07_pam
1T 0 _panded
1 &9 _pamirans
1 10 _petedd
et

12 Conssie i EmerLog| Search R
ok [Frog X8

™= -f 4.0UT COTE MOR.OUT gEOM.OUT MALR BALR.eNS KAiM.3 TYpes.0 Funevions.o Main.e Hain.h Types.e Types.h Panstions.e A

. | of

Figure 5-7. Eclipse — Switching to another perspective — e.g. the Java Perspective.

67

5.3.7 Creating a Package

To create a new package inside a Modelica project, select File->New->Modelica Package. Enter the
desired name of the package and a description of what it contains. Note: for the exercises we already have
existing packages.

|f New Modelica Package Bl
Modelica Package
Create a new Modelica package.
Source folder: [PPC 970 l [Browse...]
Name: [C ore l

Description: |Thi5 package contains the core stuff |

[lis encapsulated package

[Finish l [Cancel

Figure 5-8. Creating anew Modelica package.

5.3.8 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add your new class and
select File->New->Modelica Class. When creating a Modelica class you can add different restrictions
on what the class can contain. These can for example be model, connector, block, record, Or
function. When you have selected your desired class type, you can select modifiers that add code blocks
to the generated code. ‘Include initial code block’ will for example add the line ‘initial
equation’ totheclass.

|f New Modelica Class il
Modelica Class

Create a new Modelica class.

Source folder: [PPC 970/Core l [Browse...]
Name: |ALU |
Type:

Medifiers: include initial equation block

[is partial class

O

[Finish H Cancel

Figure5-9. Creating anew Modelicaclass.

68

5.3.9 Syntax Checking

Whenever a build command is given to the MDT environment, modified and saved Modelica (.mo) files
are checked for syntactical errors. Any errors that are found are added to the Problems view and aso
marked in the source code editor. Errors are marked in the editor as a red circle with a white cross, a
squiggly red line under the problematic construct, and as a red marker in the right-hand side of the editor. If
you want to reach the problem, you can either click the item in the Problems view or select the red box in
the right-hand side of the editor.

Modelica - ALU.mo - Eclipse SDK

File Edit MNavigate Search Project SWT Hierarchy BRun Window Help

e cle e el o (ot~

s G

% Modeli... 2 -~ = O ALULmMO X = O

- Hppco7o block ALU E!
= 1 Core

equation

ALU.mo -

package.mo © inital equation
.project
[» =i System Library

end ALU;
[4] v
Console [Z! Problems 22 & ¥ =0

2 errors, 0 wamings, 0 infos

Description Resource |In Folder Location
@ unexpected token ALU.mo PPCO70/Core line 5
@ unexpected token ALU.mo PPCO70/Core line 5

(] | [v]]|[4] | D]

e

Figure5-10. Syntax checking.

5.3.10 Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the Return (Enter) key, the next lineis
indented correctly. You can also correct indentation of the current line or a range selection using CTRL+I
or “Correct Indentation” action on the toolbar or in the Edit menu.

69

5.3.11 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion when typing a dot after
a class (package) name, shows alternatives in a menu. Besides the alternatives, Modelica documentation
from commentsis shown if is available. This makes the selection easyer.

< Modelica - DCEngine.mo - Eclipse SDK

File Edit Refactor Mawigate Search Run Project Window Help
Ci-EH | o |- ¥ |t P -

[Modelica Projects &5 = B *DCEngine. mo £
= Tﬁ Enginesimulation model DCEngine
¥ DCEngine . mo import I-Iu:udelica.l
project i
= ; Standard Library cauation %Elsifants
= £ Modelica end DCEngine; £ Electrical
+- £ Blocks
+-ff Constants i Icons
+- £ Electrical £ Math
-3 Icons 3 Mechanics
- f3 Math B s1units
+ acos EElThermaI
+ asin
+ aktan
+ atang
baselconl

Figure5-11. Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows the function signature (formal
parameter names and types) in a popup when typing the parenthesis after the function name, here the
signature Real sin(SI.Angle u) Of the sin function:

= Modelica - DCEngine.mo - Eclipse SDK

File Edit Refactor Mawvigate Search Run Project Window Help

"

TL'L;:;_IL'__’J atd %" ¥ |0 o -

[MY] Modelica Projects 23 =0 *LCERGIne.mo oa
=122 Enginesimulation model DCEngine
+ DCEngine. mo import Modelica.Math. *;
|Z] .project output Real x;
—|-=) Standard Library egquation
= Modelica Feal singSLLAngle) |
+- 4 Blocks ¥ = zin|
+- £} Constants
+-H4 Electrical B
end DCEngine;
+-FF Icons a

Figure5-12. Code completion at afunction call when typing left parenthesis.

70

5.3.12 Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information about the identifier is
displayed. If the text is too long, the user can press F2 to focus the popup dialog and scroll up and down to
examine all the text. As one can see the information in the popup dialog is syntax-highlighted.

BT LTRSS
orrect Indentation] 3 -8 e - | B Modelica =
s =5
inString; ;I
i teractiveSymbolTable inInteractiveSywbolTable;
olean;
output sractiveSymbelTable cuslnseractiveSymbolTabls;
2lgorithm
cutSccleen, cutSoring, cuslnteractiveSymbellable) t=
SymbolTable) J
r, expmsg, debugssz;
1
ath>>>> cf_1,c0%;
g pmiontype =

case (str,isymb)
equation

true = Util.strnemp{"quit{}", str

end QUAL

oL " record I
"Ok\n", iaymb) ;

then

Ident name "name"”

end FULLYQUALIFIED;
end Pzth;

Figure 5-13. Displaying information for identifiers on hovering

5.3.13 Go to Definition Support

Besides hovering information the user can press cCTRL+click to go to the definition of the identifier.
When pressing cTRL the identifier will be presented as a link and when pressing mouse click the editor will
go to the definition of the identifier.

5.3.14 Code Assistance on Writing Records

When writing records, the same functionality as for function calls is used. This is useful especialy in
MetaM odelica when writing cases in match constructs.

71

& Modelica - Absyn.mo - Eclipse SDK

File Edit MNavigate Search Project Run Window Help

ItS-EHe| &%

- | Correct Indentation

[F Modelica Projects 53

[:I---Ig:& CpenModelica [trunk]
127 org.modelica.mdt.core
""" 127 org.modelica.mdt.debug. core
""" 1T org.modelica.mdt.debug.ui
""" 127 org.modelica,mdt. feature
""" 17 org.modelica.mdt.ome

""" T org.modelica.mdt, site

""" 157 org.modelica.mdt. test

""" 127 org.modelica.mdt. ui

local ComponentRef crefl, crefi; list<Exp> srgsl, argsZ; Boole
blst = Util.listThreadMaplargsl, argsZ, expEqual);

equal = Util.boolAndList(blst);
then egqual;

case (MATRIX (argsl) MATRIH (argsZ))

local ComponentBef crefl,crefl; list<list<Exp>> argsl,srgsi;
klst = TUtil_listListThresdMap(argsl,args2, expEqual);
equal = Util. boollkndList (Util.listFlatteniblst));

then egual;

[RANGE{Exp start, Option <Exp > step, Exp stop) |

case (RANGE(p11,SCME(elZ),el3])], RANGE (e2l, SOME (e22),e23))

local Exp ell,elZ el3, ezl eiZ, eZ3;
Bocolean bl ,bZ, b3;
equation

bl = expEqualiell,eZl);

bZ = expEquel (el eZZ);

b3 = expEqual (el 23);

equal = Util.boolAndList{{bl, b2, b3});

then egqual;

case (RANGE(ell, ,el3),RENGE(e2l, ,e23))
local Exp ell,elZ, el3, el eiZ e23;

Boolean bl,bZ,b3;

equation

Figure 5-14. Code assistance when writing cases with records in MetaModelica.

al

bl = expEquzl {ell,eZl);

5.3.15 Using the MDT Console for Plotting

& Modelica - demo/BouncingBall.mo - Eclipse SDK i o x|

File Edit Mavigate Search Project Run Field Assist VWindow Help

|5~ @ - 0-%- &+ |9 |® |5 |cometmientations | F] -5 w0 Ge e T | 5 Modelics | & Java

(1 Modelica Projects £3 sE BouncingBall.mo 23 YanDerPol.mo 1 =0
A ‘ = Q% S i=model BouncingBall &

: 3 UsersGuide B
3 Modelicaadditions .

= & demo 2 parameter Real
B W] BouncingBall.mo 3| paramsior
HelloWorld.mo & }EB_A ;A(it
[vanDerPol.mo 5| Real v "v
1X] .project & Boolean T (start=trme) "true, if ball
o 7 = 1 i N
= Libraries: C:\OpenModelica 1. 4,4Modelical . :c:__e-ar_ impacts
-3 Modelica B (ReE1jycaek:) B
© extends Icoms.Library f discrete Integer n_kounce (start=0);:
2 Blocks 10 eq’?atiﬂl\
3 Constants 11 | dimpact = h
£ Electrical 12 | der(v) 5 then -g else O;
£ 1cons 13 der(h) = v;
£ Math
B Mechanics when {h <= 0.0 and v <= 0.0,impact} then
£ stunits if =doe(impact) then -srpre(v) else 0:

= v_new > 0;
(v, v_new):

1Java Stack Trace Console

8 n_bounce
o v

-0 y_new

3New Cansole View

4MDT Console

B} 5 5vn cansole
Ef 6 TelConsole

1 n_bounce=pre (n_bounce)+1;
4 5 .]
I AL 8 end when; il
BF outline 2% =]| 21 lend BouncingBall;: -
JEEE T T LI _’l_l
El M BouncingBal (2. Probiems (B cansole 23 Ll Bockmarks | € progress| s B-5-=0)
=9 e Mo consales to display at this tme.
= @ flying
e g E2cus
o h
© impact

B

| 7 s

Figure 5-15. Activate the MDT Console

72

File Edit Mavigste Search Projsct Run Fisld Assist

window Help

- oM

[o *| J:g;-ﬂv(&~J-@.‘,@7J.]@J_ | correct tndentetion | |-l t o EET
() Modelica Prejects £3 = O souncingialmo 28 i VarDerealma | |
Bl ‘ = G:D ik 1 medel BouncingBall
E & demo 2 PaT3ogel Bouncing3all
[M Bouncinggall.mo 3| PaTa parameter Real e=0.7 "coefficient of restitution”;
[Hellowarid.ma 4 Reall \oiometer Zeal o=3 ngravity seceleracion”:
[t VarDerPal.mo S| Re&l pea1 n(start=1) "height of ball";
X .project & Beoll zea: v ovwelscity of balln:
B Libraries: Cr\OpenModeiica 1,4, 4\Modelical : Booll gonlean flying(start=trme) "crue, if ball is flying™;
-8 Modelica 8 Re2l poolean impact;
© extends lcons.Library; 8 di3a peal v onew: 10 Thm
B Blocks sqmatil gysorete Integer n_bounce(start=0);
i constants o - 08]
B8 Eectrial der(v) = if flying then -g else 0; .
B Teons der(n) = v; us |
H Math
B echerics when {h <= 0.0 and v <= 0.0,impact} then |
1 Stunts v_new = if edge (impact) then -erpre(v) else 0; 04
H UsersGuide Slviag “yinewi> 0 |
8 Medslicaadditans Loty ¥owea . e
4] n_bounce=pre (n_bounce) +1 o
end when; 1
5= outine 31 s m end BouncingBall; 0.0 0.5 1.0

K

B M Bouncingaal
~0 e

@ n_bounce

I |

a1 Bodana!kq & quess]

Gl E-ri--0

Welcoms to Modelica Development Tooling
You can send commands to OMC
Type !help for help.

o

(MTD)

from here.

c> simulate (Bo
record

stopTime=3)

resultFile =
end record

ome> plot(n)
true

ome>

ngBall res.plt"

[o

Figure5-16. Simulation from MDT Console

73

Chapter 6

Modelica Algorithmic Subset Debugger

This chapter presents a comprehensive Modelica debugger for an extended algorithmic subset of the
Modelica language called MetaModelica. This replaces debugging of algorithmic code using primitive
means such as print statements or asserts which is complex, time-consuming and error- prone.

The debugger is portable since it is based on transparent source code instrumentation techniques that are
independent of the implementation platform.

The usual debugging functionality found in debuggers for procedural or traditiona object-oriented
languages is supported, such as setting and removing breakpoints, single-stepping, inspecting variables,
back-trace of stack contents, tracing, etc. The debugger isintegrated with Eclipse.

6.1 The Eclipse-based debugging environment

The debugging framework is based on the Eclipse environment and is implememented as a set of plugins
which are available from Modelica Development Tooling (MDT) environment. Some of the debugger
functionality is presented below. In the right part a variable value is expored. In the top-left part the stack
trace is presented. In the middle-left part the execution point is presented.

- Debisg - Mainma - Lolipse SUK
Fle Edt Navgate Search Project Run Fielkdissst Window e

a0 - Q- Q- W™ | @ ot |

tepping)
teFie (ne: 376, $9: 19)
rifrome ackpucie \Openblodebca buld oin'omid, exe <RrgCmdPurt w2284 -cbgReptyPortw1285 dogEventPor w128 <

Figure 6-1. Debugging functionality.

74

6.2 Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following steps:
1. setting the debug configuration
2. setting breakpoints
3. running the debug configuration

All these steps are presented below using images.

6.2.1 Setting the debug configuration

While the Modelica perspective is activated the user should click on the bug icon on the toolbar and select
Debug in order to access the dialog for building debug configurations.

File Edit Mavigate Search Project Run FieldAssist Window Help

I8l B0 Qe B[Rl o

7% 1 10_petral
-'rﬂ 209_pamtrans
-'/.”p’. 308_pamded
‘T?’.w? _pam

&

et ij Functions.ma 7% 505_advanced
&

H

i Main.mo 7% 6 04b_modassigntwotype
- [Types.mo 7% 7 04a_sssigntwotype
2(-project 7% 803_assignment
L] Funcnons.¢ 7% 901_experiment
8 Functions.h oy
unctiors.g | L0 DeASXBL
2 unctions, srz Debug As »
- B Main.c
= ma!n.exe Organize Favorites...
fain.h
| Aain.o
|5 Main.srz
- @ Make.mk
| g Makefile
- [E] README. txt
e (2 01 TTAR bt X
4] | »
Oz =m
o= Outline &3
An outiine is not available. Froblems | Bl consdle 22 Eonkmarks| Progress |

<terminated > OMDev-MINGW [Program] C:\OMDey \tools\msys \binimake, exe
ith LIBRML=rml g and RML

‘linking in debug mode wi

To create the debug configuration, right click on the classification Modelica Development Tooling
(MpT) and select New as in figure below. Then give a hame to the configuration, select the debugging
executable to be executed and give it command line parameters. There are severa tabs in which the user
can select additional debug configuration settings like the environment in which the executable should be
run.

75

&= Modelica - Main.mo - Eclipse SDK

File Edt Mavigate Search Project Run Window Help

i & & 3-8 -Q « | 37 | (3 - |comectindentation | U] = Gl ot e 00 v
&= x[[—
(55 Modelcn Projects 37 il
Codegen.mo | Create, manage, and run configurations
El} Connect.mo Run or Debug a MetaModelica program
Constants.ma
% Corba.mo
) 2 o2 -
Ao DEx 05 Neme: [omcD
DAEEXT.ma |l‘y ——
Y pe " IEX =
DAELow.mo m Sburce| =] Common | Fg Environment
Debug.ma -[€] CfC++ Attach to Local Application
3 Derive.mo E C/C++ Local Application
Dump.ma E C/C++ Postmortem debugger
3 DumpGranhviz. @ Eclipse Anplication Program: I C:ipin'\cygwinthome \adrporuntime -Eclipse Application\OpenModelica \build\binomed. exe EWLI
Env.mo o Equinox OSGi Framework
3 Error.mo B4l Java Applet
ErrorExt.mo -3 Java Application Arquments:
3 Exp.
LS 5 Jav_a bean +c=debug +d=interactiveCorba
Graphviz.mo Ju Junit
3 Inst.mo - Ji Uit Plug-in Test
3 Interactive.mo i Modelica Developement Toaling (MDT)
Lookup.mo 2”{. oMcD
3 Main.mo Z, Remote Java Application
i ~H3 Main -5 swT Application
BZ outline 532 :
= Eﬁ‘ Main
+ checkClassdef
fixModelicaCutput
handleCommand
interactivemade
interactivemodeCor
isFlatModelicarile
isModelicaFile 3
isModelicaScriptFile &I &I
main -
makeDebugResult
modpar @ QLI Il
optimizeDas ooy A oo [T T
readSettings |H
readSettingsFile
Figure 6-3. Creating the Debug Configuration.
£ Modelica - Echpse SOK L =181
Fiw Edt Novigabe Search. Project Run Feldlasst Window - Hsl
|re- [s B B . B e - Y e e o | 3 Modeien *
& Debug x|
[=0
' Create, manage, and run configurations
‘ﬂsuo!edmmoas-o:m: I
il mame: [01_exoerment
N o o R o]
@ Eciose aovicaten -
& Equmnox 055 Framework
B Gerarc Server
B corsne 3 » Program: | ica f01_gioermentman. exe Browse...
B 2ave Agiet - —
Aruments:
) Mano 15 AritPginTest L
| Main.erz = 7 Moceiea Deveopement Tor
Lip Mk i i
@ Maknfie R o20_ex1 4 r -
J o T Click Browse and
o cou L i s 7003 .
= ~ g do_sssgritwatype
BE Outing 5 0d_modasssgn
Err e) e select the executable —=
you just built. S
Remote Javs Aopieston T
= .= Typas.e
|
s .8 Typen.s
Lz
(Give parameters e
| .
e to the program] L
Ween| (B BOB LMD = of Gas.. |) wmiwIzn..| 32 Wodvia...o| [B]wcrostpo... |[D radeica - — | 1 intted Pt

|| @~ e 5

Figure 6-4. Specifying the executable to be run in debug mode.

76

6.2.2 Setting/Deleting Breakpoints
€ Hodelca Haimmo - Edwse SOK 181X

Fle Edt Mavgate Search Froject Run Feidissst Window Hep

Ird= @ m | $-0-Q- |5 | |2 |8 |@ | 1« =5 G - |corectindentaton 3|) Modeica =
Er—=— e =5

il = e i-hachage Matn =
el 61_siperment |

B2 extemaTooBuicers
B Anczons.no 5
= 3 Manmo < function =ain

@ @ man 7 input list<String args
- Types=o £ aigoritim

¥ roject 3 _om

T .::c:. = 17 matchcomtimie arg

o e case in_werii_)

] Funczons.h Mz 20cm
a Irtager &, n

i Maie

Funccigns.test (“one”))i

Funccions.vess ("1e07)))3 -
»
=pn

8 Man Proiems | [console 17 WyBeokmaris | Progress | = X (kiimB-ri-=0
B menfat<syng> wg) Develooement Tookng (4] C: 0, 38 DTGP =279 gREplPort=2T5] <GEVNPor =279 <gSgnaPort=279 10
@ imoort Functions)

Double click on the
ruler to set/delete
breakpoints

K]

| wnasie | trsert B | B Opertiodeion Compler 1,438 Orire | Jige

Figure 6-5. Setting/deleting breakpoints.

6.2.3 Starting the debugging session and enabling the debug perspective
€ Hodelca Haimmo - Edwse SOK =l#lx

Fle Edt Mavgate Search Project Run FeidAssst Window Helo
|'re= G @ | R0 Qe | B |2 | @@ | et Gie - | Comectindentatn 11| 2 Modescn »!

—

pachage Hain =

“function =main
input list<Strings arg;
algorithm

TEome i BNE N X0 : - 2
B 8 van = R (uidA B8 -ci-=0

B-F manfut<Srng> wg) I» 01, e dogTmePort= 1796 <boReolhPort=2757 <bgiventPori=2753 <bgSonaPort= 1755 10
o import Functons; \ .|

Click and select the
debug configuration.
The debugging will start.

o o

| Wrieable | naet BT | [OoeriModeica Compier 1.4.3s Orire | [| T

Figur e 6-6. Starting the debugging session.

7

£ Modelica - Main.mo - Eclipse SDK

File Edit Mavigate Search Project Run Fielddssist Window Help
Iti-almls-0--]8 |57 [-]8|@] - - &~ - |comectindentaton
’
(6% Modelica Projects 53 =0|H
2 ['E <§> = “paciage Main
-1 01_experiment T
----- 100 02a_expl import Functions;
""" &7 02b_exp2
e "Q 03_assignment =\ function main
..... [04a_assigntwotype input list<String> arg;
""" 10 04b_modassigntwotype alg?iithm
..... m D7 pelvariced ;atc:hc:ontinue Brg
----- 17 06_OMCANdCorba Gane fiatini))
""" 12 07_pam local
----- 120 08_pamded Integer i, n; — - - - nam— -
..... 157 09_pamtrans String str, mostr; KA e r x|
-1 10_petrol Sauation L - o
..... 17 documentation / feectorial | ? TTusklné:I of launch is configured to open the Diebug perspective when it
_____ B etc ctorial o .
i cTum' .‘1_3_5': This Debug perspective is designed to support application debugging. 1t
el " Cucn? . ‘E?F incorporates views for displaying the debug stack, variables and breakpoint
str = intStringi{i)| management.
printistr);
// test function Do you want to open this perspective now?
pE wnCalling E
print{"\fiCalling E 4 ;s i
[~ Remember my decision
B outine 32 B % e ¥Y=0O A -
- Yes I Mo
= @ Main Problems | Bl Console &2 . Boakmarl
main{ist=5tring> arg) 01_experiment [Modelica Developement reome-rermr——rerrererrrrere—rre — . =
- @ jmport Functions;
Figure6-7. Eclipse will ask if the user wants to switch to the debugging perspective.
& Debug - Hainmo - Eclipse SHK =180 x|
Fie Edt Refacior Nevigole Sewch Fropct Run Feidssst Window Heb
Ird= @ s |t -0 - Q- Q- |G| ™7 || @@ 5 - e || Cometindentation F| % Deg *
e B xf e m] E e varaties T Breskgonts |) % K T0
&l AR 61_experment Modeica Developement Toolng MOT]] e | vse |
o voT EEXT] atrrg st
- Man Sread (stesoing] B @ nsy strng
= pharman e 17, 17)
Wl Conioy Wi entiman.exe <bpCm
Pr— o 27
| = 01 (outine | 55 Moceicaprojects 1 N = O
i-paciage Hain = ol BT
1 o1_eperment
= L
& 0>_eo2
5 function main 15 03_sssigrment

mpat
: algorithm

list<SEring> argi

matchcontimse arg
case (n_soric_

B8 oda_sssgnbratype
1B 0%_modessgntwatyoe
151 08 _scvanced

1B 05_OMCANCora

& 07_pam
]
L
E::.ﬂ?abm
.
5 conscle £ Tesks | o Log | i B ln S |4 B -r5-70
01_sxperment Teoing c 01 e <boCmiPorte 3050 . -
Browse variables here. =
Use the buttons to step. Also there is a tab with
Only step into works breakpoints.
, | right now. o
my - a—— T | B OosriModsbes Compler 14,38 Drire I e | ErTETTTT

Figure 6-8. The debugging perspective.

78

£ Debug - Mainmo - Ecipse SOK
Fle Edt Refactor Mmegete Sewch Projent Rum Feldlssst Window Hep

e R s R s e R e N e

#5ifunction main
T input listeSsring> args
¢ algorithm
matchoontinue arg
case (n_ssrii_)
local
Integur 1, n;
String stzr, m_sir;
equatien
facta:

A Debug I3 n @B eS| T S0 00 vausies 33 nm[|
= BB 01_sxperment [Modeion Seveiooement Toglng (MO Hame []
&3 vor CEXT strng st e
By Man thread (stepping) = @ nstr g
= Man_man (ne: 17,51 7)
ol C:pen T e o) ' v : -
4 | 2l .
i Manmo B =y Modelcs Projects =0
Epachage Hain @ RS
Py : B & M
import Tuncsisns B =t <> o)
© mport Functons:

o

W% | La il 8- 13270

rl

57\ Tosks | Emor g |

B conscln
0

Switch between Debug
and Modelica Perspective

Figur e 6-9. Switching between perspectives.

79

Chapter 7

Interoperability — C, Java, and Python

Below is information and examples about the OpenModelica external C and Java interfaces, as well as
examples of Python interoperability.

7.1 Calling External C functions

The following is asmall example (ExternalLibraries.mo) to show the use of external C functions:

model Externallibraries

Real x(start=1.0),y(start=2.0);
equation

der (x) =-ExternalFuncl (x) ;

der (y) =-ExternalFunc2 (y) ;
end Externallibraries;

function ExternalFuncl
input Real x;
output Real y;
external
y=ExternalFuncl ext (x) annotation (Library="libExternalFuncl ext.o",
Include="#include \"ExternalFuncl ext.h\"");
end ExternalFuncl;

function ExternalFunc?2
input Real x;
output Real y;
external "C" annotation (Library="libExternalFunc2.a",
Include="#include \"ExternalFunc2.h\"");
end ExternalFunc2;

These C (.c) files and header files (.h) are needed:

/* file: ExternalFuncl.c */
double ExternalFuncl_ext (double x)
double res;
res = X+2.0*xX*x;
return res;

}

/* Header file ExternalFuncl ext.h for ExternalFuncl function */
double ExternalFuncl_ext (double) ;

/* file: ExternalFunc2.c */
double ExternalFunc2 (double x)

double res;
res = (x-1.0)*(x+2.0);
return res;

80

}

/* Header file ExternalFunc2.h for ExternalFunc2 */
double ExternalFunc2 (double) ;

The following script file ExternalLibraries.mos Will perform everything that is needed, provided you
have gcc installed in your path:

loadFile ("ExternalLibraries.mo") ;

system("gcc -c -o libExternalFuncl ext.o ExternalFuncl.c");
system("gcc -c -o libExternalFunc2.a ExternalFunc2.c");
simulate (ExternalLibraries) ;

We run the script:
>> runScript ("ExternallLibraries.mos") ;

and plot the results:

>> plot ({x,vy});

o tmpPlot. plt

File Edit Special

Plot by OpenModelica

2ok T T T T T T 1, m
V.
1617 T
1.00 | | [T
04l i

oo 01 2z 03 04 05 06 OF 08 08 1.0

7.2 Calling External Java Functions

There exists a bidirectional OpenModelica-Java CORBA interface, which is capable of passing both
standard Modelica data types, as well as abstract syntax trees and list structures to and from Java and
process them in either Java or the OpenMaodelica Compiler.

The following is a small example (ExternalJavaLib.mo) to show the use of externa Java function
callsin Modelica, i.e., only the case calling Java from Modelica

model ExternalJdavalib

Real x(start=1.0);
equation

der (x) =- ExternalJavalog (x) ;
end ExternalJdavalLib;

81

function ExternalJavalog

input Real x;

output Real y;
external "Java" y='java.lang.Math.log’ (x) annotation (JavaMapping = "simple");
end ExternalJavalog;

7.3 Python Interoperability

The interaction with Python can be perfomed in four different ways whereas one is illustrated below.
Assume that we have the following Modelica code (calledbyPython.mo):

model CalledbyPython
Real x(start=1.0),y(start=2.0);
parameter Real b = 2.0;
equation
der (x) = -b*y;
der (y) = x;
end CalledbyPython;

In the following Python (.py) files the above Modelica model is simulated via the OpenModelica scripting
interface.

file: PythonCaller.py

#!/usr/bin/python

import sys,os

global newb = 0.5

os.chdir (r'C:\Users\Documents\python')

execfile('CreateMosFile.py')

os.popen (r"C:\OpenModelical.4.5\bin\omc.exe CalledbyPython.mos") .read()
execfile ('RetrResult.py"')

file: CreateMosFile.py

#!/usr/bin/python

mos file = open('CalledbyPython.mos',’'w’,1)

mos_file.write("loadFile (\"CalledbyPython.mo\") ;\n")

mos file.write("setComponentModifierValue (CalledbyPython,b,Code (="+str (newb)+")
) ;\n")

mos_file.write("simulate (CalledbyPython, stopTime=10) ;\n")

mos file.close()

file: RetrResult.py
#!/usr/bin/python
def zeros(n): #
vec = [0.0]
for i in range(int(n)-1): vec = vec + [0.0]
return vec
res_file = open("CalledbyPython res.plt",'r', 1)
line = res file.readline()
size = int(res_file.readline() .split('=") [1])

time = zeros(size)

y = zeros (size)

while line != ['DataSet: time\n']: line = res_ file.readline() .split(',') [0:1]
for j in range(int(size)): time[jl=float (res_file.readline() .split(',"') [0])
while line != ['DataSet: y\n'l: line=res file.readline() .split(',"') [0:1]

for j in range(int(size)): yl[jl=float(res_file.readline() .split(',"') [1])

res file.close()

A second option of simulating the above Modelica model is to use the command buildModel instead of
the simulate command and setting the parameter value in the initid parameter file,
CalledbyPython init.txt instead of using the command setComponentModifiervalue. Thenthe
file calledbyPython.exe iSjust executed.

82

The third option is to use the Corba interface for invoking the compiler and then just use the scripting
interface to send commands to the compiler viathisinterface.

The fourth variant is to use external function calls to directly communicate with the executing
simulation process.

83

Chapter 8

Frequently Asked Questions (FAQ)

Below are some frequently asked questionsin three areas, with associated answers.

8.1

8.2

OpenModelica General

Q: Why are not the MultiBody and Media libraries included in the OpenM odelica distribution.

A: These libraries need specid features in the Modelica language which are not yet implemented in
OpenModelica. We are working on it, but it will take some time.

Q: | did not find the graphic editor MathModelica Lite in the OpenModelica distribution. Where
can| find it?

A: You can download it via a link at the OpenModelica web site, e.g. the one placed under the
OpenModelica Environment heading, Graphic Editor bullet.

Q: OpenModelica 1.4.5 does not read the MODELICAPATH environment variable, even though
thisis part of the Modelica Language Specification.

A: Use the OPENMODELICALIBRARY environment variable instead. We have temporarily
switched to this variable, in order not to interfere with other Modelica tools which might be
installed on the same system. In the future, we might switch to a solution with a settings file, that
also allows the user to turn on the MODELICAPATH functionality if desired.

Q: How do | enter multi-line models into OM Shell since it evaluates when typing the Enter/Return
key?

A: There are basically three methods:. 1) load the model from afile using the pull-down menu or the
loadModel command. 2) Enter the model/function as one (possibly long) line. 3) Type in the model
in another editor, where using multiple linesis no problem, and copy/paste the model into OM Shell
as one operation, then push Enter. Another option is to use OMNotebook instead to enter and
evaluate models.

OMNotebook

Q: OMNotebook hangs, what to do?

A: It is probably waiting for the omc.exe (compiler) process. (Under windows): Kill the processes
omc.exe, g++.exe (C-compiler), as.exe (assembler), if present. If OMNotebook then asks whether
to restart OMC, answer yes. If not, kill the process OMNotebook.exe and restart manually.

Q: After aprevious session, when starting OM Notebook again, | get a strange message.

A: You probably quit the previous OpenModelica session in the wrong way, which left the process
omc.exe running. Kill that process, and try starting OM Notebook again.

8.3

Q: | copy and paste a graphic figure from Word or some other application into OMNotebook, but
the graphic does not appear. What is wrong?

A: OMNotebook supports the graphic picture formats supported by Qt 4, including the .png, .bomp
(bitmap) formats, but not for example the gif format. Try to convert your picture into one of the
supported formats, (e.g. in Word, first do paste as bitmap format), and then copy the converted
version into atext cell in OMNotebook.

Q: Plotting does not work in OM Notebook.

A: You probably have an old version of Java installed. Update your installation, and try again.
(Another known problem, soon to be fixed, is that plotting of parameters and constants does not yet
work).

Q: | select acell, copy it (e.g. Ctrl-C), and try to paste it at another place in the notebook. However,
this does not work. Instead some other text that | earlier put on the clipboard is pasted into the
nearest text cell.

A: The problem is wrong choice of cursor mode, which can be text insertion or cell insertion. If you
click inside a cell, the cursor become vertical, and OMNotebook expects you to paste text inside the
cell. To paste a cell, you must be in cell insertion mode, i.e., click between two cells (or after a
cell), you will get avertical line. Place the cursor carefully on that vertical line until you see a small
horizonta cursor. Then you should past the cell.

Q: I amtrying to click in cells to place the vertical character cursor, but it does not seem to react.

A: This seems to be a Qt feature. You have probably made a selection (e.g. for copying) in the
output section of an evaluation cell. This seems to block cursor position. Click again in the output
section to disable the selection. After that it will work normally.

Q: | have copied atext cell and start writing at the beginning of the cell. Strangely enough, the font
becomes much smaller than it should be.

A: This seemsto be a Qt feature. Keep some of the old text and start writing the new stuff inside the

text, i.e., at least one character position to the right. Afterwards, delete the old text at the beginning
of the cell.

OMDev - OpenModelica Development Environment

Q: | get problems compiling and linking some files when using OMDev with the MINGW (Gnu) C
compiler under Windows.

A: You probably have some Logitech software installed. There is a known bug/incompatibility in
Logitech products. For example, if lvprcsrv.exeis running, kill it and/or prevent it to start again at
reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

85

Appendix A

Major OpenModelica Releases

This Appendix lists the most important OpenModelica releases and a brief description of their contents.
However, right now the versions from 1.3.1 to 1.5 are described.

A.1 OpenModelica 1.5, November 2009

This release has major improvements in the OpenModelica compiler frontend. Approximately 2.5 person-
years of addtitional effort have been invested in the frontend compared to the 1.4.5 version, e.g., in order to
have a more complete coverage of Modelica 3.0, mainly focusing on improved flattening in the compiler
frontend. However the coverage is not yet full Modelica 3.0 in this release.

A.1.1 OpenModelica Compiler (OMC)

This release includes major improvements of the flattening frontend part of the OpenModelica Compiler
(OMC) including, but not restricted to:

Support for enumerations, both in the frontend and the backend.

Support for the inline annotation in functions.

Complete support for record constructors, also for records containing other records.
Full support for iterators, including nested ones.

Support for inferred iterator and for-loop ranges.

A new bidirectional external Java interface for calling external Java functions, or for calling
Modelicafunctions from Java.

Support for Modelica 3.1 annotations.

Support for all MetaModelica language constructs inside OpenModelica.
OpenModelica now works also under 64-bit Linux.

Many bug fixes.

A.2 OpenModelica 1.4.5, January 2009

This release has several improvements, especially platform availability, less compiler memory usage, and
supporting more aspects of Modelica 3.0.

A.2.1 OpenModelica Compiler (OMC)

This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

Less memory consumption and better memory management over time. This also includes a better
API supporting automatic memory management when calling C functions from within the compiler.

Modelica 3.0 parsing support.

Export of DAE to XML and MATLAB.

Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

Support for record and strings as function arguments.

Many bug fixes.

(Not part of OMC): Additional free graphic editor SimForge can be used with OpenModelica

86

A.2.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the plotting functionality and platform availability.
e A number of improvements in the plotting functionality: scalable plots, zooming, logarithmic plots,
grids, etc.
e Programmable plotting accessible through a Modelica API.
e Simple 3D visualization.
e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

A.2.3 OpenModelica Shell (OMShell)
Same as previoudly.

A.2.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.2.5 OpenModelica Development Environment (OMDev)
Same as previoudly.

A.3 OpenModelica 1.4.4, Feb 2008

This release is primarily a bug fix release, except for a preliminary version of new plotting functionality
available both from the OMNotebook and separately through a Modelica API. Thisis also the first release
under the open source license OSMC-PL (Open Source Modelica Consortium Public License), with
support from the recently created Open Source Maodelica Consortium. An integrated version handler, bug-,
and issue tracker has also been added.

A.3.1 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Better support for if-equations, aso inside when.

e Better support for calling functions in parameter expressions and interactively through dynamic
loading of functions.

e Lessmemory consumtion during compilation and interactive evaluation.
e A number of bug-fixes.

A.3.2 OpenModelica Notebook (OMNotebook)

Test release of improvements, primarily in the plotting functionality and platform availability.

e Preliminary version of improvements in the plotting functionality: scalable plots, zooming,
logarithmic plots, grids, etc., currently available in a preliminary version through the plot2 function.

e Programmable plotting accessible through a Modelica API.

A.3.3 OpenModelica Shell (OMShell)
Same as previoudly.

A.3.4 OpenModelica Eclipse Plug-in (MDT)
This release includes minor bugfixes of MDT and the associated MetaM odelica debugger:

87

A.3.5 OpenModelica Development Environment (OMDev)

Extended test suite with a better structure. Version handling, bug tracking, issue tracking, etc. now
available under the integrated Codebeamer

A.4 OpenModelica 1.4.3, June 2007

This release has a number of significant improvements of the OMC compiler, OMNotebook, the MDT
plugin and the OMDev. Increased platform availability now also for Linux and Macintosh, in addition to
Windows. OM Shell is the same as previously, but now ported to Linux and Mac.

A.4.1 OpenModelica Compiler (OMC)
This release includes a number of improvements of the OpenModelica Compiler (OMC):

e Significantly increased compilation speed, especially with large models and many packages.
¢ Now available also for Linux and Macintosh platforms.

e Support for when-equations in algorithm sections, including el sewhen.

e Support for inner/outer prefixes of components (but without type error checking).

e Improved solution of nonlinear systems.

e Added ability to compile generated simulation code using Visual Studio compiler.

e Added "smart setting of fixed attribute to false. If initial equations, OMC instead has fixed=true as
default for states due to allowing overdetermined initial equation systems.

e Better state select heuristics.

e New function getincidenceMatrix(ClassName) for dumping the incidence matrix.

¢ Builtin functions String(), product(), ndims(), implemented.

e Support for terminate() and assert() in equations.

e |nemitted flat form: protected variables are now prefixed with protected when printing flat class.
e Some support for tables, using omcTableTimelni instead of dymTableTimelni2.

e Better support for empty arrays, and support for matrix operations like a*[1,2;3,4].

e Improved val() function can now evaluate array elements and record fields, e.g. val(x[n]), val(x.y) .
e Support for reinit in algorithm sections.

e String support in external functions.

e Double precision floating point precision now also for interpreted expressions

e Better simulation error messages.

e Support for der(expressions).

e Support for iterator expressions such as{3*i foriin 1..10}.

e Moretest casesin the test suite.

e A number of bug fixes, including sample and event handling bugs.

A.4.2 OpenModelica Notebook (OMNotebook)
A number of improvements, primarily in the platform availability.

e Available on the Linux and Macintosh platforms, in addition to Windows.
e Fixed cell copying bugs, plotting of derivatives now works, etc.

A.4.3 OpenModelica Shell (OMShell)

Now available also on the Macintosh platform.

88

A.4.4 OpenModelica Eclipse Plug-in (MDT)
This release includes major improvements of MDT and the associated MetaM odelica debugger:

e Greatly improved browsing and code completion works both for standard Modelica and for
MetaM odelica.

e Hovering over identifiers displays type information.

e A new and greatly improved implementation of the debugger for MetaM odelica algorithmic code,
operational in Eclipse. Greatly improved performance — only approx 10% speed reduction even for
100 000 line programs. Greatly improved single stepping, step over, data structure browsing, etc.

e Many bug fixes.

A.45 OpenModelica Development Environment (OMDev)
Increased compilation speed for MetaModelica. Better if-expression support in MetaM odelica.

A.5 OpenModelica 1.4.2, October 2006

This release has improvements and bug fixes of the OMC compiler, OMNotebook, the MDT plugin and the
OMDev. OMShell is the same as previously.

A.5.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenMaodelica Compiler (OMC):
e Improved initialization and index reduction.
e Support for integer arraysis now largely implemented.

e The va(variabletime) scripting function for accessing the value of a simulation result variable at a
certain point in the ssmulated time.

e Interactive evalution of for-loops, while-loops, if-statements, if-expressions, in the interactive
scripting mode.

e Improved documentation and examples of calling the Model Query and Manipulation API.

e Many bug fixes.

A.5.2 OpenModelica Notebook (OMNotebook)

Search and replace functions have been added. The DrModelica tutorial (al files) has been updated,
obsolete sections removed, and models which are not supported by the current implementation marked
clearly. Automatic recognition of the .onb suffix (e.g. when double-clicking) in Windows makes it even
more convenient to use.

A.5.3 OpenModelica Eclipse Plug-in (MDT)
Two major improvements are added in this release:

e Browsing and code completion works both for standard Modelica and for MetaModelica.

e The debugger for algorithmic code is now available and operationa in Eclipse for debugging of
M etaM odelica programs.

A.5.4 OpenModelica Development Environment (OMDev)

Mostly the same as previously.

89

A.6 OpenModelica 1.4.1, June 2006

This release has only improvements and bug fixes of the OMC compiler, the MDT plugin and the OMDev
components. The OM Shell and OMNotebook are the same.

A.6.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenMaodelica Compiler (OMC):
e Support for external objects.
e OMC now reports the version number (via command line switches or CORBA API getVersion()).
e Implemented caching for faster instantiation of large models.
e Many bug fixes.

A.6.2 OpenModelica Eclipse Plug-in (MDT)

Improvements of the error reporting when building the OMC compiler. The errors are now added to the
problemsview. Thelatest MDT release is version 0.6.6 (2006-06-06).

A.6.3 OpenModelica Development Environment (OMDev)

Small fixes in the MetaM odelica compiler. MetaModelica Users Guide is now part of the OMDev release.
The latest OMDev was release in 2006-06-06.

A.7 OpenModelica 1.4.0, May 2006

This release has a number of improvements described below. The most significant change is probably that
OMC has now been trand ated to an extended subset of Modelica (MetaModelica), and that all devel opment
of the compiler is now donein this version..

A.7.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenMaodelica Compiler (OMC):

e Partia support for mixed system of equations.

¢ New initiaization routine, based on optimization (minimizing residuals of initial equations).

e Symbolic simplification of builtin operators for vectors and matrices.

e Improved code generation in simulation code to support e.g. Modelica functions.

e Support for classes extending basic types, e.g. connectors (support for MSL 2.2 block connectors).
e Support for parametric plotting via the plotParametric command.

e Many bug fixes.

A.7.2 OpenModelica Shell (OMShell)

Essentiadly the same OMShell as in 1.3.1. One difference is that now all error messages are sent to the
command window instead of to a separate log window.

A.7.3 OpenModelica Notebook (OMNotebook)

Many significant improvements and bug fixes. This version supports graphic plots within the cells in the
notebook. Improved cell handling and Modelica code syntax highlighting. Command completion of the
most common OMC commands is how supported. The notebook has been used in several courses.

90

A.7.4 OpenModelica Eclipse Plug-in (MDT)

This is the first really useful version of MDT. Full browsing of Modelica code, e.g. the MSL 2.2, is now
supported. (MetaModelica browsing is not yet fully supported). Full support for automatic indentation of
Modelica code, including the MetaModelica extensions. Many bug fixes. The Eclipse plug-in is now in use
for OpenM odelica development at PELAB and MathCore Engineering AB since approximately one month.

A.7.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica devel opment.
e A separate web page for OMDev (OpenModelica Development Environment).

e A pre-packaged OMDev zip-file with precompiled binaries for development under Windows using
the mingw Gnu compiler from the Eclipse MDT plug-in. (Development is also possible using
Visua Studio).

e All source code of the OpenModelica compiler has recently been translated to an extended subset of
Modelica, currently called MetaModelica. The current size of OMC is approximately 100 000 lines
All development is now done in this version.

e A new tutorial and users guide for development in MetaModelica.
e Successful builds and tests of OMC under Linux and Solaris.

A.8 OpenModelica 1.3.1, November 2005
This release has several important highlights.

Thisis aso the first release for which the New BSD (Berkeley) open-source license applies to the source
code, including the whole compiler and run-time system. This makes is possible to use OpenModelica for
both academic and commercial purposes without restrictions.

A.8.1 OpenModelica Compiler (OMC)
This release includes a significantly improved OpenModelica Compiler (OMC):
e Support for hybrid and discrete-event simulation (if-equations, if-expressions, when-equations;
not yet if-statements and when-statements).
e Parsing of full Modelica 2.2
e Improved support for external functions.

e Vectorization of function arguments; each-modifiers, better implementation of replaceable, better
handling of structural parameters, better support for vector and array operations, and many other
improvements.

e Flattening of the Modelica Block library version 1.5 (except a few models), and simulation of most
of these.

e Automatic index reduction (present also in previous release).
e Updated User's Guide including examples of hybrid simulation and external functions.

A.8.2 OpenModelica Shell (OMShell)

An improved window-based interactive command shell, now including command completion and better
editing and font size support.

A.8.3 OpenModelica Notebook (OMNotebook)

91

A free implementation of an OpenModelica notebook (OMNOtebook), for electronic books with course
material, including the DrModelica interactive course material. It is possible to ssmulate and plot from this
notebook.

A.8.4 OpenModelica Eclipse Plug-in (MDT)

An early apha version of the first Eclipse plug-in (called MDT for Modelica Development Tooling) for
Modelica Development. This version gives compilation support and partial support for browsing Modelica
package hierarchies and classes.

A.8.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica devel opment.

e Bugzilla support for OpenM odelica bug tracking, accessible to anybody.

e A system for automatic regression testing of the compiler and simulator, (+ other system parts)
usually run at check intime.

e Version handling is done using SVN, which is better than the previously used CVS system. For
example, name change of modulesis now possible within the version handling system.

92

Appendix B

Contributors to OpenModelica

This Appendix lists the individua s who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, promotion, etc. The
individuals are listed for each year, from 1998 to the current year: the project leader and main author/editor
of this document followed by main contributors followed by contributors in aphabetical order.

B.1 OpenModelica Contributors 2009
Peter Fritzson, PELAB, Linkoping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkoping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Bjorklén, PELAB, Linkoping University, Linkoping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Link&ping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linkoping University, Link6ping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linkdping, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Hakan Lundvall, PELAB, Linkoping University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemist6, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.

93

Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Ingtitute of Pathological Physiology, Praha, Czech Republic.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Linkdping University, Link&ping, Sweden.

Martin §6lund, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavéker, PELAB, Linkoping University, Linkoping, Sweden.

Mohsen Torabzadeh-Tari, PELAB, Linkdping University, Linkdping, Sweden.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany
Robert Wotzlaw, Goettingen, Germany
Bjorn Zachrisson, MathCore Engineering AB, Linkoping, Sweden

B.2 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Link&ping University, Linkping, Sweden.

Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.
Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linképing, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linképing University, Linkping, Sweden.
Mikael Blom, PELAB, Link&ping University, Linképing, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.

Joel Klinghed, PELAB, Linkoping University, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkdping University, LinkOping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Link&ping University, Linképing, Sweden.
Klas Sjoholm, PELAB, Linkoping University, Linkoping, Sweden.
Kristian Stavéker, PELAB, Linkoping University, LinkGping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.3 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Link&ping University, Linkping, Sweden.
Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Link&ping University, Linkoping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

94

OlaLeifler, IDA, Link6ping University, Linképing, Sweden.

Hakan Lundvall, PELAB, Linkoping University, Linkdping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Link&ping University, Linképing, Sweden.
Klas Sjoholm, PELAB, Linkoping University, Linkoping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Kristian Stavéker, PELAB, Linkoping University, Linkoping, Sweden.
Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Bjorn Zachrisson, MathCore Engineering AB, Link&ping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.4 OpenModelica Contributors 2006
Peter Fritzson, PELAB, Link&ping University, Linkping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.

David Akhvlediani, PELAB, Linkping University, Linképing, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Link&ping University, Linkoping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Elmir Jagudin, PELAB, Linkoping University, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linktping University, Linkoping, Sweden.
Kaj Nystrém, PELAB, Linkoping University, Linkoping, Sweden.

L ucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Link&ping University, Linképing, Sweden.

B.5 OpenModelica Contributors 2005
Peter Fritzson, PELAB, Link&ping University, Linkping, Sweden.

Peter Aronsson, PELAB, Link&ping University and MathCore Engineering AB, Link&ping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.
Hakan Lundvall, PELAB, Linkdping University, LinkOping, Sweden.

Ingemar Axelsson, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Link&ping University, Linkping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linktping University, LinkGping, Sweden.
Kaj Nystrom, PELAB, Linkoping University, Linkoping, Sweden.

L ucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkoping, Sweden.

B.6 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkoping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Peter Bunus, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

95

Hakan Lundvall, PELAB, Link&ping University, Linkoping, Sweden.

Emma Larsdotter Nilsson, PELAB, Linkdping University, Linkdping, Sweden.

Kaj Nystrém, PELAB, Linkoping University, Linkoping, Sweden.
Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

B.7 OpenModelica Contributors 2003
Peter Fritzson, PELAB, Link&ping University, Linkping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Bunus, PELAB, Linkdping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkoping University, Linkdping, Sweden.
Daniel Hedberg, Linképing University, Linképing, Sweden.

Eva-Lena Lengquist-Sandelin, PELAB, Linkdping University, Linkdping, Sweden.

Susanna Monemar, PELAB, Linkdping University, Linkdping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.
Erik Svensson, MathCore Engineering AB, Link&ping, Sweden.

B.8 OpenModelica Contributors 2002
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkoping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linképing University, Linkoping, Sweden.
Henrik Johansson, PELAB, Linkdping University, Linkoping, Sweden
Andreas Karstrém, PELAB, Linkoping University, Link6ping, Sweden

B.9 OpenModelica Contributors 2001
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Link6ping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

B.10 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Link&ping University, Linkdping, Sweden.

B.11 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden

Peter Ronnquist, PELAB, Linktping University, Linkoping, Sweden.

B.12 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

96

David Kagedal, PELAB, LinkGping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

97

Index

literate programming

98

