DiscreteStateSpace.Plot.initialResponse(ss); or DiscreteStateSpace.Plot.initialResponse( dss, tSpan, x0, defaultDiagram=Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(), device=Modelica_LinearSystems2.Utilities.Plot.Records.Device())
This function plots the initial responses of a discrete state space system for the initial state vector x0 for each system corresponding to the transition matrix. It is based on timeResponse.
Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace(
A=[-1.0,0.0,0.0; 0.0,-2.0,3.0; 0.0,-2.0,-3.0],
B=[1.0; 1.0; 0.0],
C=[0.0,1.0,1.0],
D=[0.0])
Real x0={1,0.5,0.5};
Real Ts = 0.1;
Modelica_LinearSystems2.Types.Method method=Modelica_LinearSystems2.Types.Method.StepExact;
DiscreteStateSpace dss=DiscreteStateSpace(dss,Ts,method);
algorithm
Modelica_LinearSystems2.DiscreteStateSpace.Plot.initial(dss, x0=x0)
encapsulated function initialResponse
import Modelica_LinearSystems2;
import Modelica_LinearSystems2.DiscreteStateSpace;
import Modelica_LinearSystems2.Utilities.Types.TimeResponse;
input DiscreteStateSpace dss;
input Real tSpan = 0 "Simulation time span [s]";
input Real x0[size(dss.A, 1)] = zeros(size(dss.A, 1)) "Initial state vector";
input Boolean subPlots = true "True, if all subsystem time responses are plotted in one window with subplots" annotation(
choices(checkBox = true));
extends Modelica_LinearSystems2.Internal.PartialPlotFunctionMIMO(defaultDiagram = Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(heading = "Initial response"));
end initialResponse;