.Modelica.Math.FastFourierTransform

Library of functions for the Fast Fourier Transform (FFT)

Information

This package provides functions to compute the Fast Fourier Transform (FFT).

For an example see Examples.RealFFT1 where the following signal is computed during simulation

y = 5 + 3*sin(2*pi*2) + 1.5*cos(2*pi*3)

the continuous-time signal y is sampled and the FFT is computed with a call to realFFT(f_max=4, f_resolution=0.2), resulting in:

References

Mark Borgerding (2010):
KissFFT, version 1.3.0. http://sourceforge.net/projects/kissfft/.
 
James W. Cooley, John W. Tukey (1965):
An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19: 297-301. doi:10.2307/2003354.
 
Martin R. Kuhn, Martin Otter, Tim Giese (2015):
Model Based Specifications in Aircraft Systems Design. Modelica 2015 Conference, Versailles, France, pp. 491-500, Sept.23-25, 2015. Download from: http://www.ep.liu.se/ecp/118/053/ecp15118491.pdf

Contents

NameDescription
ExamplesExamples demonstrating the usage of the Math.FastFourierTransform functions
realFFTinfoPrint information about real FFT for given f_max and f_resolution
realFFTsamplePointsReturn number of sample points for a real FFT
realFFTReturn amplitude and phase vectors for a real FFT
realFFTwriteToFileWrite real FFT computation to file
InternalInternal library that should not be used directly by a user

Revisions

Date Description
Nov. 29, 2015 Initial version implemented by Martin R. Kuhn and Martin Otter (DLR Institute of System Dynamics and Control.

Generated at 2025-12-08T19:14:02Z by OpenModelicaOpenModelica 1.25.7 using GenerateDoc.mos