OpenM odelica System Documentation

Preliminary Draft, 2006-05-17
for OpenModelica1.4.0

Version 0.7, May 2006

Peter Fritzson
Peter Aronsson, Adrian Pop, Hakan Lundvall,
Bernhard Bachmann, David Broman, Anders Fernstrom,
Daniel Hedberg, Elmir Jagudin, Kg Nystrom,
Andreas Remar, Levon Saldamli, Anders Sandholm

Copyright by:
Programming Environment Laboratory — PELAB
Department of Computer and Information Science
Linkdping University, Sweden

Copyright © 2002-2006, PELAB, Department of Computer and Information Science, Linkopings universitet.
All rights reserved.
This document is part of OpenModelica, www.ida.liu.se/projects/OpenModelica

(Here using the new BSD license, see also http://www.opensource.org/licenses/bsd-li cense.php)

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

e Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

e Neither the name of Linkdpings universitet nor the names of its contributors may be used to endorse or
promote products derived from this software withoutspecific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS“ASIS’” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

TADIE O CONLENES.......eitiitiieeiet et bbb et b e b bt b e sb e sb et eb e b e b e e ebesbe e e nnens 5
Preface 9
Chapter 1 INEFOOUCTION ..ottt bbbt b e bbb b e et b b e e 11
11 OpenModelica ENVIronmMeNnt SIFUCLUFE..........covviiieeeere e seeeese e sre e et ee e eeeseesees 11
12 OpenModelica Compiler Trandation StagESccevereiiieeieere s 12
13 Simplified Overall Structure of the COMPIENccceev i 12
14 Parsing and ADSLIaCt SYNEAX.........cecveriiieieee e seesee st sae e sreeneenee e 13
15 Rewriting the AST iNt0 SCOUE.........cci it 13
16 COdE INSEANLIALION.ccueeviciecticeee ettt st st be s besbe e e e besbesreennenresrens 14
17 TheinstClass and instElement FUNCHIONS...........coiiiiieini e 14
18 L@ 1 11 0L | USSR 16
Chapter 2 Invoking omc —the OpenM odelica Compiler/Inter preter Subsystem........ccccceceeeee. 17
21 Command-Line Invokation of the Compiler/INterPretercocvvveeecevenereeere e 17
211 General COMPIlEr FIAgS.....cooiiiiiieeii sttt sttt sraeaesresre e ense e 17
212 Compiler DEbUQ TraCe Flags........ccooureiriiiiieieise ettt st s 17
22 The OpenModelica Client-Server ArchiteCturecocvvvieecenieice e 20
2.3 Client-Server Type-Checked Command APl for SCriptingc.ccoovevevivvievieesnsieseeceese e 21
N R T 1 o)== SRS 23
24 Client-Server Untyped High Performance APcccooiieeeniiin e 25
241 DEFINITIONS. . .eeittiteiteeeeet ettt bbbt b et b e b b e e bbb bttt be e e 25
2.4.2 EXAMPIE CallS..c.uiiiiceiii ettt e a e e aaerenre s 25
243 Untyped APl FUNCHONS.......coiiiiiiiiiesieeee sttt sttt sttt see e 26
2431 ERROR HaNAIiNG.......ciiiieieiiiiseese sttt sttt see s enae e e 30
244 ANNOLBLIONScoviitiitieeiiite ettt sttt st b e bt b et b et e b e se et e bt sbesbeneeaeebesbesbeneabesbeseenns 30
2441 Variable ANNOLALONS..........cccveiiiiiiice ettt s s sbe et 30
2442 CoNNECLION ANNOLBLIONS.......civieeeiitestesieeeie sttt sre bbbt b b e b snesne e 30
2443 Flat records for Graphic PrimitiVES........ccccceii i 31
25 Discussion on Modelica Standardization of the Typed Command APcccooveeevvnenenne. 32
251 NaMiNG CONVENTIONS.eiieieieiieeeresesieeee e e sseesee e stesseeseessesseeseessessesseensessessesseensessens 32
2.5.2 REIUM BYPR .ottt sttt sttt e a e sa bttt sa e et et e b et et e 33
PN B N (011 011< 1 - R 33
254 St Of APl FUNCHIONScuoiviieieiiitiitee ettt st 33
Chapter 3 Detailed Overview of OpenM odelica Packages..........cccccovvveveeceieiie e 35
31 Detailed Interconnection Structure of Compiler Packages...........cccccevvvvvecievececeece e 35
3.2 OpenModelica Source Code DireCtory SLUCIUE........ccvrveeeeerierieieesie e 36
110225 R © o= 0117 T (< T Tor= 1L @] .1] 1= o RSN 36
3.22 OpenModelica/ COMPIlEr/TUNLIME.coiiiiiireie sttt 36
3.23 OpeNMOAEli CAtESISUITE.......eueeeeieeiteieeeeie sttt sbe st se e st seeneas 37
3.24 OpenMOodeliCalOMSNEL.........cceee e nee s 37
3.25 OpenModeica/c_runtime— OpenModelica Run-time Libraries..........ccocoeieveincnenienns 37
T2 30 N oo 001 1141 = TR RSP 37
B25.2 BSIMLA ettt 37
3.3 Short Overview of Compiler MOAUIES..........ccoiiiiieere e 38

34 Descriptions of OpenModelica Compiler MOAUIESccceviiiiiiciese e 39

100 R AN o 5V N 1= = ok Y | = SRS 39
3.4.2 Algorithm — Data Types and Functions for Algorithm Sections..........ccccvevvvveereneninnns 54
3.4.3 Builtin—Builtin Types and VariableS..........ccccureriiiiiiiere e 54
34.4 Ceva — Constant Evaluation of Expressions and Command Interpretation...................... 54
345 Classinf —Inference and Check of Class RESIIICLIONS..........ccoeeereiirieneiene e 55
3.4.6 ClassLoader — Loading of Classes from $SMODELICAPATHccccocveeiiiinncccieeenns 55
3.4.7 Codegen— Generate C Code frOM DAE.........ccoooeiv it 55
3.4.8 Connect — Connection Set ManagemMENL..........ccccveveiiieeeere s sre 55
3.4.9 Corba—ModdicaCompiler Corba Communication Module.............ccccveeeiiieieeiiecieenen, 55
3.4.10 DAE - DAE Equation Management and OULPUL..........ccccuerrrirreeieeresieneeeeseeseeseeeseeseeseens 56
3.4.11 DAEEXT — External Utility Functions for DAE Management...........cccceeevevieneeciecennns 59
34.12 DAELow —Lower Level DAE Using Sparse MatriseSfor BLTccooevvvevererenenieninnens 60
3.4.13 Debug— Trace Printing Used for DEDUGQING.......cccv oo 60
3.4.14 Derive— Differentiation of Equations from DAELOWcccoceevevivieneccesc e 60
3.4.15 Dump — Abstract Syntax Unparsing/Printingcccccoeovviireneienieneneneeieseseseeesee e seenens 60
3.4.16 DumpGraphviz — Dump Info for Graph visualization of ASTcccccvveveniinieniereneens 60
3.4.17 Env —Environment Managementccccviviereereseneeeesiesieseesseessessessessaessessessesssssessens 61
3.4.18 Exp—Expression Handling after Static ANalYSIS........coocveiiiiieeiene e 63
3.4.19 Graphviz — Graph Visualization from Textual Representationccccceecevivvieneenennnnnns 68
3.4.20 Inst — Code Instantiation/Elaboration of Modelica Models..........ccoooveveiniiineincncnees 68
o O IS © V= V= USROS 68
3.4.20.2 Code Instantiation of aClassin an ENVIronmentccccocevereneenesieneneeieseseeeas 69
3.4.20.3 InstElementListList & Removing Declare Before Use........cccvvveveevvivvecciesinnnnns 69
34204 ThelnstElement FUNCHIONcccoiiiiiiieeie e 69
3.4.20.5 ThelnstVar FUNCHION..........cccoueiiiie ettt ettt nesne 69
3.4.20.6 DEPENUENCIES.......oiviieeeieiieeieeeeesie et eee et esee e tesseestestesaeeneestestesseensesteseeeneensesanas 70
3.4.21 Interactive —Model Management and Expression Evaluation............ccccceceevieieeieniennen, 70
3.4.22 Lookup — Lookup of Classes, Variables, €fC.cccoveieiiiiie e 71
3.4.23 Main—The Main PrOgramcccccoiiiiieeeneie s eee ettt st seesseessesresreeneensennens 71
3.4.24 Mod—Modification HaNAIiNG.........ccovieeriiiniieeiee et eae e 72
3.4.25 ModSim— Communication for Simulation, PlOtting, €tC.cccccevvieveececc e 72
3.4.26 ModUtil — Modelica Related Utility FUNCLIONS...........ccooieiiiiieeene e 72
3.4.27 Parse— Parse Modelicaor Commands into Abstract SyntaX..........cccceevveevereneseenenennens 72
3.4.28 Prefix —Handling Prefixesin Variable Names..........cccocoeiiiiiecenc e 72
3.4.29 Print — Buffered Printing to Files and Error Message Printing...........ccoceevviererenenesesieees 73
3.4.30 RTOpts— Run-time Command Line OPLioNS..........cccvveeererieneneereseseeeeseesreseenaeseesnens 73
3.4.31 SCode— Lower Level Intermediate Representation...........cccoceveeceevivieseccese s 73
3.4.32 SimCodegen — Generate Simulation Code for SOIVEXccceeeeeveieceecece e 73
3.4.33 Socket — (Depreciated) OpenModelica Socket Communication Module..............cc........ 74
3.4.34 Static — Static Semantic AnalysiS Of EXPreSSIONS........ceceeiviiiieeeeniesiesieeieesiesesessaessesnens 74
3.4.35 System — System Callsand Utility FUNCHIONS..........cccooviiiiinnirese e 75
3.4.36 TaskGraph —Building Task Graphs from Expressions and Systems of Equations........... 75
3.4.37 TaskGraphExt — The External Representation of Task Graphs...........cccceevvivvieveeiennnnens 75
3.4.38 Types— Representation of Typesand Type System INfO......cccccvvvvivenevne e 75
3.4.39 Util — General ULility FUNCLIONS.........ooieiiieiieee et 79
3.4.40 Vaues— Representation of Evaluated EXpression VaUES.........cccvvvvveeeeneseseenesennens 79
3.4.41 VarTransform — Binary Tree Representation of Variable Transformations...................... 80
Chapter 4 OMNOtebook and OM SNE]cooiiiiei e 81
41 Qt81
4.2 HTML dOCUMENTALION.ueitiitiieeieie sttt bbb s sb e s seens 81
43 MathematiCa NOtEDOOK PaISErcc.ciiiuieiiiiiie ittt sttt sresre s 81
44 L = T SRRSO PSTTSRPRR 85
45 ClASS OVEIVIEI ...ttt ettt bttt b e bt et b e bt st e e e ne bt s be b e e s besbesbe e e 88

4.6 REFEIEINCES. ...ttt ettt ettt e e e s s e e ettt e e e s s e et ereeeesssasbraaeeeeesssasaraneeas 89

Error! Reference sour ce not found. Error! Reference source not found. 7

Chapter 5 Tobefilled in OpenModelica Eclipse PIugin = MDTccoeoiiinineiniene e 20
5.1 TKGTK 2ot Error! Bookmark not defined.
5.2 TKGTKGTKITK v Error! Bookmark not defined.

Index 95

Preface

This system documentation has been prepared to simplify further development of the OpenModelica
compiler. It contains contributions from a number of developers.

11

Chapter 1

Introduction

This document is intended as system documentation for the OpenModelica environment, for the benefit of
developers who are extending and improving OpenModelica. For information on how to use the
OpenModelica environment, see the OpenModelica users guide.

This system documentation, version May 2006, primarily includes information about the OpenModelica
compiler. Short chapters about the other subsystems in the OpenModelica environment are also included.

1.1 OpenModelica Environment Structure

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1
below.

- Eclipse Plugin Gra_phical Model
| | Editor/Browser \ / Editor/Browser
! y
: Interactive wt
=" _ . Emacs session handler Textual
| Editor/Browser Model Editor
1
| DrModelica / \

! NoteBook

: Model Editor Modelica

" Execution Compiler

1

[

[\ /
Debugger

Figure 1-1. The overall architecture of the OpenModelica environment. Arrows denote data and control
flow. Theinteractive session handler receives commands and shows results from eval uating commands and
expressions that are translated and executed. Severa subsystems provide different forms of browsing and
textual editing of Modelica code. The debugger currently provides debugging of an extended algorithmic
subset of Modelica, and uses Emacs or Eclipse for display and positioning. The graphical model editor is not
really part of OpenModelica but integrated into the system and available from MathCore Engineering AB
without cost for academic usage.

As mentioned above, this version of the system documentation only includes the OpenModelica
compilation subsystem, translating Modelica to C code. The compiler also includes a Modelica interpreter
for interactive usage and for command and constant expression evaluation. The subsystem includes
facilities for building simulation executables linked with selected numericall ODE or DAE solvers.
Currently the default solver is DASSL.

12

1.2 OpenModelica Compiler Translation Stages

The Modelica trandation process is schematically depicted in Figure 1-2 below. Modelica source code
(typically .mo files) input to the compiler is first translated to a so-called flat model. This phase includes
type checking, performing all object-oriented operations such as inheritance, modifications etc., and fixing
package inclusion and lookup as well as import statements. The flat model includes a set of equations
declarations and functions, with all object-oriented structure removed apart from dot notation within names.
This process is a partial instantiation of the model, called code instantiation or elaboration in subsequent
sections.

The next two phases, the equation analyzer and eguation optimizer, are necessary for compiling models
containing equations. Finally, C code is generated which is fed through a C compiler to produce executable
code.

Modelica
Source Code

@4‘“‘““""“ Modelica model

Translator

-

- [|at Model

Analyzer

~-----======= Sorted equations

(—

Optimizer
@ < Optim.ized sorted
equations
Code
Generator

---n===n==== C Code

(—

C Compiler

@4-—-—--- Executable

Simulation

Figure 1-2. Translation stages from Modelica code to executing simulation.

1.3 Simplified Overall Structure of the Compiler

The OpenModelica compiler is separated into a number of modules, to separate different stages of the
tranglation, and to make it more manageable. The top level function is called main, and appears as follows
in simplified form that emits flat Modelica (leaving out the code generation and symbolic equation
manipulation):

function main
input String f; // file name

algorithm
ast := Parser.parse(f);
scodel := SCode.elaborate(ast) ;
scode2 := Inst.elaborate(scodel) ;

DAE . dump (scode2) ;
end main;

13

The simplified overal structure of the OpenModelica compiler is depicted in Figure 1-3, showing the most
important modules, some of which can be recognized from the above main function. The total system
contains approximately 40 modules.

Main | w_ . L ookup
w h'
TR “ e o]
; \~ \\< 4 (Env, name) SCode.Class DAE Dume Flat Modelica
Absyn SCode DAE
Parse SCode Inst DAELow
/explode
y
(Exp.Exp, — SimCodeGen
SCodeExp| Types.Type) CodeGen
ExXp.EXp Static .
C code
(Env, name)
l ValuesValue
> Ceval

Figure 1-3. Some module connections and data flows in the OpenModelica compiler. The parser generates
abstract syntax (Absyn) which is converted to the simplified (SCode) intermediate form. The code
instantiation module (Inst) calls Lookup to find a name in an environment. It also generates the DAE
equation representation which is simplified by DAEL ow. The Ceval module performs compile-time or
interactive expression evaluation and returns values. The Static module performs static semantics and type
checking. The DAEL ow module performs BLT sorting and index reduction. The DAE module internally
uses Exp.Exp, Types. Type and Algorithm.Algorithm; the SCode module internally uses Absyn.

1.4 Parsing and Abstract Syntax

The function parser.parse isactualy written in C, and calls the parser generated from a grammar by the
ANTLR parser generator tool (ANTLR 1998). This parser builds an abstract syntax tree (AST) from the
source file, using the AST data types in a MetaModelica module caled absyn. The parsing stage is not
really part of the semantic description, but is of course necessary to build areal trandator.

1.5 Rewriting the AST into SCode

The AST closely corresponds to the parse tree and keeps the structure of the source file. This has several
disadvantages when it comes to tranglating the program, and especialy if the trandation rules should be
easy to read for a human. For this reason a preparatory trandation pass is introduced which translates the
AST into an intermediate form, called scode. Besides some minor simplifications the scode structure dif-
fers from the AST in the following respects:

o All variables are described separately. In the source and in the AST severa variables in a class
definition can be declared at once, asin Real x, y[17] ;. Inthe scode thisis represented as two
unrelated declarations, asif it had been written Real x; Real y[17] ;.

e Class declaration sections. In a Modelica class declaration the public, protected, equation and
agorithm sections may be included in any number and in any order, with an implicit public section
first. In the scode these sections are collected so that all public and protected sections are
combined into one section, while keeping the order of the elements. The information about which
elements were in a protected section is stored with the element itself.

One might have thought that more work could be done at this stage, like analyzing expression types and
resolving names. But due to the nature of the Modelica language, the only way to know anything about
how the names will be resolved during elaboration is to do a more or less full elaboration. It is possible to

14

analyze a class declaration and find out what the parts of the declaration would mean if the class was to be
elaborated as-is, but since it is possible to modify much of the class while elaborating it that analysis would
not be of much use.

1.6 Code Instantiation

To be executed, classes in a model need to be instantiated, i.e., data objects are created according to the
class declaration. There are two phases of instantiation:

e The symbolic, or compile time, phase of instantiation is usually caled elaboration or code
instantiation. No data objects are created during this phase. Instead the symbolic interna
representation of the model to be executed/simulated is transformed, by performing inheritance
operations, modification operations, aggregation operations, etc.

e The creation of the data object, usually called instantiation in ordinary object-oriented terminology.
This can be done either at compile time or at run-time depending on the circumstances and choice
of implementation.

The central part of the trandlation is the code instantiation or elaboration of the model. The convention is
that the last model in the sourcefileis elaborated, which means that the equations in that model declaration,
and all its subcomponents, are computed and collected.

The elaboration of a class is done by looking at the class definition, elaborating al subcomponents and
collecting al equations, functions, and agorithms. To accomplish this, the trandator needs to keep track of
the class context. The context includes the lexical scope of the class definition. This congtitutes the
environment which includes the variables and classes declared previously in the same scope as the current
class, and its parent scope, and all enclosing scopes. The other part of the context is the current set of
modifiers which modify things like parameter values or redeclare subcomponents.

model M

constant Real ¢ = 5;
model Foo
parameter Real p = 3;
Real x;
equation
X = p * sin(time) + c;
end Foo;

Foo f(p = 17);
end M;

In the exampl e above, elaborating the model M means elaborating its subcomponent f, which is of type Foo.
While elaborating £ the current environment is the parent environment, which includes the constant c. The
current set of modificationsis (p = 17), which means that the parameter p in the component £ will be 17
rather than 3.

There are many semantic rules that takes care of this, but only a few are shown here. They are aso
somewhat simplified to focus on the central aspects.

1.7 The instClass and instElement Functions

The function instClass elaborates a class. It takes five arguments, the environment env, the set of mod-
ifications mod, the prefix inPrefix which is used to build a globally unique name of the component in a
hierarchical fashion, a collection of connection sets csets, and the class definition inScodeclass. It
opens a new scope in the environment where all the names in this class will be stored, and then uses a
function called instClassIn to do most of the work. Finally it generates equations from the connection
sets collected while elaborating this class. The “result” of the function is the elaborated equations and some
information about what was in the class. In the case of afunction, regarded as a restricted class, the result is
an algorithm section.

15

One of the most important functionsis instElement, that elaborates an element of a class. An element
can typically be a class definition, a variable or constant declaration, or an extends-clause. Below is shown
only therulein instElement for elaborating variable declarations.

The following are simplified versions of the instClass and instElement functions.

function instClass "Symbolic instantiation of a class"
input Env inEnv;
input Mod inMod;
input Prefix inPrefix;

input Connect.Sets inConnectsets;
input Scode.Class inScodeclass;
output list<DAE.Element> outDAEelements;
output Connect.Sets outConnectSets;
output Types.Type outType;
algorithm
(outDAEelements, outConnectSets, outType) :=
matchcontinue (inEnv, inMod, inPrefix, inConnectsets, inScodeclass)
local
Env env,envl; Mod mod; Prefix prefix;
Connect.Sets connectSets, connectSetsl;
n,r; list<DAE.Element> dael,dae2;
case (env,mod,pre,connectSets, scodeClass as SCode.CLASS(n,_,r,_))

equation
envl = Env.openScope (env) ;
(dael, ,connectSetsl,ciStatel,tys) = instClassIn(envl,mod,prefix,
connectSets, scodeClass) ;
dae2 = Connect.equations (connectSetsl) ;
dae = listAppend(dael,dae2);
ty = mktype (ciStatel, tys);

then (dae, {}, ty);
end matchcontinue;
end instClass;

function instElement "Symbolic instantiation of an element of a class"
input Env inEnv;
input Mod inMod;
input Prefix inPrefix;
input Connect.Sets inConnectSets;
input Scode.Element inScodeElement;
output list<DAE.Element> outDAEelement;
output Env outEnv;
output Connect.Sets outConnectSets;
output list<Types.Var> outTypesVar;
algorithm

(outDAE, outEnv, outdConnectSets, outdTypesVar) :=
matchcontinue (inEnv, inMod, inPrefix, inConnectSets, inScodeElement)
local
Env env,envl; Mod mods; Prefix pre;
Connect.Sets csets,csetsl;
n, final, prot, attr, t, m;

case (env,mods,pre,csets, SCode.COMPONENT (n, final,prot,attr,t,m))

equation
vn = Prefix.prefixCrefCref (pre,Exp.CREF IDENT (n,{}));
(cl,classmod) = Lookup.lookupClassClass (env,t) // Find the class definition
mm = Mod.lookupModification (mods,n) ;
mod = Mod.merge (classmod, mm) ; // Merge the modifications
modl = Mod.merge (mod,m) ;
prel = Prefix.prefixAddadd(n, [1,pre); // Ebdendthepreﬁx
(dael,csetsl,ty,st) =
instClass (env,modl,prel, csets,cl) // Elaborate the variable

eq = Mod.modEquation(mod1l); // Ifthevariableisdeclared with a default equation,

16

binding = makeBinding (env,attr,eq,cl); // additto the environment
// with the variable.

envl = Env.extendFrameFrame v (env, // Addthevaﬂabkabhxﬂngtothe
Env.FRAMEVAR (n, attr, ty,binding)) ; // environment

dae2 = instModEquation (env,pre,n,modl); // Fetchtheequation, if supplied

dae = listAppendAppend (dael, dae2); // Concatenate the equation lists

then (dae, envl,csetsl, { (n,attr,ty) })

end matchcontinue;
end instElement;

1.8 Output

The equations, functions, and variables found during elaboration (symbolic instantiation) are collected in a
list of objects of type DAEcomp :
uniontype DAEcomp
record VAR Exp.ComponentRef componentRef; VarKind varKind; end VAR;

record EQUATION Exp expl; Exp exp2; end EQUATION;
end DAEcomp;

As the final stage of trandation, functions, equations, and algorithm sections in this list are converted to C
code.

17

Chapter 2

Invoking omc — the OpenModelica
Compiler/interpreter Subsystem

The OpenM odelica Compiler/Interpreter subsystem (omc) can be invoked in two ways:

e Asawhole program, called at the operating-system level, e.g. as a command.
e Asaserver, caled viaa Corba client-server interface from client applications.

In the following we will describe these optionsin more detail.

2.1 Command-Line Invokation of the Compiler/Interpreter

The OpenModelica compilation subsystem is called omc (OpenModelica Compiler). The compiler can be
given file arguments as specified below, and flags that are described in the subsequent sections.

omc file.mo Return flat Modelica by code instantiating the last classin thefile file.mo

omc file.mof Put the flat Modelica produced by code instantiation of the last class within
file.mo inthefilenamed £ile.mof.

omc file.mos Run the Modelica script file caled £ile . mos.

211 General Compiler Flags
The following are general flags for uses not specifically related to debugging or tracing:

omc +s file.mo/.mof Generate simulation code for the model last in file.mo or file.mof.
The following files are generated: modelname.cpp, modelname.h,
modelname init.txt, modelname.makefile.

omc +g Quietly run the compiler, no output to stdout.
omc +d=blt Perform BLT transformation of the equations.
omc +d=interactive Run the compiler in interactive mode with Socket communication. This

functionality is depreciated and is replaced by the newer Corba
communication module, but still useful in some cases for debugging
communication. This flag only works under Linux and Cygwin.

omc +d=interactiveCorba Run the compiler in interactive mode with Corba communication. Thisis
the standard communication that is used for the interactive mode.

2.1.2 Compiler Debug Trace Flags

Run omc with a comma separated list of flags without spaces,
"omc +d=flgl,flg2,..."

18

Here £191,f192,... are one of the flag names in the leftmost column of the flag description below. The
specia flag named a11 turnson al flags.

A debug trace printing is turned on by giving aflag name to the print function, like:

Debug. fprint ("1i", "Lookup information:...")
If omc isrun with the following:
omc +d=foo,1li,bar,

this line will appear on stdout, otherwise not. For backwards compatibility for debug prints not yet sorted
out, the old debug print call:

Debug.print
has been changed to acall like the following:
Debug. fprint ("olddebug", .. .)

Thus, if omc is run with the debug flag olddebug (or al1l), these messages will appear. The calls to
Debug.print should eventualy be changed to appropriately flagged calls.

Moreover, putting a " - " in front of aflag turns off that flag, i.e.:

omc d=all, -dump

Thiswill turn on al flags except dump.

Using Graphviz for visualization of abstract syntax trees, can be done by giving one of the graphviz flags,
and redirect the output to a file. Then run "dot -Tps filename -o filename.ps" OF "dotty

filename".

The following is a short description of all available debug trace flags. There is less of a need for some of
these flags now when the recently developed interactive debugger with a data structure viewer is available.

e All debug tracing

all Turn on al debug tracing.

none Thisflag has default value true if no flags are given.
e Generd

info General information.

olddebug Print messages sent to the old bebug . print
e Dump

parsedump Dump the parse tree.

dump Dump the absyn tree.

dumpgraphviz Dump the absyn treein graphviz format.

daedump Dump the DAE in printed form.

daedumpgraphv Dump the DAE in graphviz format.
daedumpdebug Dump the DAE in expression form.
dumptr Dump trace.

beforefixmodout Dump the PDAE in expression form before moving the modification
equations into the var declarations.

e Types

19

tf
tytr
Lookup
1i
lotr
locom
Static
sei

setr
SCode
ecd

I nstantiation

insttr

Codegen
cg
cgtr

codegen

Env
envprint
envgraph
expenvprint

expenvgraph

Types and functions.
Type trace.

Lookup information.
Lookup trace.
L ookup compare.

Information
Trace

Traceof elab classdef.
Trace of code instantiation.
7

Tracing matching rules
Code generation.

Dump the environment at each class instantiation.

Same as envprint, but using graphviz.
Dump environment at egquation elaboration.
dump environment at equation elaboration.

20

2.2 The OpenModelica Client-Server Architecture

The OpenModelica client-server architecture is schematically depicted in Figure 2-1, showing two typical
clients: agraphic model editor and an interactive session handler for command interpretation.

Parse . .
Client: Graphic
J L _l—v Model Editor
Server: Main Program [
Including Compiler, » Corba —
Inter preter, etc. ||_ Client: Mosh
Interactive
Session Handler
l— .
SCode [Interactive |$—— Client: Eclipse
l T '\ Untyped API Plugin
Inst
l T »| system Typed Checked Command API
¢ plot
Ceval | J et

Figure2-1. Client-Server interconnection structure of the compiler/interpreter main program and interactive
tool interfaces. Messages from the Corba interface are of two kinds. The first group consists of expressions or
user commands which are evaluated by the Ceval module. The second group are declarations of classes,
variables, etc., assignments, and client-server API callsthat are handled via the Interactive module, which
also stores information about interactively declared/assigned items at the top-level in an environment
structure.

The SCode module simplifies the Absyn representation, public components are collected together,
protected ones together, etc. The Interactive modul serves the untyped API, updates, searches, and keeps
the abstract syntax representation. An environment structure is not kept/cached, but is built by Inst at each
cal. Call Inst for more exact instantion lookup in certain cases. The whole Absyn AST is converted into
Scode when something is compiled, e.g. converting the whole standard library if something.

Commands or Modelica expressions are sent as text from the clients via the Corba interface, parsed, and
divided into two groups by the main program:

e All kinds of declarations of classes, types, functions, constants, etc., as well as equations and
assignment statements. Moreover, function calls to the untyped APl also belong to this group — a
function name is checked if it belongs to the API names. The Interactive module handles this group
of declarations and untyped APl commands.

e Expressions and type checked API commands, which are handled by the Ceval module.

The reason the untyped API calls are not passed via SCode and Inst to Ceval is that Ceval can only handle
typed calls — the type is always computed and checked, whereas the untyped API prioritizes performance
and typing flexibility. The Main module checks the name of a called function name to determine if it
belongs to the untyped API, and should be routed to Interactive.

Moreover, the Interactive module maintains an environment of al interactively given declarations and
assignments at the top-level, which is the reason such items need to be handled by the Interactive module.

21

2.3

Client-Server Type-Checked Command API for Scripting

The following are short summaries of typed-checked scripting commands/ interactive user commands for
the OpenModelica environment.

The emphasis is on safety and type-checking of user commands rather than high performance run-time
command interpretation as in the untyped command interface described in Section 2.4.

These commands are useful for loading and saving classes, reading and storing data, plotting of results,
and various other tasks.

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and
for the scripting function in question. In the following tables we briefly indicate the types or character of
the formal parameters to the functions by the following notation:

String typed argument, e.g. "hello", "myfile.mo".

TypeName — class, package or function name, e.g. MyClass, Modelica.Math.
VariableName —variable name, e.g. vi, v2, varsi [2] .x, €tC.

Integer Of Real typed argument, e.g. 35, 3.14, xintvariable.

options — optiona parameters with named formal parameter passing.

The following are brief descriptions of the most common scripting commands available in the
OpenModelica environment.

animate (className, options) |Display a3D visaulization of the latest simulation. Inputs:
(NotY etl mplemented)

TypeName className; OULPULS. Boolean res;

cd (dir) Change directory. Inputs: String dir;

Outputs: Boolean res;

cd ()

Return current working directory. Outputs: String res;

checkModel (className) I nstantiate model, optimize equations, and report errors.
(NotY etl mplemented)

Inputs. TypeName className; OUtpULS. Boolean res;

clear () Clears everything: symboltable and variables.

Outputs: Boolean res;

clearClasses () Clear all class definitions from symboltable.
(NotY etl mplemented)

Outputs: Boolean res;

clearLog () (NotYetimplemented) |Clear thelog. Outputs. Boolean res;

clearVariables () Clear all user defined variables. Outputs: Boolean res;
closePlots () (NotYetimplemented) |Closeall plot windows. Outputs: Boolean res;
getLog () (NotYetlmplemented) Return log as a string. Outputs: String log;

instantiateModel (className) ||nstantiate model, resultingin a .mof file of flattened Modelica

Inputs. TypeName className; OUtpULS. Boolean res;

list (className) Print class definition. Inputs. TypeName className;

Outputs: string classDef;
list() Print all loaded class definitions. Output: String classdefs;
listVariables () Print user defined variables. Outputs: VariableName res;
loadFile (fileName) Load models from file.

Inputs: String fileName OULPULS. Boolean res;

loadModel (className) Load the file corresponding to the class, using the Modelica class

name-to-file-name mapping to locate the file.
Inputs. TypeName className OULpULS. Boolean res;

plot (variables, options) Plots vars, which is a vector of variable names.

22

Inputs VariableName variables; String title;
Boolean legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plot (var, options)

Plots variable with name var.

Inputs: variableName var; String title; Boolean
legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plotParametric (varsl,
vars2, options)

(partly implemented)

Plot each pair of corresponding variables from the vectors of
variablesvarsi, vars2 asaparametric plot.

Inputs: variableName varsl[:]; VariableName
vars2[size(variablesl,1)]; String title; Boolean
legend; Boolean gridLines; Real rangel[2,2];

Outputs: Boolean res;

plotParametric (varl,
var2, options)

Plot the variable var2 against var1 asaparametric plot.

Inputs VariableName varl; VariableName var2;
String title; Boolean legend; Boolean gridLines;
Real range[2,2]; OUtpuUtS. Boolean res;

plotVectors (vl,
(NotY etl mplemented)

v2, options)

Plot vectorsvi and v2 asan x-y plot. Inputs: variableName
v1l; VariableName v2; OUutputs. Boolean res;

readMatrix (fileName,
matrixName)
(NotY etl mplemented)

Read a matrix from afile given filename and matrixname.
Inputs: String fileName; String matrixName;
Outputs: Boolean matrix[:,:];

readMatrix (fileName,
matrixName, nRows, nColumns)
(NotY etl mplemented)

Read amatrix from afile, given file name, matrix name, #rows
and #columns. Inputs. string fileName;

String matrixName; int nRows; int nColumns;
Outputs: Real res[nRows,nColumns] ;

readMatrixSize (fileName,
matrixName)
(NotY etl mplemented)

Read the matrix dimension from afile given a matrix name.
Inputs: String fileName; String matrixName;
Outputs: Integer sizes[2];

readSimulationResult (
fileName, variables,
(NotY etl mplemented)

size)

Reads the simulation result for alist of variables and returns a
matrix of values (each column as a vector or values for avariable.)
Size of result isalso given asinput. Inputs: String fileName;
VariableName variables[:]; Integer size;

Outputs: Real res[size(variables,1),size)];

readSimulationResultSize (
fileName)
(NotY etl mplemented)

Read the size of the trgjectory vector from afile. Inputs: string
fileName; OULPULS. Integer size;

runScript (fileName)

Executes the script file given as argument.
Inputs. string fileName; OUtputs. Boolean res;

savelog (fileName)
(NotY etl mplemented)

Savethelogto afile.
Inputs: String fileName; Outputs. Boolean res;

saveModel (fileName,
className)

Save class definitionin afile. Inputs: string fileName;
TypeName className OULpPULS. Boolean res;

saveTotalModel (fileName,

Save total class definition into file of aclass. Inputs: string

23

className)
(NotY etl mplemented)

fileName; TypeName className OULpPULS Boolean res;

simulate (className, options)

Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfIntervals;
Real outputInterval; String method;

Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

system(fileName)

Execute system command. Inputs. string fileName; Outputs:
Integer res;

translateModel (className)
(NotY etl mplemented)

Instantiate model, optimize equations, and generate code. I nputs:
TypeName className; OULpUtS. SimulationObject res;

writeMatrix (fileName,
matrixName, matrix)
(NotY etl mplemented)

Write matrix to file given a matrix name and a matrix.
|npuE;String fileName; String matrixName; Real
matrix[:,:]; OUtputS. Boolean res;

2.3.1 Examples

The following session in OpenModelicaillustrates the use of afew of the above-mentioned functions.

>> model test Real x; end test;

Ok
>> g:=list (test);
>> s
"model test

Real x;
equation

der (x) =x;
end test;
n
>> instantiateModel (test)
"fclass test
Real x;
equation

der (x) = x;
end test;
n
>> simulate (test)
record

resultFile = "C:\OpenModelical.2.1l\test res.plt"

end record

>> a:=1:10
{1,2,3,4,5,6,7,8,9,10}
>> a*2

{2,4,6,8,10,12,14,16,18,20}

>> clearVariables ()
true

>> list (test)

"model test
Real x;

equation
der (x) =x;

end test;

n

>> clear ()
true

24

>> list ()

{}
The common combination of a simulation followed by aplot:

> simulate (mycircuit, stopTime=10.0);
> plot ({R1.v});

25

2.4 Client-Server Untyped High Performance API

The following API is primarily designed for clients calling the OpenModelica compiler/interpreter via the
Corba interface, but the functions can also be invoked directly as user commands and/or scripting
commands. The API has the following general properties:

¢ Untyped, no type checking is performed. The reason is high performance, low overhead per call.

e All commands are sent as strings in Modelica syntax; all results are returned as strings.

¢ Polymorphic typed commands. Commands are internally parsed into Modelica Abstract syntax, but
in away that does not enforce uniform typing (analogous to what is allowed for annotations). For
example, vectors such as {true, 3.14, "hello"} can be passed even though the elements have mixed
element types, here (Boolean, Real, String), which iscurrently not allowed in the Modelicatype
system.

The API for interactive/incremental development consist of a set of Maodelica functions in the Interactive
module. Calls to these functions can be sent from clients to the interactive environment as plain text and
parsed using an expression parser for Modelica. Calls to this APl are parsed and routed from the Main
module to the Interactive module if the called function name is in the set of names in this API. All API
functions return strings, e.g. if the value true is returned, the text "true" will be sent back to the caller, but
without the string quotes.

¢ When afunction failsto perform its action the string " -1 is returned.
e All results from these functions are returned as strings (without string quotes).

The API can be used by human users when interactively building models, directly, or indirectly by using
scripts, but also by for instance a model editor who wants to interact with the symbol table for
adding/changing/removing models and components, etc.

(??Future extension: Also describe corresponding internal calls from within OpenModelica)

24.1 Definitions

An Argument no. n, e.g. a1 isthefirst argument, A2 isthe second, etc.
<ident> Identifier, e.g. A or Modelica.

<string> Modelicastring, e.g. "Nisse" oOf "foo".

<expr> Arbitrary Modelica expression..

<crefs> Classreference, i.e. the name of aclass, e.g. Resistor.

2.4.2 Example Calls

Callsfulfill the normal Modelicafunction call syntax. For example:

saveModel ("MyResistorFile.mo",MyResistor)

will save the model MyResistor into thefile "MyResistorFile.mo".
For creating new models it is most practical to send a model declaration to the API, since the APl aso
accepts Modelica declarations and Modelica expressions. For example, sending:

model Foo end Foo;
will create an empty model named Foo, whereas sending:
connector Port end Port;

will create a new empty connector class named port.

26

243 Untyped API Functions

The following are brief descriptions of the untyped API functions available in the OpenModelica
environment. APl calls are decoded by evaluateGraphicalapi and evaluateGraphicalapi2 inthe
Interactive package.

--- Source Files ---

getSourceFile (Al<string>) Gets the source file of the class given as argument (A1).
setSourceFile (Al<string>, Associates the class given as first argument (A1) to a source
A2<string>)

source file given as second argument (A2)

--- Environment Variables ---

getEnvironmentVar (Al<string>) Retrieves an eviroment variable with the specified name.

setEnvironmentVar (Al<string>, Sets the environment variable with the specified name (A1) to

A2<string>) agiven value (A2).

--- Classes and Models ---

loadFile (Al<string>) Loads all modelsin thefile. Also in typed API. Returns list of
names of top level classesin the loaded files.

loadFileInteractiveQualified Loads all modelsin thefile. Also in typed API. Returns list of

(Al<string>)

qualified names of top level classesin the loaded files.

loadFileInteractive (Al<string>) || oadsthe file given as argument into the compiler symbol
table. ?AWhat is the difference to loadFile??

loadModel (Al<cref>) Loads the model (A1) by looking up the correct file to load in
$MODELICAPATH. Loads all modelsin that file into the symbol
table.

saveModel (Al<string>,A2<cref>) | Sgvesthe model (A2) in afile given by astring (A1). This call
isasointyped API.

createModel (Al<cref) Creates a new model with name A1. A1 can be both atop level
model and amodel inside a package hierarchy.

newModel (Al<cref>) Deprecated function. Creates top level model.

deleteClass (Al<cref>) Deletes the class from the symbol table.

renameClass (Al<cref>, A2<cref>) |Renamesan already existing class with from name A1l to
to_name (A2). The rename is performed recursively in all
already loaded models which reference the class A L.

--- Class Attributes ---

getElementsInfo (Al<cref>) Retrieves the Info attribute of all elements within the given
class (A1). This contains information of the elment type,
filename, isReadOnly, and line information in the form

{ attri=valuel, attr2=value2 ... }
getParameterValue (Al<cref>, Returns the value of a parameter (A2) in aclass (A1).
A2<cref)
setParameterValue (Al<cref>, Sets the parameter value of aparameter (A2) inaclass (A1) to
A2<cref>, A3<exp>) an expression (unevaluated in A3)
getParameterNames (Al<cref>) Retrieves the names of all parametersin the class.

setClassComment (Al<cref>,A2<stri Setsthe class (Al) string comment (AZ).
ngs>)

addClassAnnotation (Al<cref>, Adds annotation given by A2(in the form annotate=

27

annotate=<expr>)

classmod (.. .)) tothe model definition referenced by Al.
Should be used to add Icon Diagram and Documentation
annotations.

getIconAnnotation (Al<cref>)

Returns the Icon Annotation of the class named by A1l.

getDiagramAnnotation (Al<crefs>)

Returns the Diagram annotation of the class named by Al
NOTE: Since the Diagram annotations can be found in base
classes a partial code instantiation is performed that flattens the
inheritance hierarchy in order to find all annotations.

getPackages (Al<cref>)

Returns the names of all Packages in a class/package named by
Alasalist, eg.: {Electrical,Blocks,Mechanics,
Constants,Math, SIunits}

getPackages ()

Returns the names of all package definitions in the global
scope.

getClassNames (Al<cref>)

Returns the names of all class defintionsin a class/package.

getClassNames ()

Returns the names of all class definitionsin the global scope.

getClassNamesForSimulation ()

Returns alist of all “open models’ in client that are candidates
for simulation.

setClassNamesForSimulation (Al<st
ring>)

Set the list of al “open models” in client that are candidates for

simulation. The string must be on format:
“{'model 1,model2,model 3}”

getClassAttributes (Al<cref>) Returns all the possible classinformation in
{ attri=valuel, attr2=value2 } format.

getClassRestriction (Al<crefs>)

Returns the kind of restricted class of <cref>, e.g. "model™,
"connector", "function", "package", €tC

getClassInformation (Al<crefs>)

Returns alist of the following information about the class A1:
{"restriction","comment","filename.mo" { bool ,bool ,bool} ,{"re

adonly|writable",int,int,int,int} }

--- Restricted Class Predicates

isPrimitive (Al<crefs>)

Returns "true" if class is of primitive type, otherwise
"false".

isConnector (Al<cref>)

Returns "true if classisaconnector, otherwise "falser.

isModel (Al<cref>)

Returns "true if classisamodel, otherwise "falser.

isRecord (Al<cref>)

Returns "true" if classisarecord, otherwise "false".

isBlock (Al<cref>)

Returns "true if classis ablock, otherwise "falser.

isType (Al<cref>)

Returns "truer if classisatype, otherwise "false".

isFunction (Al<cref>)

Returns "true" if classisafunction, otherwise "false".

isPackage (Al<cref>)

Returns "true if classis apackage, otherwise "false".

isClass (Al<cref>)

Returns "true" if Alisaclass, otherwise "false".

isParameter (Al<cref>)

Returns "true" if Alisaparameter, otherwise "false".

isConstant (Al<crefs>)

Returns "true" if Alisaconstant, otherwise "false".

isProtected (Al<cref>)

Returns "truer if Alis protected, otherwise "falser.

existClass (Al<cref)

Returns "true" if class exists in symbolTable, otherwise
"false".

existModel (Al<cref>)

Returns "true if class Al exists in symbol table and has

28

restriction model, otherwise "false".

existPackage (Al<cref>)

Returns "true" if class Al exists in symbol table and has
restriction package, otherwise "false".

--- Components ---

getComponentCount (Al<cref>)

Returns the number (as a string) of componentsin aclass, e.g
return 2 if there are 2 components.

getComponents (Al<cref>)

Returns alist of the component declarations within class Al:
{{Atype,varida, "commentA"}, {Btype,varidB, "comm
entB"}, {...}}

getComponentProperties (Al<crefs>)

Not implemented

setComponentProperties (Al<crefs>,
A2<cref>,
A3<Boolean>,
A4<Booleans>,
A5<Boolean>,
A6<Booleans>,
A7<Strings>,
A8<{Boolean,
A9<String>

)

Boolean}>,

Sets the following "properties’ of a component (A2) in aclass
(AD).

- A3fina

- A4 flow

- A5 protected(true) or public(false)

- A6 replaceable (true or false)

- A7 variablity: "constant” or "discrete” or "parameter” or ""
- A8 dynamic_ref: {inner, outer} - two boolean values.

- A9 causdlity: "input" or "output" or

getComponentAnnotations (Al<cref>

)

Returnsalist { ...} of al annotations of all componentsin
A1, in the same order as the components, one annotation per
component.

getCrefInfo (Al<crefs>)

Gets the component reference file and position information.
Returnsalist: file, readonly, start line, start
column, end line, end column
>> getCrefInfo (BouncingBall)
C:/OpenModelical.4.0/testmodels/BouncingBall.m

o,writable,1,1,20,17

addComponent (Al<ident>,A2<cref>,
A3<crefs>,annotate=<expr>)

Adds a component with name (A1), type (A2), and class (A3)
as arguments. Optional annotations are given with the named
argument annotate.

deleteComponent (Al<idents>,
A2<cref>)

Deletes a component (A1) within aclass (A2).

updateComponent (Al<idents>,
A2<cref>,
A3<cref>,annotate=<expr>)

Updates an already existing component with name (A1), type
(A2), and class (A3) as arguments. Optional annotations are
given with the named argument annotate.

renameComponent (Al<crefs,
A2<idents>,
A3<idents>)

Renames an already existing component with name A2 defined
in aclasswith name (A1), to the new name (A3). The rename
is performed recursively in all already |loaded models which
reference the component declared in class A2.

getNthComponent (Al<cref>,A2<int>
)

Returns the belonging class, component name and type name
of the nth component of aclass, eg. "A.B.C,R2,Resistor",
where the first component is numbered 1.

getNthComponentAnnotation (
Al<cref>,A2<int>)

Returns the flattened annotation record of the nth component

29

(A2) (thefirst is has no 1) within class/'component A1l. Consists
of acomma separated string of 15 values, see Annotationsin
Section 2.4.4 below, eg "false, 10,30, ..."

getNthComponentModification (
Al<crefs>,A2<int>) ??

Returns the modification of the nth component (A2) where the
first hasno 1) of class’‘component AL.

getComponentModifierValue (Al<cre
f>, A2<crefs>)

Not documentation.

setComponentModifierValue (Al<cre
f>, A2<cref>)

Not documentation.

getComponentModifierNames (Al<cre
f>, A2<crefs>)

Not documentation.

--- Inheritance ---

getInheritanceCount (Al<cref>)

Returns the number (as a string) of inherited classes of aclass.

getNthInheritedClass (Al<crefs,
A2<int>)

Returns the type name of the nth inherited class of aclass. The
first class has number 1.

getExtendsModifierNames (Al<cref>

)

Return the modifier names of a modification on an extends

clause. For instance:
model test extends A(pl=3,p2(z=3)); end test;

getExtendsModifierNames (test,A) => {pl,p2}

getExtendsModifierValue (Al<cref>
)

Return the submodifier value of an extends clause for
instance, model test extends A(pl=3,p2(z=3));end test;
getExtendsM odifierValue(test,A,pl) => =3

--- Connections ---

getConnectionCount (Al<cref>)

Returns the number (as a string) of connections in the model.

getNthConnection (Al<crefs,
A2<int>)

Returns the nth connection, as a comma separated pair of
connectors, e.g. "R1.n,R2.p". Thefirst has number 1.

getNthConnectionAnnotation (
Al<cref>,A2<int>)

Returns the nth connection annotation as comma separated list
of values of aflattened record, see Annotationsin Section 2.4.4
below.

addConnection (Al<cref>,A2<cref>,
A3<cref>, annotate=<exprs>)

Adds connection connect (A1,22) to model A3, with
annotation given by the named argument annotate.

updateConnection (Al<crefs>,
A2<cref>,A3<cref>,
annotate=<exprs>)

Updates an aready existing connection.

deleteConnection (Al<crefs,
A2<crefs>,A3<cref>)

Deletes the connection connect (A1,22) inclassgiven by a3.

--- Equations ---

addEquation (Al<crefs>, A2<exprs>,
A3<expr>) (NotY etlmplemented)

Adds the equation A2=23 to the model named by A1l.

getEquationCount (Al<cref>)
(NotY etl mplemented)

Returns the number of equations (as a string) in the model
named A1. (Thisincludes connections)

getNthEquation (Al<cref>,A2<int>)
(NotY etl mplemented)

Returns the nth (a2) equation of the model named by A1l. e.g.
“der (x)=-1" Of “connect (A.b,C.a)". Thefirst has
number 1.

deleteNthEquation (Al<cref>,
A2<int>) (NotY etlmplemented)

Deletes the nth (a2) equation in the model named by a1. The
first has number 1.

30

--- Connectors ---

getConnectorCount (Al<cref>) Returns the number of connectors (as astring) of aclassAl.
NOTE: partia code instantiation of inheritance is performed
before investigating the connector count, in order also to get
the inherited connectors.

getNthConnector (Al<cref>, A2<int>| Returns the name of the nth connector, e.g "n". Thefirst
) connector has number 1.

getNthConnectorIconAnnotation(|Returns the nth connector icon layer annotation as comma
Al<cref>,A2<int>) . i

separated list of values of a flat record, see Annotation below.
NOTE: Since connectors can be inherited, a partia
instantiation of the inheritance structure is performed. The first
has number 1.

getNthConnectorDiagramAnnotation| Returns the nth connector diagram layer annotation as comma
((I\IA;&Ceflerﬁ; eﬁ;t;g)t >) separated list of values of a flat record, see Annotation below.

NOTE: Since connectors can be inherited, a partia
instantiation of the inheritance structure is performed. The first
has number 1.

24.3.1 ERROR Handling

When an error occurs in any of the above functions, the string " -1 is returned.

2.4.4 Annotations

Annotations can occur for severa kinds of Modelica constructs.

24.4.1 Variable Annotations

Variable annotations (i.e., component annotations) are modifications of the following (flattened) Modelica
record:

record Placement
Boolean visible = true;
Real transformation.x=0;
Real transformation.y=0;
Real transformation.scale=1;
Real transformation.aspectRatio=1;
Boolean transformation.flipHorizontal=false;
Boolean transformation.flipVertical=false;
Real transformation.rotation=0;
Real iconTransformation.x=0;
Real iconTransformation.y=0;
Real iconTransformation.scale=1;
Real iconTransformation.aspectRatio=1;
Boolean iconTransformation.flipHorizontal=false;
Boolean iconTransformation.flipVertical=false;
Real iconTransformation.rotation=0;
end Placement;

2.4.4.2 Connection Annotations

Connection annotations are modifications of the following (flattened) Modelica record:

record Line
Real points[2][:];

31

Integer color([3]={0,0,0};
enumeration (None, Solid, Dash,Dot,DashDot,DashDotDot) pattern = Solid;
Real thickness=0.25;
enumeration (None,Open, Filled,Half) arrow[2] = {None, None};
Real arrowSize=3.0;
Boolean smooth=false;
end Line;

Thisisthe Flat record Icon, used for Icon layer annotations

record Icon
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
GraphicItem[:] graphics;

end Icon;

The textual representation of this flat record is somewhat more complicated, since the graphics vector can
conceptually contain different subclasses, like Line, Text, Rectangle, €tc. To solve this, we will use
record constructor functions as the expressions of these. For instance, the following annotation:

annotation (

Icon (coordinateSystem={{-10,-10}, {10,10}},
graphics={Rectangle (extent={{-10,-10}, {10,10}}),
Text ({{-10,-10}, {10,10}}, textString="Icon")}));

will produce the following string representation of the flat record Icon:

{{{-10,10},{10,10}}, {Rectangle (true, {0,0,0},{0,0,0},
LinePattern.Solid,FillPattern.None, 0.25,BorderPattern.None,
{{-10,-10},{10,10}},0),Text ({{-10,-10},{10,10}}, textString="Icon") }}

The following is the flat record for the Diagram annotation:

record Diagram
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
GraphicItem[:] graphics;

end Diagram;

The flat records string representation is identical to the flat record of the Tcon annotation.

2.4.4.3 Flat records for Graphic Primitives

record Line
Boolean visible = true;
Real points|[2,:];
Integer color([3] = {0,0,0};
LinePattern pattern = LinePattern.Solid;
Real thickness = 0.25;
Arrow arrow[2] = {Arrow.None, Arrow.None};
Real arrowSize = 3.0;
Boolean smooth = false;
end Line;

record Polygon
Boolean visible = true;
Integer lineColor[3]1={0,0,0};
Integer fillColor([3]1={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real points|[2,:];
Boolean smooth = false;
end Polygon;

record Rectangle
Boolean visible=true;

32

Integer lineColor([3]1={0,0,0};
Integer fillColor([3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
BorderPattern borderPattern = BorderPattern.None;
Real extent[2,2];
Real radius;
end Rectangle;

record Ellipse
Boolean visible = true;
Integer lineColor([3]={0,0,0};
Integer fillColor([3]1={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real extent[2,2];
end Ellipse;

record Text

Boolean visible = true;

Integer lineColor[3]1={0,0,0};

Integer fillColor([3]1={0,0,0};

LinePattern pattern = LinePattern.Solid;

FillPattern fillPattern = FillPattern.None;

Real lineThickness = 0.25;

Real extent([2,2];

String textString;

Real fontSize;

String fontName;

TextStyle textStylel[:]1; // Problem, fails to instantiate if

// styles are given as modification

end Text;

record BitMap
Boolean visible = true;
Real extent([2,2];
String fileName;
String imageSource;

end BitMap;

2.5 Discussion on Modelica Standardization of the Typed Command
API

An interactive function interface could be part of the Modelica specification or Rationale. In order to add
this, the different implementations (OpenModelica, Dymola, and others) need to agree on a common API.
This section presents some naming conventions and other APl design issues that need to be taken into
consideration when deciding on the standard API.

25.1 Naming conventions
Proposal: function names should begin with a Non-capita letters and have a Capital character for each new
word in the name, eg.

loadModel
openModelFile

33

25.2 Return type

There is a difference between the currently implementations. The OpenModelica untyped API returns
strings, "ok", "-1", "false", "true", &c., whereas the typed OpenModelica command APl and Dymola
returns Boolean values, e.g true Or false.

Proposal: All functions, not returning information, like for instance getModelName, should return a
Boolean value. (??Note: This is not the final solution since we also need to handle failure indications for
functions returning information, which can be done better when exception handling becomes available).

253 Argument types

There is aso a difference between implementations regarding the type of the arguments of certain
functions. For instance, Dymola uses strings to denote model and variable references, while OpenModelica
uses model/variable references directly.
For example, 1oadModel ("Resistor") in Dymola, but 1oadModel (Resistor) in OpenModelica
One could also support both aternatives, since Modelica will probably have function overloading in the
near future.

254 Set of API Functions

The major issue is of course which subset of functions to include, and what they should do.

Below is a table of Dymola and OpenMadelica functions merged together. The table also contains a
proposal for a possible standard.

<s> == string
<cr> == component reference
[] == list constructor, e.g. [<s>] == vector of strings
Dymola OpenModelica Description Proposal
list () listVariables () List all user-defined listVariables ()
variables.
listfunctions () - List builtin function listFunctions ()
names and descriptions.
- list () List all loaded class ~ [List ()
definitions.
- list (<cref>) List model definition of |1ist (<cref>) or
<cref>. list (<strings)
classDirectory () cd () Return current currentDirectory ()
directory.
eraseClasses () clearClasses () Removes models. clearClasses ()
clear() clear () Removesall, including |clearAll ()
models and variables.
- clearVariables () Removes all user clearVariables ()
defined variables.
- clearClasses () Removes all class clearClasses ()
definitions.
openModel (<string>) | loadFile (<string>) Load all definitions loadFile (<string>)
fromfile.

openModelFile (loadModel (<crefs>) Load filethat contains |loadModel (<crefs),
<strings>) model. }oadModel(<string>
saveTotalModel (- Save total model saveTotalModel (<st

<strings>, <strings)

definition of amodel in
afile.

ring>,<cref>) or
saveTotalModel (<st
rings>, <strings)

saveModel (<cref>,
<string>)

Save mode! in afile.

saveModel (<string>
,<cref>) or
saveModel (<string>
,<string>)

- createModel (<cref>) Create new empty createModel (<cref>
model.) or ,
createModel (<strin
g>)
eraseClasses (deleteModel (<cref>) Remove model(s) from |deleteModel (<cref>
{<string>}) symbol table. or
deleteModel (<strin
g>)
instantiateModel (instantiateClass (Perform code instantiateClass (<
<strings> <cref>) instantiation of class. cref>) or

instantiateClass (<
string>)

35

Chapter 3

Detailed Overview of OpenModelica Packages

This chapter gives overviews of al packages in the OpenModelica compiler/interpreter and server
functionality, as well as the detailed interconnection structure between the modules.

3.1

Detailed Interconnection Structure of Compiler Packages

A fairly detailed view of the interconnection structure, i.e., the main data flows and and dependencies
between the modules in the OpenModelica compiler, is depicted in Figure 3-1 below. (??Note that thereis a
Word bug that arbitrarily changes the width of the arrows)

: Mod Connect DAE Dum
Main - T [oae Flat Modelica
% "= TypesMod | SCodeMod Exp.Componentref
IS L AN DAEEXT
[4
UREIR Prefix L ookup 7
Prefix Prefix 1 Exp.Ident T SCode Class Derive VarTransform
(Env, name) .
ClassL oader ExpExp |] ExpExp c
—l | DAE DAE,
1V | DAE: Equations ¥l substlist
.mo Absyn SCod Algorithms
4 Pas ,| SCode }5C%® J g DAEL ow
/explode
1 t DAE: FunctTns
DAELow.DAELow
ClassInf.Event| ClassInf.State (Exp.Exp, v
| SCode.Exp Types.Type) i
CodeGen e SimCodeGen
Classlnf
Static Vaues.Value
Data Type .
Modules: Exp.Exp C code
(Env, name) Utility
Absyn SCode Modules:
i Ceval
Types DAE Dump Debug
util ModUtil
Algorithm Exp Builtin
Print System RTOpts

Figure 3-1. Module connections and data flows in the OpenModelica compiler.

One can see that there are three main kinds of modules:

36

Function modules that perform a specified function, e.g. Lookup, code instantiation, etc.

Data type modules that contain declarations of certain data types, e.g. Absyn that declares the
abstract syntax.

Utility modules that contain certain utility functions that can be called from any module, e.g. the
Util module with list processing funtions.

Note that this functionality classification is not 100% clearcut, since certain modules performs severd
functions. For example, the SCode module primarily defines the lower-level SCode tree structure, but also
transforms Absyn into SCode. The DAE module defines the DAE equation representation, but also has a
few routines to emit equations viathe Dump module.

We

3.2

have the following approximate description:
The Main program calls a number of modules, including the parser (Parse), SCode, etc.

The parser generates abstract syntax (Absyn) which is converted to the simplified (SCode)
intermediate form.

The code instantiation module (Inst) is the most complex module, and calls many other modules. It
calls Lookup to find a name in an environment, calls Prefix for analyzing prefixes in qualified
variable designators (components), calls Mod for modifier analysis and Connect for connect
eguation analys. It also generates the DAE equation representation which is simplified by DAELow
and fed to the SimCodeGen code generator for generating equation-based simulation code, or
directly to CodeGen for compiling Modelicafunctionsinto C functions

The Ceval module performs compile-time or interactive expression evauation and returns values.
The Static module performs static semantics and type checking.

The DAELow module performs BLT sorting and index reduction. The DAE module internally uses
Exp.Exp, Types.Type and Algorithm.Algorithm; the SCode module internally uses Absyn

The Vartransform module called from DAEL ow performs variable substitution during the symbolic
transformation phase (BLT and index reduction).

OpenModelica Source Code Directory Structure

The following is a short summary of the directory structure of the OpenMaodelica compiler and interactive
subsystem.

3.2.1

OpenModelica/Compiler/

Contains all MetaModelicafiles of the compiler, listed in Section ??.

3.2.2

OpenModelica/Compiler/runtime

This directory contains runtime modules, both for the compiler and for interactive system and
communication needs. Mostly writtenin C.

rtops.c Accessing compiler options.

printimpl.c Print routines, e.g. for debug tracing.

socketimpl.c Phased out. Should not be used. Socket communication between clients and the
OpenModelica main program.

corbaimpl.cpp Corba communication between clients and the OpenModelica main program.

ptolemyio.cpp 10 routines from the Ptolemy system to store simulation data for plotting, etc.

systemimpl.c Operating system calls.

daeext .cpp C++ routines for external DAE bit vector operations, etc.

OpenModelica System Documentation 37

3.2.3 OpenModelicaltestsuite

This directory contains the Modelica testsuite consisting two subdirectories mofiles and mosfiles. The
mofiles directory contains more than 200 test models. The mosfiles directory contains a few Modelica
script files consisting of commands according to the general command API.

3.2.4 OpenModelica/OMShell
Files for the OpenModelicainteractive shell, called oMshe11 for OpenModelica Shell.

3.25 OpenModelica/c_runtime — OpenModelica Run-time Libraries

This directory contains files for the Modelica runtime environment. The runtime contains a number of C
files, for which object code versions are are packaged in of two libraries, 1ibc runtime.a and
libsim.a. We group the C files under the respective library, even though the files occur directly under the
c_runtime directory.

3.25.1 libc_runtime.a

The 1ibc_runtime is used for executing Modelica functions that has been generated C code for. It
contains the following files.

boolean array.* How arrays of booleans are represented in C.
integer array.* How arrays of integers are represented in C.
real array.* How arrays of reals are represented in C.
string array.* How arrays of strings are represented in C.
index spec.c Keep track of dimensionsizes of arrays.
memory pool.c Memory allocation for local variables.

read write.* Reading and writing of datato file.
utility.c Utility functions

3.25.2 libsim.a

Thelibrary 1ibsim.a istheruntime library for simulations, it contains solvers and amain function for the
simulation. The following files are included:

simulation runtime.* Includesthemain function, solver wrappers,etc.

daux.f Auxiliary Fortran functions.

ddasrt.f DDASRT solver.

ddassl.f DASSL solver.

dlamch. f Determine machine parameters for solvers.
dlinpk.f Gaussian elimination routines, used by solvers.
lsame. f LAPACK axuiliary routine LSAME.
Non-linear solver:

hybrdl.f Non-linear solver with approximate jacobian.
hybrj.f Non-linear solver with analythical jacobian.- aternative for non-linear solver.
fdjacl.f Helper routines

enorm. £ Helper routines.

dpmpar. £ Helper routines

dogleg. f Helper routines

38

3.3 Short Overview of Compiler Modules

The following is a list of the OpenModelica compiler modules with a very short description of their
functionality. Chapter 3 describes these modulesin more detail.

Absyn Abstract Syntax

Algorithm Data Types and Functions for Algorithm Sections

Builtin Builtin Types and Variables

Cevd Evaluation/interpretation of Expressions.

ClassInf Inference and check of classrestrictions for restricted classes.

ClasslLoader Loading of Classes from $SMODELICAPATH

Codegen Generate C Code from functionsin DAE representation.

Connect Connection Set Management

Corba M odelica Compiler Corba Communication Module

DAE DAE Equation Management and Output

DAEEXT External Utility Functions for DAE Management

DAELow Lower Level DAE Using Sparse Matrisesfor BLT

Debug Trace Printing Used for Debugging

Derive Differentiation of Equations from DAELow

Dump Abstract Syntax Unparsing/Printing

DumpGraphviz Dump Info for Graph visualization of AST

Env Environment Management

Exp Typed Expressions after Static Analysis /* updated)

Graphviz Graph Visualization from Textual Representation

Inst Code I nstantiation/Elaboration of Modelica Models

Interactive Model management and expression evaluation — the function Interactive.evaluate. Keeps
interactive symbol tables. Contains Graphic Model Editor API..

L ookup Lookup of Classes, Variables, etc.

Main The Main Program. Calls Interactive, the Parser, the Compiler, etc.

Mod Modification Handling

ModSim * Depreciated, not used). Previously communication for Simulation, Plotting, etc.

ModuUtil Modelica Related Utility Functions

Parse Parse Modelica or Commands into Abstract Syntax

Prefix Handling Prefixesin Variable Names

Print Buffered Printing to Files and Error Message Printing

RTOpts Run-time Command Line Options

SCode Simple Lower Level Intermediate Code Representation.

SimCodegen Generate simulation code for solver from equations and algorithm sectionsin DAE.

Socket (Partly Depreciated) OpenModelica Socket Communication Module

Static Static Semantic Analysis of Expressions

System System Calls and Utility Functions

TaskGraph Building Task Graphs from Expressions and Systems of Equations. Optional module.
TaskGraphExt External Representation of Task Graphs. Optional module.

Types Representation of Types and Type System Info

util General Utility Functions

Values Representation of Evaluated Expression Values

OpenModelica System Documentation 39

VarTransform Binary Tree Representation of Variable Transformations

3.4 Descriptions of OpenModelica Compiler Modules

The following are more detailed descriptions of the OpenModelica modules.

3.4.1 Absyn — Abstract Syntax

This module defines the abstract syntax representation for Modelicain MetaModelica. It primarily contains
datatypes for constructing the abstract syntax tree (AST), functions for building and altering datatypes and
afew functions for printing the AST:

e Abstract Syntax Tree (Close to Moddlica)
— Complete Modelica 2.2
— Including annotations and comments
e Primary AST for e.g. the Interactive module
— Model editor related representations (must use annotations)
e Functions
— A few smal functions, only working on Absyn types, e.g.:
* pathToCref (Path) => ComponentRef
. joinPaths (Path, Path) => (Path)
. etc.

The constructors defined by the Absyn module are primarily used by the walker
(Compiler/absyn builder/walker.g) whichtakesan ANTLR internal syntax tree and convertsit into
an MetaModelica abstract syntax tree. When the AST has been built, it is normally used by the SCode
module in order to build the scode representation. It is also possible to send the AST to the unparser
(Dump) in order to print it.

For details regarding the abstract syntax tree, check out the grammar in the Modelica language
specification.

The following are the types and datatypes that are used to build the AST:

An identifier, for example a variable name:
type Ident = String;

Programs, the top level construct:

A program is simply a list of class definitions declared at top level in the source file, combined with a
within statement that indicates the hierarchical position of the program.

uniontype Program
record PROGRAM
list<Class> classes "List of classes" ;
Within within "Within statement" ;
end PROGRAM;

record BEGIN DEFINITION

Path path '"path for split definitions" ;
Restriction restriction "Class restriction" ;
Boolean partial "true if partial" ;
Boolean encapsulated "true if encapsulated" ;

end BEGIN DEFINITION;

record END DEFINITION
Ident name "name for split definitions" ;

end END DEFINITION;

record COMP_DEFINITION
ElementSpec element "element for split definitions"
Option<Path> insertInto "insert into, Default: NONE"
end COMP_DEFINITION;

record IMPORT DEFINITION
ElementSpec importElementFor "For split definitions"
Option<Path> insertInto "Insert into, Default: NONE" ;
end IMPORT DEFINITION;

end Program;

Within statements:

uniontype Within
record WITHIN
Path path;
end WITHIN;

record TOP end TOP;

end Within;

Info attribute:

Various pieces of information needed by the tools for debugging and browsing support.

uniontype Info "Various information needed for debugging and browsing"
record INFO
String fileName "fileName where the class is defined in"
Boolean isReadOnly "isReadOnly : (true|false). Should be true for libraries" ;
Integer lineNumberStart "lineNumberStart!"
Integer columnNumberStart "columnNumberStart" ;

Integer lineNumberEnd "lineNumberEnd"
Integer columnNumberEnd "columnNumberEnd"
end INFO;
end Info;
Classes:

A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared
classrestriction, and the body of the declaration.

uniontype Class
record CLASS

Ident name "Name" ;

Boolean isPartial "Partial";

Boolean isFinal "Final";

Boolean isEncaps "Encapsulated";

Restriction restriction "Restricion'";

ClassDef body "Body";

Ident filename "Name of file the class is defined in";
end CLASS;

end Class;

uniontype Class
record CLASS
Ident name;
Boolean partial "true if partial"
Boolean final_ "true if final"

OpenModelica System Documentation 41

Boolean encapsulated "true if encapsulated"

Restriction restricion "restricion"

ClassDef body;

Info info "Information: FileName the class is defined in +
isReadOnly bool + start line no + start column no +
end line no + end column no";

end CLASS;

end Class;

ClassDef:

The classDef type contains the definition part of a class declaration. The definition is either explicit, with
a list of parts (public, protected, equation, and algorithm), or it is a definition derived from
another class or an enumeration type.

For a derived type, the type contains the name of the derived class and an optional array dimension
and alist of modifications.

uniontype ClassDef
record PARTS
list<ClassPart> classParts;
Option<Strings comment ;
end PARTS;

record DERIVED
Path path;
Option<ArrayDim> arrayDim;
ElementAttributes attributes;
list<ElementArg> arguments;
Option<Comment > comment ;
end DERIVED;

record ENUMERATION
EnumDef enumLiterals;
Option<Comment> comment;

end ENUMERATION;

record OVERLOAD
list<Path> functionNames;
Option<Comment> comment;

end OVERLOAD;

record CLASS EXTENDS

Ident name "class to extend" ;
list<ElementArg> arguments;
Option<String> comment ;

list<ClassPart> parts;
end CLASS EXTENDS;

record PDER

Path functionName;
list<Ident> wvars "derived variableg"
end PDER;

end ClassDef;

EnumDef:

The definition of an enumeration is either alist of literals or a colon, :, which defines a supertype of all
enumerations.

uniontype EnumDef
record ENUMLITERALS

42

list<EnumLiteral> enumLiterals "enumLiterals"
end ENUMLITERALS;

record ENUM COLON end ENUM COLON;

end EnumDef;

EnumLiteral:

An enumeration type contains a list of EnumLiteral, which isanamein an enumeration and an optional
comment.

uniontype EnumLiteral

record ENUMLITERAL
Ident literal
Option<Comment> comment
end ENUMLITERAL;

end EnumLiteral;

ClassPart:

A class definition contains several parts. There are public and protected component declarations, type
definitions and extends-clauses, collectively caled elements. There are also equation sections and
algorithm sections. The ExTERNAL part is used only by functions which can be declared as external C or
FORTRAN functions.

uniontype ClassPart

record PUBLIC
list<ElementItem> contents;
end PUBLIC;

record PROTECTED
list<ElementItem> contents;
end PROTECTED;

record EQUATIONS
list<EquationItem> contents;
end EQUATIONS;

record INITIALEQUATIONS
list<EquationItem> contents;
end INITIALEQUATIONS;

record ALGORITHMS
list<AlgorithmItem> contents;
end ALGORITHMS;

record INITIALALGORITHMS
list<AlgorithmItem> contents;
end INITIALALGORITHMS;

record EXTERNAL
ExternalDecl externalDecl;
Option<Annotation> annotation_;
end EXTERNAL;

end ClassPart;

OpenModelica System Documentation 43

Elementltem:

An element item is either an element or an annotation
uniontype ElementItem

record ELEMENTITEM
Element element;
end ELEMENTITEM;

record ANNOTATIONITEM
Annotation annotation ;
end ANNOTATIONITEM;

end ElementItem;

Element:

The basic element type in Modelica
uniontype Element

record ELEMENT
Boolean final_ ;
Option<RedeclareKeywords> redeclareKeywords "i.e., replaceable or redeclare"
InnerOuter innerOuter " inner / outer"
Ident name;
ElementSpec specification " Actual element specification" ;
Info info "The File name the class is defined in + line no + column no"

Option<ConstrainClass> constrainClass "only valid for classdef and component";
end ELEMENT;

record TEXT
Option<Ident> optName " optional name of text, e.g. model with syntax error.
We need the name to be able to browse it..."

String string;
Info info;
end TEXT;

end Element;

Constraining type:
Constraining type (i.e., not inheritance), specified using the extends keyword.

uniontype ConstrainClass

record CONSTRAINCLASS

ElementSpec elementSpec "must be extends"
Option<Comment> comment;
end CONSTRAINCLASS;

end ConstrainClass;

ElementSpec:

An element is something that occurs in a public or protected section in a class definition. There is one
congtructor in the ElementSpec type for each possible element type. There are class definitions
(cLASSDEF), extends clauses (EXTENDS) and component declarations (COMPONENTS).

As an example, if the element extends TwoPin; appearsin the source, it is represented in the AST as
EXTENDS (IDENT ("TwoPin"), {}).

uniontype ElementSpec

record CLASSDEF
Boolean replaceable "true if replaceable";
Class class_;

end CLASSDEF;

record EXTENDS
Path path;
list<ElementArg> elementArg;
end EXTENDS;

record IMPORT
Import import_;
Option<Comment> comment;
end IMPORT;

record COMPONENTS
ElementAttributes attributes;
Path typeName;
list<ComponentItem> components;

end COMPONENTS;

end ElementSpec;

InnerQuter:

One of the keywords inner or outer or the combination inner outer can be given to reference an inner,
outer or inner outer component. Thus there are four disjoint possibilities.

uniontype InnerOuter

record INNER end INNER;

record OUTER end OUTER;

record INNEROUTER end INNEROUTER;
record UNSPECIFIED end UNSPECIFIED;

end InnerOuter;

Import:
Import statements of different kinds.
uniontype Import

record NAMED IMPORT
Ident name "name" ;
Path path "path"
end NAMED IMPORT;

record QUAL IMPORT
Path path "path"
end QUAL IMPORT;

record UNQUAL IMPORT
Path path "path"
end UNQUAL IMPORT;

end Import;

OpenModelica System Documentation 45

Componentltem:

Collection of component and an optional comment.
uniontype ComponentItem

record COMPONENTITEM

Component component ;
Option<ComponentCondition> condition;
Option<Comment > comment ;

end COMPONENTITEM;

end ComponentItem;

ComponentCondition:

A Componentltem can have a condition that must be fulfilled if the component should be instantiated.

type ComponentCondition = Exp;

Component:

A component represents some kind of Modelica entity (object or variable). Note that several component
declarations can be grouped together in one ElementSpec by writing them in the same declaration in the
source. However, this type contains the information specific to one component.

uniontype Component

record COMPONENT
Ident name "component name"
ArrayDim arrayDim "Array dimensions, if any" ;
Option<Modification> modification "Optional modification" ;
end COMPONENT;

end Component;

Equationltem:
uniontype EquationItem

record EQUATIONITEM
Equation equation ;
Option<Comment> comment;
end EQUATIONITEM;

record EQUATIONITEMANN
Annotation annotation ;
end EQUATIONITEMANN;

end EquationItem;

Algorithmitem:

Info specific for an algorithm item.
uniontype AlgorithmItem

record ALGORITHMITEM
Algorithm algorithm_;
Option<Comment> comment;
end ALGORITHMITEM;

record ALGORITHMITEMANN

Annotation annotation ;
end ALGORITHMITEMANN;

end AlgorithmItem;

Equation:

Information on one (kind) of equation, different constructors for different kinds of equations

uniontype Equation

record EQ IF

Exp 1fExp "Conditional expression"

list<EquationItem> equationTrueltems "true branch"

list<tuple<Exp, list<EquationItems>>> elseIfBranches;

list<EquationItem> equationElseItems "Standard 2-side eqn"
end EQ IF;

record EQ EQUALS

Exp leftSide;

Exp rightSide "rightSide Connect egn"
end EQ EQUALS;

record EQ CONNECT
ComponentRef connectorl;
ComponentRef connector2;
end EQ CONNECT;

record EQ FOR

Ident forVariable;

Exp forExp;

list<EquationItem> forEquations;
end EQ FOR;

record EQ WHEN E

Exp whenExp;

list<EquationItem> whenEquations;

list<tuple<Exp, list<EquationItems>>> elseWhenEquations;
end EQ WHEN E;

record EQ NORETCALL

Ident functionName;

FunctionArgs functionArgs "fcalls without return value" ;
end EQ NORETCALL;

end Equation;

Algorithm:

The algorithm type describes one algorithm statement in an algorithm section. It does not describe a
whole algorithm. The reason thistype is named like thisis that the name of the grammar rule for algorithm

statementsisalgorithm.

uniontype Algorithm

record ALG ASSIGN
ComponentRef assignComponent;
Exp value;

end ALG ASSIGN;

record ALG TUPLE ASSIGN
Exp tuple ;
Exp value;

OpenModelica System Documentation 47

end ALG TUPLE ASSIGN;

record ALG_IF
Exp ifExp;
list<AlgorithmItem> trueBranch;
list<tuple<Exp, list<AlgorithmItem>>> elseIfAlgorithmBranch;
list<AlgorithmItem> elseBranch;
end ALG IF;

record ALG FOR
Ident forVariable;
Exp forStmt;
list<AlgorithmItem> forBody;
end ALG_FOR;

record ALG WHILE
Exp whileStmt;
list<AlgorithmItem> whileBody;
end ALG WHILE;

record ALG WHEN A

Exp whenStmt;

list<AlgorithmItem> whenBody;

list<tuple<Exp, list<AlgorithmItem>>> elseWhenAlgorithmBranch;
end ALG WHEN A;

record ALG NORETCALL

ComponentRef functionCall;

FunctionArgs functionArgs " general fcalls without return value"
end ALG NORETCALL;

end Algorithm;

Modifications:

Modifications are described by the Modification type. There are two forms of modifications:
redeclarations and component modifications.

uniontype Modification

record CLASSMOD
list<ElementArg> elementArgLst;
Option<Exp> expOption;

end CLASSMOD;

end Modification;

ElementArg:

Wrapper for things that modify elements, modifications and redeclarations.
uniontype ElementArg

record MODIFICATION
Boolean finalltem;
Each each_;
ComponentRef componentReg;
Option<Modification> modification;
Option<String> comment;

end MODIFICATION;

record REDECLARATION
Boolean finalItem;
RedeclareKeywords redeclareKeywords "keywords redeclare, or replaceable"

Each each_;

ElementSpec elementSpec;

Option<ConstrainClass> constrainClass "class definition or declaration"
end REDECLARATION;

end ElementArg;

RedeclareKeywords:

The keywords redeclare and replaceable can be given in three different combinations, each one by
themselves or both combined.
uniontype RedeclareKeywords
record REDECLARE end REDECLARE;
record REPLACEABLE end REPLACEABLE;
record REDECLARE_REPLACEABLE end REDECLARE_REPLACEABLE;
end RedeclareKeywords;

Each:

The Each attribute represented by the each keyword can be present in both MopIirICcATION'S and
REDECLARATION'S.
uniontype Each
record EACH end EACH;

record NON_EACH end NON_EACH;
end Each;

ElementAttributes:

This represents component attributes which are properties of components which are applied by type
prefixes. As an example, declaring a component as input Real x; Will give the attributes ATTR (
{}, false, VAR, INPUT).

uniontype ElementAttributes

record ATTR
Boolean flow_ "flow"
Variability variability "variability ; parameter, constant etc." ;
Direction direction "direction"
ArrayDim arrayDim "arrayDim"
end ATTR;

end ElementAttributes;

Variability:
Component/variable attribute variability:

uniontype Variability
record VAR end VAR;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end Variability;

Direction:

Component/variable attribute Direction.

uniontype Direction

OpenModelica System Documentation 49

type ArrayDim

record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;

end Direction;

ArrayDim:

list<Subscripts>;

Exp:
The Exp datatype is the container for representing a Modelica exp

uniontype Exp

record INTEGER
Integer value;
end INTEGER;

record REAL
Real value;
end REAL;

record CREF
ComponentRef componentReg;
end CREF;

record STRING
String value;
end STRING;

record BOOL
Boolean value

7

end BOOL;

record BINARY "Binary operations, e.g. a*b, a+b,
Exp expl;
Operator op;
Exp exp2;

end BINARY;

record UNARY "Unary operations, e.g. -(x)"
Operator op;
Exp exp;

end UNARY;

record LBINARY "Logical binary operations: and,
Exp expl;
Operator op;
Exp exp2;

end LBINARY;

record LUNARY
Operator op;
Exp exp;
end LUNARY;

"Logical unary operations: not"

record RELATION
Exp expl;

"Relations, e.g. a >= 0"

Array dimensions are specified by the type arraybim. Components in Modelica can be scalar or arrays
with one or more dimensions. This datatype is used to indicate the dimensionality of a component or atype
definition.

ression.

etc.

or"

50

Operator op;
Exp exp2 ;
end RELATION;

record IFEXP "If expressions"

Exp ifExp;

Exp trueBranch;

Exp elseBranch;

list<tuple<Exp, Exp>> elseIfBranch ;
end IFEXP;

record CALL "Function calls"
ComponentRef function ;
FunctionArgs functionArgs ;
end CALL;

record ARRAY "Array construction using { } or array()"
list<Exp> arrayExp ;
end ARRAY;

record MATRIX "Matrix construction using [1"
list<list<Exp>> matrix;

end MATRIX;

record RANGE '"matrix Range expressions, e.g. 1:10 or 1:0.5:10"

Exp start;

Option<Exp> step;

EXp stop;
end RANGE;

record TUPLE "Tuples used in function calls returning several values"
list<Exp> expressions;
end TUPLE;

record END "Array access operator for last element, e.g. alend]:=1;"
end END;

record CODE "Modelica AST Code constructorsg"
Code code;
end CODE;

end Exp;

Code:

The code datatype is a proposed meta-programming extension of Modelica. It originates from the Code
quoting mechanism, see paper in the Modelica 2003 conference.

uniontype Code

record C_TYPENAME
Path path;
end C TYPENAME;

record C_VARIABLENAME
ComponentRef componentRef;
end C VARIABLENAME;

record C_EQUATIONSECTION
Boolean boolean;
list<EquationItem> equationItemLst;
end C EQUATIONSECTION;

record C_ALGORITHMSECTION

OpenModelica System Documentation 51

Boolean boolean;
list<AlgorithmItem> algorithmItemLst;
end C ALGORITHMSECTION;

record C_ELEMENT
Element element;
end C_ELEMENT;

record C_EXPRESSION
Exp exp;
end C_EXPRESSION;

record C_MODIFICATION
Modification modification;
end C MODIFICATION;

end Code;

FunctionArgs:
The FunctionArgs datatype consists of a list of positional arguments followed by a list of named
arguments.

uniontype FunctionArgs

record FUNCTIONARGS
list<Exp> args;
list<NamedArg> argNames;
end FUNCTIONARGS;

record FOR_ITER_FARG

Exp from;
Ident wvar;
Exp to;

end FOR_ITER FARG;

end FunctionArgs;

NamedArg:

The Namedarg datatype consist of an Identifier for the argument and an expression giving the value of the
argument.

uniontype NamedArg

record NAMEDARG
Ident argName "argName"
Exp argValue "argValue" ;
end NAMEDARG;

end NamedArg;

Operator:

The operator typecan represent al the expression operators, binary or unary.

uniontype Operator "Expression operators"

record ADD end ADD;

record SUB end SUB;

record MUL end MUL;

record DIV end DIV;

record POW end POW;

record UPLUS end UPLUS;

record UMINUS end UMINUS;

52

record AND end AND;
record OR end OR;
record NOT end NOT;
record LESS end LESS;
record LESSEQ end LESSEQ;
record GREATER end GREATER;
record GREATEREQ end GREATEREQ;
record EQUAL end EQUAL;
record NEQUAL end NEQUAL;

end Operator;

Subscript:

The subscript data type is used both in array declarations and component references. This might seem
strange, but it is inherited from the grammar. The NoSUB constructor means that the dimension size is
undefined when used in a declaration, and when it is used in a component reference it means a dice of the
whole dimension.

uniontype Subscript

record NOSUB end NOSUB;

record SUBSCRIPT
Exp subScript "subScript" ;
end SUBSCRIPT;

end Subscript;

ComponentRef:
A component reference is the fully or partially qualified name of a component. It is represented as a list of
identifier-subscript pairs.

uniontype ComponentRef

record CREF QUAL

Ident name;
list<Subscript> subScripts;
ComponentRef componentRef;

end CREF QUAL;

record CREF IDENT
Ident name;
list<Subscript> subscripts;
end CREF_ IDENT;

end ComponentRef;

Path:

Thetype path is used to store references to class names, or names inside class definitions.
uniontype Path

record QUALIFIED
Ident name;
Path path;

end QUALIFIED;

record IDENT
Ident name;
end IDENT;

OpenModelica System Documentation 53

end Path;

Restrictions:

These constructors each correspond to a different kind of class declaration in Modelica, except the last four,
which are used for the predefined types. The parser assigns each class declaration one of the restrictions,
and the actua class definition is checked for conformance during tranglation. The predefined types are
created in the Builtin module and are assigned special restrictions.

uniontype Restriction

record
record
record
record
record
record
record
record
record
record
record
record
record
record
record

R_CLASS end R CLASS;

R_MODEL end R_MODEL;

R_RECORD end R _RECORD;

R_BLOCK end R_BLOCK;

R_CONNECTOR end R _CONNECTOR;
R_EXP_CONNECTOR end R_EXP_CONNECTOR;
R_TYPE end R_TYPE;

R_PACKAGE end R_PACKAGE;

R_FUNCTION end R_FUNCTION;

R_ENUMERATION end R_ENUMERATION;
R_PREDEFINED INT end R_PREDEFINED INT;
R_PREDEFINED REAL, end R_PREDEFINED REAL;
R_PREDEFINED STRING end R_PREDEFINED STRING;
R_PREDEFINED BOOL end R_PREDEFINED BOOL;
R_PREDEFINED ENUM end R_PREDEFINED ENUM;

end Restriction;

Annotation:;

An Annotation isaclass modification.

uniontype Annotation

record ANNOTATION
list<ElementArg> elementArgs;
end ANNOTATION;

end Annotation;

Comment:

uniontype Comment

record

COMMENT

Option<Annotation> annotation ;
Option<Strings> comment ;
end COMMENT;

end Comment;

ExternalDecl:

Thetype ExternalDecl is used to represent declaration of an external function wrapper.

uniontype ExternalDecl

record EXTERNALDECL
Option<Ident> funcName "The name of the external function"
Option<Strings> lang "Language of the external function"
Option<ComponentRef> output "output parameter as return value"

list<Exp> args "only positional arguments, i.e. expression list"

Option<Annotation> annotation ;
end EXTERNALDECL;

end ExternalDecl;

Dependencies:

M odule dependencies of the Absyn module: Debug, Dump, Util, Print.

3.4.2 Algorithm — Data Types and Functions for Algorithm Sections

This module contains data types and functions for managing agorithm sections. The algorithmsin the AST
are analyzed by the Inst module which uses this module to represent the algorithm sections. No processing
of any kind, except for building the data structure is done in this module. It is used primarily by the Inst
module which both providesits input data and uses its "output" data.

Module dependencies. Exp, Types, SCode, Util, Print, Dump, Debug.

3.4.3 Builtin — Builtin Types and Variables

This module defines the builtin types, variables and functions in Modelica. The only exported functions
are initial env and simple initial env. There are severa builtin attributes defined in the builtin
types, such as unit, start, etc.

Module dependencies: Absyn, SCode, Env, Types, Classinf, Debug, Print.

3.4.4 Ceval — Constant Evaluation of Expressions and Command
Interpretation

This module handles constant propagation and expression evaluation, as well as interpretation and
execution of user commands, e.g. plot(...). When elaborating expressions, in the Static module, expressions
are checked to find out their type. This module also checks whether expressions are constant. In such as
case the function ceval in this module will then evaluate the expression to a constant value, defined in the
Values module.

Input:
Env: Environment with bindings.
Exp: Expression to check for constant evaluation.
Bool flag determines whether the current instantiation isimplicit.
InteractiveSymbol Table is optional, and used in interactive mode, e.g. from mosh.

Output:
Value: The evaluated value
InteractiveSymbol Table: Modified symbol table.
Subscript list : Evaluates subscripts and generates constant expressions.

Module dependencies: Absyn, Env, Exp, Interactive, Values, Static, Print, Types, ModUtil, System, SCode,
Inst, Lookup, Dump, DAE, Debug, Util, Modsim, ClassInf, RTOpts, Parse, Prefix, Codegen, ClassLoader.

OpenModelica System Documentation 55

3.45 ClassInf — Inference and Check of Class Restrictions

This module deals with class inference, i.e., determining if a class definition adheres to one of the class
restrictions, and, if specifically declared in arestricted form, if it breaks that restriction.

The inference is implemented as a finite state machine. The function start initializes a new machine,
and the function trans signals transitions in the machine. Finaly, the state can be checked against a
restriction with the valid function.

M odule dependencies: Absyn, SCode, Print.

3.4.6 ClassLoader — Loading of Classes from $SMODELICAPATH

This module loads classes from $SMODELICAPATH. It exports only one function: the 1oadClassClass
function. It is currently (2004-09-27) only used by module Ceval when using the 1oadclass function in
the interactive environment.

Module dependencies: Absyn, System, Lookup, Interactive, Util, Parse, Print, Env, Dump.

3.4.7 Codegen — Generate C Code from DAE

Generate C code from DAE (Flat Modelica) for Modelica functions and agorithms (SimCodeGen is
generating code from equations). This code is compiled and linked to the simulation code or when
functions are called from the interactive environment.

Input: DAE

Output: (generated code output by the Print module)

Module dependencies. Absyn, Exp, Types, Inst, DAE, Print, Util, ModUTtil, Algorithm, Classinf, Dump,
Debug.

3.4.8 Connect — Connection Set Management

Connections generate connection sets (represented using the datatype set defined in this module) which
are constructed during code instantiation. When a connection set is generated, it is used to create a number
of equations. The kind of equations created depends on the type of the set.

The Connect module is called from the Inst module and is responsible for creation of all connect-
equations | ater passed to the DAE module.

Module dependencies: Exp, Env, Static, DAE.

3.4.9 Corba — Modelica Compiler Corba Communication Module

The Corba actual implementation differs between Windows and Unix versions. The Windows
implementation islocated in . /winruntime and the Unix versionliesin . /runtime.

OpenModelica does not in itself include a complete CORBA implementation. Y ou need to download
one, for example MICO from http://www.mico.org. There aso exists some options that can be sent to
configure concerning the usage of CORBA:

e --with-CORBA=/location/of/corba/library
(] --without-CORBA

No module dependencies.

56

3.4.10 DAE - DAE Equation Management and Output

This module defines data structures for DAE equations and declarations of variables and functions. It aso
exports some help functions for other modules. The DAE data structure is the result of flattening,

containing only flat Modelica, i.e., equations, algorithms, variables and functions.

uniontype DAElist "A DAElist is a list of Elements. Variables, equations,
functions, algorithms, etc. are all found in this list."
record DAE
list<Element> elementLst;
end DAE;

end DAElist;

type Ident = String;
type InstDims = list<Exp.Subscripts>;
type StartValue = Option<Exp.Exp>;

uniontype VarKind
record VARIABLE end VARIABLE;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end VarKind;

uniontype Type
record REAL end REAL;
record INT end INT;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;

record ENUMERATION
list<String> stringlLst;
end ENUMERATION;

end Type;

uniontype Flow "The Flow of a variable indicates if it is a Flow variable or not,

or if
it is not a connector variable at all."
record FLOW end FLOW;
record NON_FLOW end NON_FLOW;
record NON_ CONNECTOR end NON CONNECTOR;
end Flow;

uniontype VarDirection
record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;
end VarDirection;

uniontype Element
record VAR
Exp.ComponentRef componentRef;

VarKind varible "variable name" ;

VarDirection variable "variable, constant, parameter, etc." ;
Type input "input, output or bidir"

Option<Exp.Exp> one "one of the builtin types"

InstDims binding "Binding expression e.g. for parameters" ;
StartValue dimension "dimension of original component"

Flow value "value of start attribute"

list<Absyn.Path> flow_ "Flow of connector variable. Needed for
unconnected flow variables" ;

OpenModelica System Documentation 57

Option<VariableAttributess> variableAttributesOption;
Option<Absyn.Comment> absynCommentOption;
end VAR;

record DEFINE
Exp.ComponentRef componentRef;
ExXp.Exp exp;

end DEFINE;

record INITIALDEFINE
Exp.ComponentRef componentRef;
Exp.ExXp exp;

end INITIALDEFINE;

record EQUATION

Exp.EXp exp;

Exp.Exp scalar "Scalar equation"
end EQUATION;

record ARRAY EQUATION
list<Integer> dimension "dimension sizes"
Exp.EXp exp;
Exp.Exp array "array equation"

end ARRAY EQUATION;

record WHEN_ EQUATION
Exp.Exp condition "Condition"
list<Element> equations "Equations"
Option<Element> elsewhen "Elsewhen should be of type" ; end WHEN EQUATION;

record IF EQUATION
Exp.Exp conditionl "Condition"
list<Element> equations2 "Equations of true branch"
list<Element> equations3 "Equations of false branch"
end IF EQUATION;

record INITIAL IF EQUATION
Exp.Exp conditionl "Condition"
list<Element> equations2 "Equations of true branch"
list<Element> equations3 "Equations of false branch"
end INITIAL IF EQUATION;

record INITIALEQUATION
Exp.Exp expl;
Exp.Exp exp2;

end INITIALEQUATION;

record ALGORITHM
Algorithm.Algorithm algorithm ;
end ALGORITHM;

record INITIALALGORITHM
Algorithm.Algorithm algorithm ;
end INITIALALGORITHM;

record COMP
Ident ident;
DAElist dAElist "a component with subelements, normally
only used at top level." ;
end COMP;

record FUNCTION
Absyn.Path path;
DAElist dAElist;
Types.Type type_;

58

end FUNCTION;

record EXTFUNCTION
Absyn.Path path;
DAElist dAElist;
Types.Type type ;
ExternalDecl externalDecl;
end EXTFUNCTION;

record ASSERT
EXp.Exp exp;
end ASSERT;

record REINIT
Exp.ComponentRef componentRef;
Exp.EXp exp;

end REINIT;

end Element;

uniontype VariableAttributes
record VAR ATTR_ REAL
Option<String> quantity "quantity" ;
Option<String> unit "unit"
Option<String> displayUnit "displayUnit"
tuple<Option<Real>, Option<Reals>> min "min , max" ;
Option<Real> initial "Initial value"
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables"
Option<Real> nominal "nominal"
Option<StateSelect> stateSelectOption;
end VAR _ATTR REAL;

record VAR ATTR_INT
Option<String> quantity "quantity"
tuple<Option<Integer>, Option<Integer>> min "min , max" ;
Option<Integer> initial "Initial value" ;
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables"
end VAR ATTR_INT;

record VAR ATTR BOOL
Option<Strings> quantity "quantity"
Option<Boolean> initial "Initial value"
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables"
end VAR _ATTR BOOL;

record VAR ATTR_STRING
Option<String> quantity "quantity"
Option<String> initial "Initial value"
end VAR ATTR STRING;

record VAR ATTR_ ENUMERATION
Option<String> quantity "quantity"
tuple<Option<Exp.Exp>, Option<Exp.Exp>> min "min , max" ;
Option<Exp.Exp> start "start"
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables"
end VAR ATTR ENUMERATION;

end VariableAttributes;

uniontype StateSelect
record NEVER end NEVER;

OpenModelica System Documentation 59

record AVOID end AVOID;

record DEFAULT end DEFAULT;

record PREFER end PREFER;

record ALWAYS end ALWAYS;
end StateSelect;

uniontype ExtArg
record EXTARG
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type_;
end EXTARG;

record EXTARGEXP
Exp.ExXp exp;

Types.Type type ;
end EXTARGEXP;

record EXTARGSIZE
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type ;
Exp.ExXp exp;

end EXTARGSIZE;

record NOEXTARG end NOEXTARG;
end ExtArg;
uniontype ExternalDecl

record EXTERNALDECL
Ident ident;

list<ExtArg> external ‘"external function name"
ExtArg parameters "parameters"
String return "return type"

Option<Absyn.Annotation> language "language e.g. Library"
end EXTERNALDECL;

end ExternalDecl;

Som of the more important functions for unparsing (dumping) flat Modelicain DAE form:
The function dump unparses (converts into string or prints) a bAE1ist into the standard output format by
calling dumpFunctionFunction and dumpCompElement. We aso have (?? explain more):

dumpStrStr: DAElist => string
dumpGraphvizGraphviz: DAElist => ()
dumpDebugDebug

dumpCompElement (classes) calls dumpElementsElements, which calls:

dumpVarsVars

dumpListList equations
dumpListList algorithm
dumpListList compElement (classes)

Module dependencies: Absyn, Exp, Algorithm, Types, Values.

3.4.11 DAEEXT — External Utility Functions for DAE Management

The DAEEXT module is an externally implemented module (in file runtime/daeext . cpp) used for the
BLT and index reduction algorithms in DAELow. The implementation mainly consists of bit vector

60

datatypes and operations implemented using std::vector<bools> since such functionality is not
availablein MetaModelica.

No module dependencies.

3.4.12 DAELow — Lower Level DAE Using Sparse Matrises for BLT

This module handles a lowered form of a DAE including equations, simple equations with equal operator
only, and algorithms, in three separate lists: equations, simple equations, algorithms. The variables are
divided into two groups. 1) known variables, parameters, and constants; 2) unknown variables including
state variables and algebraic variables.

The module includes the BLT sorting algorithm which sorts the equations into blocks, and the index
reduction agorithm using dummy derivatives for solving higher index problems. It aso includes an
implementation of the Tarjan algorithm to detect strongly connected components during the BL T sorting.

Module dependencies: DAE, Exp, Values, Absyn, Algorithm.

3.4.13 Debug — Trace Printing Used for Debugging

Printing routines for debug output of strings. Also flag controlled printing. When flag controlled printing
functions are called, printing is done only if the given flag is among the flags given in the runtime
arguments to the compiler.

If the +d-flag, i.e., if +d=inst, lookup is given in the command line, only calls containing these flags
will actually print something, eg.. fprint("inst", "Starting instantiation..."). See
runtime/rtopts.c for implementation of flag checking.

M odule dependencies: Rtopts, Dump, Print.

3.4.14 Derive — Differentiation of Equations from DAELow

This module is responsible for symbolic differentiation of equations and expressions. It is currently (2004-
09-28) only used by the solve function in the Exp module for solving equations.
The symbolic differentiation is used by the Newton-Raphson method and by the index reduction.

Module dependencies: DAEL ow, Exp, Absyn, Util, Print.

3.4.15 Dump - Abstract Syntax Unparsing/Printing

Printing routines for unparsing and debugging of the AST. These functions do nothing but print the data
structures to the standard output.

The main entry point for this module is the function dump which takes an entire program as an
argument, and prints it al in Modelica source form. The other interface functions can be used to print
smaller portions of a program.

Module dependencies: Absyn, Interactive, Classinf, Rtopts, Print, Util, Debug..

3.4.16 DumpGraphviz — Dump Info for Graph visualization of AST

Print the abstract syntax into a text form that can be read by the GraphViz tool (www.graphviz.org) for
drawing abstract syntax trees.

OpenModelica System Documentation 61

M odule dependencies: Absyn, Debug, Graphviz, Classinf, Dump.

3.4.17 Env — Environment Management

This module contains functions and data structures for environment management.

“Code ingtantiation is made in a context which consists of an environment an an ordered set of parents”’,
according to the Modelica Specification

An environment is a stack of frames, where each frame contains a number of class and variable
bindings. Each frame consist of the following:

e A frame name (corresponding to the class partialy instantiated in that frame).

e A binary tree/hash table?? containing alist of classes.

e A binary tree/lhash table?? containing a list of functions (functions are overloaded so that severa
identical function names corresponding to different functions can exist).

e A list of unnamed items consisting of import statements.

type Env = list<Frames>;

uniontype Frame
record FRAME
Option<Ident> class 1 "Class name"

BinTree list 2 "List of uniquely named classes and variables" ;
BinTree list 3 "List of types, which DOES NOT be uniquely named, eg. size have

several types"

list<Item> list_4 "list of unnamed items (imports)"

list<Frame> list 5 "list of frames for inherited elements" ;
list<Exp.ComponentRef> currenté "current connection set crefs"
Boolean encapsulated 7 "encapsulated bool=true means that FRAME is created due

to encapsulated class"

end FRAME;

end Frame;

uniontype Item
record VAR
Types.Var instantiated "instantiated component"
Option<tuple<SCode.Element, Types.Mod>> declaration "declaration if not fully
instantiated." ;
Boolean if "if it typed/fully instantiated or not" ;
Env env "The environment of the instantiated component

Contains e.g. all sub components

"o
7

end VAR;

record CLASS
SCode.Class class_;
Env env;

end CLASS;

record TYPE

list<Types.Type> list "list since several types with the same name can exist
in the same scope (overloading)" ;
end TYPE;

record IMPORT
Absyn.Import import ;
end IMPORT;

end Item;

62

The binary tree data structure BinTree used for the environment is generic and can be used in any
application. It is defined as follows:

uniontype BinTree "The binary tree data structure
The binary tree data structure used for the environment is generic and can
be used in any application."
record TREENODE
Option<TreeValue> value "Value"
Option<BinTree> left "left subtree"
Option<BinTree> right "right subtree"
end TREENODE;

end BinTree;

Each node in the binary tree can have a value associated with it.

uniontype TreeValue
record TREEVALUE
Key key;
Value value;
end TREEVALUE;

end TreeValue;
type Key = Ident "Key"
type Value = Item;

constant Env emptyEnv;

As an example lets consider the following Modelica code:

package A
package B
import Modelica.SIunits.*;
constant Voltage V=3.3;

function foo
end foo;

model M1
Real x,vy;
end M1;

model M2
end M2;

end B;
end A;

When instantiating m1 we will first create the environment for its surrounding scope by a recursive
instantiation on a. B giving the environment:

{
FRAME ("A", {Class:B},{},{}, false) ,
FRAME ("B", {Class:Ml, Class:M2, Variable:V}, {Type:foo},
{import Modelica.SIunits.*},false)

}
Then, the class M1 isinstantiated in a new scope/Frame giving the environment:
{

FRAME ("A", {Class:B},{},{}, false) ,

FRAME ("B", {Class:Ml, Class:M2, Variable:V}, {Type:foo},
{Import Modelica.SIunits.*}, false),

FRAME ("M1, {Variable:x, Variable:y},{},{}.,false)

OpenModelica System Documentation 63

}

Note: The instance hierarchy (components and variables) and the class hierarchy (packages and classes) are
combined into the same data structure, enabling a uniform lookup mechanism.

The most important functionsin Env:

function newFrame : (Boolean) => Frame
function openScope : (Env,Boolean, Option<Idents>) => Env
function extendFrameC : (Env, SCode.Class) => Env
function extendFrameClasses : (Env, SCode.Program) => Env
function extendFrameV : (Env, Types.Var,
Option<tuple<SCode.Element, Types.Mod>>, Boolean) => Env
function updateFrameV : (Env, Types.Var,bool) => Env
function extendFrameT : (Env,Ident,Types.Type) => Env
function extendFrameI : (Env, Absyn.Import) => Env

function topFrame : Env => Frame
function getEnvPath: (Env) => Absyn.Path option

Module dependencies. Absyn, Values, SCode, Types, Classinf, Exp, Dump, Graphviz, DAE, Print, Util,
System.

3.4.18 Exp — Expression Handling after Static Analysis

This file contains the module Exp, which contains data types for describing expressions, after they have
been examined by the static analyzer in the module Static. There are of course great similarities with the
expression types in the Absyn module, but there are also several important differences.

No overloading of operators occur, and subscripts have been checked to seeif they are slices.
Deoverloading of overloaded operators such as app (+) is performed, e.g. to operations ADD ARR,
ADD (REAL), ADD (INT) . Slice operations are also identified, e.g.:

model A Real b; end A;

model B

A afl1l0];
equation

a.b=f111(1.0,10); // a.b is a slice
end B;

All expressions are aso type consistent, and al implicit type conversions in the AST are made explicit
here, e.g. Real (1) +1.5 converted from 1+1.5.

Functions:

Some expression simplification and solving is also done here. This is used for symbolic transformations
before simulation, in order to rearrange equations into a form needed by simulation tools. The functions
simplify, solve, expContainsContains, expEqual, extendCref, €fC. perform this functionality,
eg.

extendCrefCref (ComponentRef, Ident, list<Subscripts>) => ComponentRef

simplify (Exp) => ExXp
The simplify function simplifies expressions that have been generated in a complex way, i.e.,, not a
complete expression simplification mechanism.

This module also contains functions for printing expressions, for 10, and for conversion to strings.

Moreover, graphviz output is supported.

|dentifiers:

type Ident = String;

Define 1dent asan diasfor string and useit for all identifiersin Modedlica

Basic types:

uniontype Type
record INT end INT;
record REAL end REAL;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;
record OTHER "e.g. complex types, etc." end OTHER;

record T ARRAY

Type type_;

list<Integer> arrayDimensions;
end T ARRAY;

end Type;

These basic types are not used as expression types (see the Types module for expression types). They are
used to parameterize operators which may work on several simple types.

Expressions:

The Exp union type closely corresponds to the aAbsyn . Exp union type, but is used for statically analyzed
expressions. It includes explicit type promotions and typed (non-overloaded) operators. It aso contains
expression indexing with the AsuB constructor. Indexing arbitrary array expressions is currently not
supported in Modelica, but it is needed here.

uniontype Exp "Expressions
record ICONST
Integer integer "Integer constants"
end ICONST;

record RCONST
Real real "Real constants"
end RCONST;

record SCONST
String string "String constants"
end SCONST;

record BCONST
Boolean bool "Bool constants"
end BCONST;

record CREF

ComponentRef componentRef;

Type component "component references, e.g. a.b[2].c[1]"
end CREF;

record BINARY

Exp exp;

Operator operator;

Exp binary "Binary operations, e.g. a+4"
end BINARY;

record UNARY

Operator operator;

Exp unary "Unary operations, - (4x)" ;
end UNARY;

record LBINARY
Exp exp;
Operator operator;
Exp logical "Logical binary operations: and, or" ;

OpenModelica System Documentation 65

end LBINARY;

record LUNARY

Operator operator;

Exp logical "Logical unary operations: not" ;
end LUNARY;

record RELATION

ExXp exp;

Operator operator;

Exprelation_ "Relation, e.g. a <= 0" ;
end RELATION;

record IFEXP

Exp expl;

Expexp2;

Exp if 3 "If expressions" ;
end IFEXP;

record CALL

Absyn.Path path;

list<Exp> expLst;

Boolean tuple "tuple" ;

Boolean builtin "builtin Function call"
end CALL;

record ARRAY

Type type_;

Boolean scalar "scalar for codegen"

list<Exp> array "Array constructor, e.g. {1,3,4}" ;
end ARRAY;

record MATRIX

Type type_;

Integer integer;

list<list<tuple<Exp, Boolean>>> scalar "Matrix constructor. e.g. [1,0;0,1]"
end MATRIX;

record RANGE

Type type_;

exp;

Option<Exp> expOption;

Exp range "Range constructor, e.g. 1:0.5:10" ;
end RANGE;

record TUPLE
list<Exp> PR "PR. Tuples, used in func calls returning several
arguments"
end TUPLE;

record CAST

Type type_;

Exp cast "Cast operator"
end CAST;

record ASUB

Exp exp;

Integer array "Array subscripts"
end ASUB;

record SIZE

Exp exp;

Option<Exp> the "The ssize operator"
end SIZE;

66

record CODE

Absyn.Code code;

Type modelica "Modelica AST constructor" ;
end CODE;

record REDUCTION

Absyn.Path path;

Exp expr "expr"

Ident ident;

Exp range "range Reduction expression"
end REDUCTION;

record END "array index to last element, e.g. alend] :=1;" end END;

end Exp;

Operators:

Operators which are overloaded in the abstract syntax are here made type-specific. The Integer addition
operator DD (INT) and the Real addition operator ADD (REAL) are two distinct operators.

uniontype Operator

record ADD

Type type_ ;
end ADD;

record SUB

Type type_ ;
end SUB;

record MUL

Type type_;
end MUL;

record DIV

Type type_;
end DIV;

record POW

Type type_;
end POW;

record UMINUS

Type type ;
end UMINUS;

record UPLUS

Type type_;
end UPLUS;

record UMINUS ARR

Type type_;
end UMINUS_ARR;

record UPLUS ARR

Type type_;
end UPLUS_ARR;

record ADD ARR

Type type_;
end ADD ARR;

record SUB_ARR
Type type_;

OpenModelica System Documentation 67

end SUB ARR;

record MUL_SCALAR_ ARRAY
Type a "a { b, c }"
end MUL_SCALAR ARRAY;

record MUL_ARRAY_ SCALAR

Type type "{a, b} c"
end MUL_ARRAY SCALAR;

record MUL_SCALAR_ PRODUCT

Type type_ "{a, b} {c, d}" ;
end MUL_SCALAR_PRODUCT;

record MUL MATRIX PRODUCT

Type type_ "{{..},..} {{..},.{..}}":
end MUL_MATRIX PRODUCT;

record DIV_ARRAY SCALAR

Type type "{a, b} / c"
end DIV_ARRAY SCALAR;

record POW_ARR

Type type_ ;
end POW_ARR;

record AND end AND;
record OR end OR;
record NOT end NOT;

record LESS

Type type_;
end LESS;

record LESSEQ

Type type_;
end LESSEQ;

record GREATER

Type type_;
end GREATER;

record GREATEREQ

Type type_;
end GREATEREQ;

record EQUAL
Type type_;
end EQUAL;
record NEQUAL
Type type_;
end NEQUAL;
record USERDEFINED
Absyn.Path the "The fully qualified name of the overloaded operator function';
end USERDEFINED;

end Operator;

Component references:

uniontype ComponentRef "- Component references

68

CREF_QUAL(...) is used for qualified component names, e.g. a.b.c
CREF_IDENT(..) is used for non-qualifed component names, e.g. x "
record CREF_QUAL
Ident ident;
list<Subscript> subscriptLst;
ComponentRef componentRef;
end CREF QUAL;

record CREF_IDENT

Ident ident;

list<Subscript> subscriptLst;
end CREF_ IDENT;

end ComponentRef;

The subscript and componentRef datatypes are simple transations of the corresponding types in the
Absyn module.

uniontype Subscript

record WHOLEDIM "a[:,1]" end WHOLEDIM;

record SLICE
Exp a "al[1:3,1], al[l:2:10,2]1" ;
end SLICE;

record INDEX
Exp a "al[i+1]" ;
end INDEX;

end Subscript;

Module dependencies: Absyn, Graphviz, Rtopts, Util, Print, ModUtil, Derive, System, Dump.

3.4.19 Graphviz — Graph Visualization from Textual Representation

Graphvizisatool for drawing graphs from a textual representation. This module generates the textual input
to Graphviz from a tree defined using the data structures defined here, e.g. Node for tree nodes. See
http://www.research.att.com/sw/tool s/graphviz/ .

Input: The tree constructed from data structures in Graphviz
Output: Textual input to graphviz, written to stdout.

3.4.20 Inst—- Code Instantiation/Elaboration of Modelica Models

This module is responsible for code instantiation of Modelica models. Code instantiation is the process of
elaborating and expanding the model component representation, flattening inheritance, and generating
equations from connect equations.

The code instantiation process takes Modelica AST as defined in SCode and produces variables and
equations and algorithms, etc. as defined in the DAE module

This module uses module Lookup to lookup classes and variables from the environment defined in Env.
It uses the Connect module for generating equations from connect equations. The type system defined in
Types is used for code instantiation of variables and types. The Mod module is used for modifiers and
merging of modifiers.

3.4.20.1 Overview:

The Inst module performs most of the work of the flattening of models:

OpenM odelica System Documentation

69

1. Build empty initial environment.
2. Codeinstantiate certain classesimplicitly, e.g. functions.
3. Codeinstantiate (last class or a specific class) in aprogram explicitly.

The process of code instantiation consists of the following:

1. Open anew scope => anew environment

2. Start the class state machine to recognize a possible restricted class.
3. Instantiate classin environment.

4. Generate equations.

5. Read class state & generate Type information.

3.4.20.2 Code Instantiation of a Class in an Environment
(?? Add more explanations)

Function: instClassdef
PARTS:. instElementListList
DERIVED (i.eclass A=B(mod) ;):
1. lookup class
2. elabModMod
3. Merge modifications
4. instClassIn(...,mod, ...)

3.4.20.3 InstElementListList & Removing Declare Before Use

The procedure is as follows:

1. First implicitly declare al local classes and add component names (calling
extendComponentsToEnvComponentsToEnv), Also merge modifications (This is done by
saving modifications in the environment and postponing to step 3, since type information is not yet

available).
2. Expand all extends nodes.
3. Perform instantiation, which resultsin DAE elements.

Note: Thisis probably the most complicated parts of the compiler!

Design issue: How can we simplify this? The complexity is caused by the removal of Declare-before-use in

combination with sequential tranglation structure (Absyn->Scode->(Exp,Mod,Env)).

3.4.20.4 The InstElement Function
Thisis ahuge function to handle el ement instantiation in detail, including the following items:

e Handling extends clauses.

e Handling component nodes (the function update components in env iscaled if used before it

is declared).
e Elaborated dimensions (?? explain).
e Instvar caled (??explan).
e ClassDefs (?? explain).

3.4.20.5 The InstVar Function

The instvar function performs code instantiation of al subcomponents of a component. It aso

instantiates each array element asa scalar, i.e., expands arraysto scalars, e.g.:

Real x[2] => Real x[1]; Real x[2]; inflat Moddica.

70

3.4.20.6 Dependencies
Module dependencies: Absyn, Classlnf, Connect, DAE, Env, Exp, SCode, Mod, Prefix, Types.

3.4.21 Interactive — Model Management and Expression Evaluation

This module contain functionality for model management, expression evaluation, etc. in the interactive
environment. The module defines a symbol table used in the interactive environment containing the
following:

e Modelicamodels (described using Absyn abstract syntax).

e Variable bindings.

Compiled functions (so they do not need to be recompiled).

Instantiated classes (that can be reused, not implemented. yet).
Modelicamodelsin SCode form (to speed up instantiation. not implemented. yet).

The most important data types:

uniontype InteractiveSymbolTable "The Interactive Symbol Table"
record SYMBOLTABLE
Absyn.Program ast "The ast"
SCode.Program explodedAst "The exploded ast"
list<InstantiatedClass> instClsLst "List of instantiated classes"
list<InteractiveVariable> lstVarVal "List of variables with values" ;
list<tuple<Absyn.Path, Types.Type>> compiledFunctions "List of compiled
functions, fully qualified name + type"
end SYMBOLTABLE;
end InteractiveSymbolTable;

uniontype InteractiveStmt "The Interactive Statement:
An Statement given in the interactive environment
can either be an Algorithm statement or an expression"
record IALG
Absyn.AlgorithmItem algItem;
end IALG;

record IEXP
Absyn.Exp exp;
end IEXP;
end InteractiveStmt;

uniontype InteractiveStmts "The Interactive Statements:
Several interactive statements are used in the
Modelica scripts"
record ISTMTS
list<InteractiveStmt> interactiveStmtLst "interactiveStmtLst"
Boolean semicolon "when true, the result will not be shown in
the interactive environment"
end ISTMTS;
end InteractiveStmts;

uniontype InstantiatedClass "The Instantiated Class"
record INSTCLASS
Absyn.Path qualName " The fully qualified name of the inst:ed class";
list<DAE.Element> daeElementLst " The list of DAE elements";
Env.Env env "The env of the inst:ed class";
end INSTCLASS;
end InstantiatedClass;

uniontype InteractiveVariable "- Interactive Variable"
record IVAR
Absyn.Ident varIdent "The variable identifier";

OpenModelica System Documentation 71

Values.Value value "The expression containing the value";
Types.Type type " The type of the expression";
end IVAR;
end InteractiveVariable;

Two of the more important functions and their input/output:

function evaluate
input InteractiveStmts inInteractiveStmts;
input InteractiveSymbolTable inInteractiveSymbolTable;
input Boolean inBoolean;
output String outString;
output InteractiveSymbolTable outInteractiveSymbolTable;
algorithm

end evaluate;

function updateProgram
input Absyn.Program inPrograml;
input Absyn.Program inProgram?2;
output Absyn.Program outProgram;
algorithm

end updateProgram;

Module dependencies. Absyn, SCode, DAE, Types, Vaues, Env, Dump, Debug, Rtops, Util, Parse, Prefix,
Mod, Lookup, Classinf, Exp, Ingt, Static, ModUtil, Codegen, Print, System, ClassL oader, Ceval.

3.4.22 Lookup — Lookup of Classes, Variables, etc.

This module is responsible for the lookup mechanism in Modelica. It is responsible for looking up classes,
types, variables, etc. in the environment of type Env by following the lookup rules.
The important functions are the following:

e lookupClassClass —tofind aclass.
e lookupTypeType —to find types (e.g. functions, types, etc.).
e lookupvVarvVar —to find avariablein the instance hierarchy.

Concerning builtin types and operators.

e Built-intypesare added in initialEnvEnv => same lookup for all types.
e Built-in operators, like size(...), are added asfunctionsto initialEnvEnv.

Note the difference between Type and Class:. the type of a class is defined by Classlinfo state + variables
defined in the Types module.

Module dependencies: Absyn, Classinf, Types, Exp, Env, SCode.

3.4.23 Main — The Main Program

This is the main program in the OpenModelica system. It either translates a file given as a command line
argument (see Chapter 2) or starts a server loop communicating through CORBA or sockets. (The Win32
implementation only implements CORBA). It performs the following functions:

e Cadlsthe parser

e Invokes the Interactive module for command interpretation which in turn calls to Ceval for
expression evaluation when needed.

e Outputs flattened DAEsif desired.

e Callscode generation modules for C code generation.

72

Module dependencies: Absyn, Modutil, Parse, Dump, Dumpgraphviz, SCode, DAE, DAElow, Inst,
Interactive, Rtopts, Debug, Codegen, Socket, Print, Corba, System, Util, SimCodegen.

Optional dependencies for parallel code generation: ??

3.4.24 Mod — Modification Handling

Modifications are simply the same kind of modifications used in the Absyn module.

Thistypeisvery similar to scode . Mod. The main differenceisthat it uses Exp . Exp in the Exp module
for the expressions. Expressions stored here are prefixed and type checked.

The datatype itself (Types.Mod) has been moved to the Types module to prevent circular
dependencies.

A few important functions:

e clabModMod (Env.Env, Prefix.Prefix, Scode.Mod) => Mod Elaborate modifications.
e merge(Mod, Mod) => Mod Merge of Maodifications according to merging rulesin Modelica.

Module dependencies: Absyn, Env, Exp, Prefix, SCode, Types, Dump, Debug, Print, Inst, Static, Values,
Util.

3.4.25 ModSim — Communication for Simulation, Plotting, etc.

This module communicates with the backend (through files) for simulation, plotting etc. Called from the
Ceva module.

Module dependencies: System, Util.

3.4.26 ModUtil — Modelica Related Utility Functions

This module contains various utility functions. For example converting a path to a string and comparing
two paths. It is used pretty much everywhere. The difference between this module and the Util module is
that ModUtil contains Modelica related utilities. The Util module only contains “low-level” “generic”
utilities, for example finding elementsin lists.

Module dependencies: Absyn, DAE, Exp, Rtopts, Util, Print.

3.4.27 Parse — Parse Modelica or Commands into Abstract Syntax

Interface to external code for parsing Modelicatext or interactive commands. The parser moduleis used for
both parsing of files and statements in interactive mode. Some functions never fails, even if parsing fails.
Instead, they return an error message other than " Ok".

Input: String to parse

Output: Absyn.Program or InteractiveStmts

Module dependencies: Absyn, Interactive.

3.4.28 Prefix — Handling Prefixes in Variable Names

When performing code instantiation of an expression, there is an instance hierarchy prefix (not package
prefix) that for names inside nested instances has to be added to each variable name to be able to use it in
the flattened equation set.

OpenModelica System Documentation 73

An instance hierarchy prefix for a variable x could be for example a.b.c so that the fully qualified
nameisa.b.c.x, if x isdeclared inside the instance ¢, which is inside the instance b, which is inside the
instance a.

Module dependencies: Absyn, Exp, Env, Lookup, Util, Print..

3.4.29 Print — Buffered Printing to Files and Error Message Printing

This module contains a buffered print function to be used instead of the builtin print function, when the
output should be redirected to some other place. It also contains print functions for error messages, to be
used in interactive mode.

No module dependencies.

3.4.30 RTOpts — Run-time Command Line Options

This modul e takes care of command line options. It is possible to ask it what flags are set, what arguments
were given etc. This module is used pretty much everywhere where debug calls are made.

No module dependencies.

3.4.31 SCode - Lower Level Intermediate Representation

This module contains data structures to describe a Modelica model in a more convenient way than the
Absyn module does. The most important function in this module is elaborate which turns an abstract
syntax tree into an scode representation. The scode representation is used as input to the Inst module.
o Definesalower-level elaborated AST.
e Changed types:
Modifications
Expressions (uses Exp modul€)
ClassDef (PARTS divided into equations, elements and algorithms)
Algorithms uses Algorithm module
e Element Attributes enhanced.
e Threeimportant public Functions
e elaborate (Absyn.Program) => Program

e elabClassClass: Absyn.Class => Class
¢ DbuildModMod (Absyn.Modification option, bool) => Mod

M odule dependencies. Absyn, Dump, Debug, Print.

3.4.32 SimCodegen — Generate Simulation Code for Solver

This module generates simulation code to be compiled and executed to a (numeric) solver. It outputs the
generated simulation code to afile with a given filename.

Input: DAELow.
Output: To file
Module dependencies: Absyn, DAElow, Exp, Util, RTOpts, Debug, System, Values.

74

3.4.33 Socket — (Depreciated) OpenModelica Socket Communication Module

This module is being depreciated and replaced by the Corba implementation. It is the socket connection
module of the OpenModelica compiler, still somewhat useful for debugging, and available for Linux and
CygWin. Socket is used in interactive mode if the compiler is started with +d=interactive. External
implementation in C isin ./runtime/soecketimpl.c.

This socket communication is not implemented in the Win32 version of OpenModelica. Instead, for
Win32 build using +d=interactiveCorba.

No module dependencies.

3.4.34 Static — Static Semantic Analysis of Expressions

This module performs static semantic analysis of expressions. The analyzed expressions are built using the
congructors in the Exp module from expressions defined in Absyn. Also, a set of properties of the
expressions is calculated during analysis. Properties of expressions include type information and a boolean
indicating if the expression is constant or not. If the expression is constant, the Ceval module is used to
evauate the expression value. A value of an expression is described using the Values module.

The main function in this module is eval exp which takes an absyn.Exp abstract syntax tree and
transforms it into an Exp . Exp tree, while performing type checking and automatic type conversions, etc.

To determine types of builtin functions and operators, the module also contain an elaboration handler
for functions and operators. This function is called elabBuiltinHandler. Note: These functions should
only determine the type and properties of the builtin functions and operators and not evaluate them.
Constant evaluation is performed by the ceval module.

The module also contain a function for deoverloading of operators, in the deoverload function. It
transforms operators like '+' to its specific form, ADD, ADD ARR, €fC.

Interactive function calls are aso given their types by elabExpExp, Wwhich cals
elabCallInteractiveCallInteractive.

Elaboration for functions involve checking the types of the arguments by filling slots of the argument
list with first positional and then named arguments to find a matching function. The details of this
mechanism can be found in the Modelica specification. The elaboration aso contain function
deoverloading which will be added to Modelica in the future when lookup of overloaded user-defined
functionsis supported.

We summarize afew of the functions:

Expression analysis:

® clabExXpExp: Absyn.Exp => (Exp.Exp, Types.Properties) — Static analysis, finding
out properties.

e elabGraphicsExp — for graphics annotations.

e elabCrefCref —check component type, constant binding.

e elabSubscripts: Absyn.Subscript => Exp.Subscript — Determine whether subscripts are
constant

Constant propagation
® ceval
The elabExpExp function handles the following:

constants: integer, real, string, bool
binary and unary operations, relations
conditional: ifexp

function calls

e arrays. array, range, matrix

OpenModelica System Documentation 75

The ceval function:

e Compute value of a constant expressions
e Resultsasvalues.vValue type

The canoncrefcref function:

e Convert Exp . ComponentRef to canonical form
e Convert subscripts to constant values

TheelabBuiltinHandlerBuiltinHandler function:
e Handle builtin function callssuch as size, zeros, ones, £i11, €tc.

Module dependencies. Absyn, Exp, SCode, Types, Env, Values, Interactive, Classinf, Dump, Print,
System, Lookup, Debug, Inst, Codegen, Modutil, DAE, Util, RTOpts, Parse, ClassLoader, Mod, Prefix,
CEva

3.4.35 System — System Calls and Utility Functions

This module contain a set of system calls and utility functions, e.g. for compiling and executing stuff,
reading and writing files, operations on strings and vectors, etc.,, which are implemented in C.
Implementation in runtimesystemimpl.c In comparison, the Util module has utilities implemented in
MetaM odelica.

Module dependencies. Values.

3.4.36 TaskGraph — Building Task Graphs from Expressions and Systems of
Equations

This module is used in the optional modpar part of OpenModelica for bulding task graphs for automatic
paralelization of the result of the BLT decomposition.

The exported function build taskgraph takes the lowered form of the DAE defined in the
DAEL ow module and two assignments vectors (which variable is solved in which equation) and the list of
blocks given by the BLT decomposition.

The module uses the TaskGraphExt module for the task graph datastructure itself, which is
implemented using the Boost Graph Library in C++.

Module dependencies. Exp, DAEL ow, TaskGraphExt, Util, Absyn, DAE, CEval, Vaues, Print.

3.4.37 TaskGraphExt — The External Representation of Task Graphs

This module is the interface to the externally implemented task graph using the Boost Graph Library in
C++.

M odule dependencies: Exp, DAELow.

3.4.38 Types — Representation of Types and Type System Info

This module specifies the Modelica Language type system according to the Modelica Language
specification. It contains an MetaM odelica type called Type which defines types. It also contains functions
for determining subtyping etc.

76

There are a few known problems with this module. It currently depends on sCode.Attributes,
which in turn depends on absyn.ArrayDim. However, the only things used from those modules are
congtants that could be moved to their own modules.

ldentifiers:

type Ident = string

Variables:

uniontype Var "- Variables"
record VAR
Ident name "name"
Attributes attributes "attributes"
Boolean protected '"protected"
Type type_ "type" ;
Binding binding " equation modification"
end VAR;
end Var;

uniontype Attributes "- Attributesg"
record ATTR
Boolean flow_ "flow"
SCode.Accessibility accessibility "accessibility"
SCode.Variability parameter ‘"parameter"
Absyn.Direction direction "direction"
end ATTR;
end Attributes;

uniontype Binding "- Binding"
record UNBOUND end UNBOUND;

record EQBOUND
Exp.Exp exp "exp"
Option<Values.Value> evaluatedExp "evaluatedExp; evaluated exp" ;
Const constant_ "constant"

end EQBOUND;

record VALBOUND
Values.Value valBound "valBound" ;
end VALBOUND;
end Binding;

Types:

type Type = tuple<TType, Option<Absyn.Path>> "A Type is a tuple of a TType
(containing the actual type)
and a optional classname
for the class where the
type originates from.";

uniontype TType "-TType contains the actual type"
record T INTEGER
list<Var> varLstInt "varLstInt"
end T INTEGER;

record T REAL
list<Var> varLstReal "varLstReal"
end T REAL;

record T STRING
list<Var> varLstString "varLstString" ;

end T STRING;

record T BOOL

OpenModelica System Documentation 77

list<Var> varLstBool "varLstBool"
end T BOOL;

record T ENUM end T ENUM;

record T ENUMERATION
list<String> names "names"
list<Var> varLst "varLst"
end T ENUMERATION;

record T ARRAY
ArrayDim arrayDim "arrayDim"
Type arrayType "arrayType"
end T ARRAY;

record T COMPLEX
ClassInf.State complexClassType " The type of. a class" ;
list<Var> complexVarLst " The variables of a complex type"
Option<Type> complexTypeOption " A complex type can be a subtype of another
primitive) type (through extends) .
In that case the varlist is empty"
end T COMPLEX;

record T FUNCTION

list<FuncArg> funcArg "funcArg"

Type funcResultType "Only single-result"
end T FUNCTION;

record T TUPLE
list<Type> tupleType " For functions returning multiple values.
Used when type is not yet known"
end T TUPLE;

record T _NOTYPE end T NOTYPE;

record T ANYTYPE
Option<ClassInf.State> anyClassType "Used for generic types. When class state
present the type is assumed to be a
complex type which has that restriction";
end T ANYTYPE;

end TType;

uniontype ArrayDim "- Array Dimensions"
record DIM
Option<Integer> integerOption;
end DIM;

end ArrayDim;

type FuncArg = tuple<Ident, Type> "- Function Argument"
Expression properties:

A tuple has been added to the Types representation. This is used by functions returning multiple
arguments.

Used by splitPropsProps:
uniontype Const " Variable properties: The degree of constantness of an expression
is determined by the Const datatype.
Variables declared as 'constant' will get C CONST constantness.
Variables declared as \'parameter\' will get C_PARAM constantness and
all other variables are not constant and will get C VAR constantness."
record C_CONST end C_CONST;

78

record C_PARAM "\'constant\'s, should always be evaluated" end C_PARAM;

record C VAR "\'parameter\'s, evaluated if structural not constants,
never evaluated"
end C VAR;
end Const;

uniontype TupleConst "A tuple is added to the Types.
This is used by functions whom returns multiple arguments.
Used by split_props"
record CONST
Const const;
end CONST;

record TUPLE CONST
list<TupleConst> tupleConstLst "tupleConstLst"
end TUPLE CONST;
end TupleConst;

uniontype Properties "Expression properties:
For multiple return arguments from functions,
one constant flag for each return argument.
The datatype ~Properties\' contain information about an
expression. The properties are created by analyzing the
expressions."
record PROP

Type type_ "type"
Const constFlag "if the type is a tuple, each element have a const flag.";
end PROP;

record PROP_TUPLE

Type type_;
TupleConst tupleConst " The elements might be tuple themselfs.";
end PROP_TUPLE;

end Properties;

The datatype properties contains information about an expression. The properties are created by
analyzing the expressions.

To generate the correct set of equations, the trandator has to differentiate between the primitive types
Real, Integer, String, Boolean and types directly derived from then from other, complex types. For
arrays and matrices the type T ARRAY is used, with the first argument being the number of dimensions,
and the second being the type of the objects in the array. The Type type is used to store information
about whether a classis derived from a primitive type, and whether avariable is of one of these types.

M odification datatype:

uniontype EgMod "To generate the correct set of equations, the translator has to

differentiate between the primitive types “Reall', “Integer\',
“String\', "Boolean\' and types directly derived from then from
other, complex types. For arrays and matrices the type

T _ARRAY\' is used, with the first argument being the number of
dimensions, and the second being the type of the objects in the
array. The “Type\' type is used to store information about
whether a class is derived from a primitive type, and whether a
variable is of one of these types.
record TYPED
Exp.Exp modifierAsExp "modifierAsExp ; modifier as expression" ;
Option<Values.Value> modifierAsValue " modifier as Value option"
Properties properties "properties"
end TYPED;

OpenModelica System Documentation 79

record UNTYPED
Absyn.Exp exp;
end UNTYPED;
end EgMod;

uniontype SubMod "-Sub Modification"
record NAMEMOD
Ident ident;
Mod mod;
end NAMEMOD;

record IDXMOD
list<Integer> integerLst;
Mod mod;
end IDXMOD;
end SubMod;

uniontype Mod "Modification"
record MOD
Boolean final "final"
Absyn.Each each_;
list<SubMod> subModLst;
Option<EgMod> egModOption;
end MOD;

record REDECL
Boolean final_ "final"

list<tuple<SCode.Element, Mod>> tplSCodeElementModLst;
end REDECL;

record NOMOD end NOMOD;
end Mod;

Module dependencies: Absyn, Exp, Classinf, Vaues, SCode, Dump, Debug, Print, Util.

3.4.39 Util — General Utility Functions

This module contains various utility functions, mostly list operations. It is used pretty much everywhere.
The difference between this module and the ModUtil module is that ModUtil contains Modelica related
utilities. The Util module only contains “low-level” general utilities, for example finding elementsin lists.
This modules contains many functions that use type variables. A type variable is exactly what it sounds
like, atype bound to avariable. It is used for higher order functions, i.e., in MetaM odelica the possibility to

pass a "handle" to a function into another function. But it can aso be used for generic data types, like in
C++ templates.

A typevariable in MetaModelicais written as 7?? ' a.
For instance, in the function 1ist £fill ('a,int) => 'a list thetypevariable 'a ishere used as
ageneric typefor thefunction 1ist_£i11, which returnsalist of n elements of a certain type.

No module dependencies.

3.4.40 Values — Representation of Evaluated Expression Values

The module Values contains data structures for representing evaluated constant Modelica values. These
include integer, real, string and boolean values, and also arrays of any dimensionality and type.
Multidimensional arrays are represented as arrays of arrays.

uniontype Value
record INTEGER Integer integer; end INTEGER;

80

record REAL Real real; end REAL;

record STRING String string; end STRING;
record BOOL Boolean boolean; end BOOL;

record ENUM String string; end ENUM;

record ARRAY list<Value> valuelLst; end ARRAY;
record TUPLE list<Value> valuelLst; end TUPLE;

record RECORD
Absyn.Path record "record name"
list<Value> orderd "orderd set of wvalues"
list<Exp.Ident> comp "comp names for each value"
end RECORD;

record CODE
Absyn.Code A "A record consist of value Ident pairs"
end CODE;
end Value;

Module dependencies: Absyn, Exp.

3.4.41 VarTransform — Binary Tree Representation of Variable
Transformations

VarTransform contains Binary Tree representation of variables and variable replacements, and performs
simple variable subsitutions and transformations in an efficient way. Input is a DAE and a variable
transform list, output is the transformed DAE.

Module dependencies: Exp, DAEL ow, System, Util, Algorithm.

OpenModelica System Documentation 81

Chapter 4

OMNotebook and OMShell

This chapter covers the OpenModelica €electronic notebook subsystem, called OMNotebook. Both
OMNotebook and OM Shell uses the devel opment framework Qt.

41 Ot

Qt is an object-oriented, platform independent, C++ development framework created and maintained by
Trolltech. Qt includes a comprehensive class library, with more then 400 classes, and severa tools for
development. The Qt API has arich set of classes and functionality for severa types of development and
programming. In OMNotebook Qt have been used for GUI programming, file handling and XML, but Qt
can be used for database programming, networking, internationalization, OpenGL integration and much
more.

Qt is consistent across al supported platforms, which enable developers to create truly platform
independent applications. Using Qt, developers can create native applications for Windows, Mac and X11
platforms. Qt requires no virtua machines, emulation layers or bulky runtime environments. Instead Qt
writes directly to low-level graphics function like native applications, which alows Qt applications to run
natively. Trolltech have designed Qt to be easy and intuitive to use.

4.2 HTML documentation

Using Doxygen a HTML documentation have been generated from the source files. This documentation
contatins information about the different classes, functions and files belonging to OMNotebook. The
documentation is found on the SVN under OM Notebook/Doxygen_doc.

4.3 Mathematica Notebook Parser

OMNotebook have a parser implemented that can read Mathematica notebooks. This parser is generated by
ANTLR using grammar descriptions. This is an EBNF grammar for the Mathematica notebook fullform
format, taken from the grammar definition for the Mathematica notebook parser.

document ::= <expr>
expr ti= (FrontEnd~™) * <exprheaders
| <value>

| <attribute>

82

exprheader 1=
Notebook [<expr> (, <rule>)*]
| List [(<listbody>)* (, <listbody>)*]
| 1ist [(<listbody>)* (, <listbody>)*]
| cell [<expr> (, <expr>)? (, <rule>)*]
| CellGroupData [<expr> (, Open|Closed))]
| TextData [<expr> (, <exprs>)* (, <rule>)*]
| StyleBox [<expr> (, <exprs>)* (, <rule>)*]
| StyleData [<expr> (, <expr>)* (, <rules>)*]
| SuperscriptBox [<expr>, <exprs>]
| SubscriptBox [<exprs>, <exprs>]
| SubsuperscriptBox [<expr> (, <expr>)* (, <rules>)*]
| UnderscriptBox [<expr> (, <expr>)* (, <rules)*]
| OverscriptBox [<expr> (, <expr>)* (, <rule>)*]
| UnderoverscriptBox [<expr> (, <expr>)* (, <rules>)*]
|FractionBox [<expr> (, <expr>)* (, <rules>)*]
|SqrtBox [<expr> (, <expr>)* (, <rules>)*]
|RadicalBox [<expr> (, <expr>)* (, <rules>)*]
| RowBox [<expr> (, <expr>)* (, <rules>)*]
| GridBox [<expr> (, <expr>)* (, <rules>)*]
| FormBox [<expr> (, <expr>)* (, <rules>)*]
| TagBox [<expr> (, <expr>)* (, <rules>)*]
| CounterBox [<expr> (, <expr>)* (, <rules>)*]
|AdjustmentBox [<expr> (, <expr>)* (, <rules)*]
| ButtonBox [<expr> (, <expr>)* (, <rules>)*]
|InterpretationBox [<expr>, <expr>]
| Annotation [<expr> (, <expr>)* (, <rules>)*]
| Equal [<expr> (, <expr>)* (, <rule>)*]
|Diagram [<expr> (, <expr>)* (, <rules>)*]
|Icon [<expr> (, <expr>)* (, <rules>)*]
|Polygon [<expr> (, <expr>)* (, <rules>)*]
| Ellipse [<expr> (, <expr>)* (, <rules>)*]
| Line [<expr> (, <exprs>)* (, <rule>)*]
| GreyLevel [<expr> (, <expr>)* (, <rules>)*]
| OLEData [<expr> (, <expr>)* (, <rule>)*]
| RGBColor [Number, Number, Number]
| Filename [<expr> (, <expr>)* (, <rules>)*]
| BoxData [<expr> (, <expr>)* (, <rules>)*]
| GraphicsData [String, String (, <rules>)*]
| DirectedInfinity [Number]
| StartModelEditor []
| ParentDirectory []
listbody ::= (<expr>|<rule>)
rule ::= Rule [<expr> (, <expr>)]
| rule [<expr> (, <expr>)]
| RuleDelayed [<expr> (, <expr>) |
value ::= String
| Number

| True

OpenM odelica System Documentation

83

attribute

.o

False

Right

Left

Center

Smaller
Inherited
PaperWidth
WindowWidth
TraditionalForm
StandardForm
InputForm
OutputForm
DefaultInputFormatType
Automatic

None

Null

All

FontSlant

FontSize

FontColor
FontWeight
FontFamily
FontVariation
TextAlignment
TextJustification
InitializationCell
FormatType
PageWidth
PageHeaders
PageHeaderLines
PageFooters
PageFooterLines
PageBreakBelow
PageBreakWithin
BoxMargins
BoxBaselineShift
LineSpacing
Hyphenation
Active

Visible
Evaluatable
ButtonFuncion
ButtonData
ButtonEvaluator
ButtonStyle
CharacterEncoding
ShowStringCharacters
ScreenRectangle
AutoGeneratedPackage
AutoItalicWords
InputAutoReplacements
ScriptMinSize

StyleMenulListing
CounterIncrements
CounterAssignments
PrivateEvaluationOptions
GroupPageBreakWithin
DefaultFormatType
NumberMarks
LinebreakAdjustments
VisioLineFormat
VisioFillFormat
Extent

NamePosition
CellTags

CellFrame
CellFrameColor
CellFrameLabels
CellFrameMargins
CellFramelLabelMargins
CelllLabelMargins
CelllLabelPositioning
CellMargins
CellDingbat
CellHorizontalScrolling
CellOpen
GeneratedCell
ShowCellBracket
ShowCellLabel
CellBracketOptions
Editable

Background
CellGroupingRules
WindowSize
WindowMargins
WindowFrame
WindowElements
WindowTitle
WindowToolbars
WindowMoveable
WindowFloating
WindowClickSelect
StyleDefinitions
FrontEndVersion
ScreenStyleEnvironment
PrintingStyleEnvironment
PrintingOptions
PrintingCopies
PrintingPageRange
PrivateFontOptions
Magnification
GenerateCell
CellAutoOverwrite
ImageSize
ImageMargins

OpenModelica System Documentation 85

4.4 File list

ImageRegion
ImageRangeCache
ImageCache
ModelEditor

Thisfile list lists al source files belonging to OMNotebook in alphabetical order with a short description.
In addition to these files a set of files are aso generated by Qt and ANTLR, but those files are not listed

below. The lines of code (LOC) specified for each file is with comments and blank rows.

File Description LOC

application.h Describe interface for the core application. 88

cell.cpp Implementation of the Cell class. 923

cell.h Definition of the Cell class, superclass for all cells. 234

cellapplication.cpp Implementation of the Cell Application class. 706

cellapplication.h Definition of the Cell Application class, 106
the main application class.

cellcommandcenter.cpp Implementation of the Cell CommandCenter class. 134

cellcommandcenter.h Definition of the CellCommandCenter class, 77
responsible for storing and executing commands.

cellcommands.cpp Implementation of all commands on cell level. 766

cellcommands.h Definition of all commands on cell level. 201

cellcursor.cpp Implementation of the CellCursor class. 580

cellcursor.h Definition of the Cell Cursor class, 131
asubclass of Cell used as a cursor within a document.

celldocument.cpp Implementation of the CellDocument class. 1359

celldocument.h Definition of the CellDocument class, 218
represent adocument, contains all cells.

celldocumentview.h Describe interface for a notebook window. 93
[deprecated]

cellfactory,cpp Implementation of the CellFactory class. 208

cellfactory.h Definition of the CellFactory class, 85
responsible for creating all cells.

cellgrammar.cpp Small text application, to test grammar description. 109
[deprecated]

cellgroup.cpp Implementation of the CellGroup class. 500

cellgroup.h Definition of the CellGroup, 129
asubclass of Cell used to group together cells.

cellparserfactory.cpp Implementation of the CellParserFactory class. 96

cellstyle.h Definition and Implementation of the Cell Style class, 131
holds different style options for cells.

chaptercountervisitor.cpp Implementation of the ChapterCounterVisitor class. 187

chaptercountercisitor.h Definition of the ChapterCounterVisitor class, 92
responsible for updating chapter counters.

command.h Describe interface for a commands. 134

commandcenter.h Describe interface for a command center. 74

commandcompl etion.cpp Implementation of the CommandCompletion class. 408

commandcompletion.h Definition of the CommandCompl etion class, 103
responsible for command compl etion.

commands.xml XML file containing all commands and keywords for 114
CommandCompletion class.

commandunit.h Definition and Implementation of the Cell Style class, 116

holds a command/keyword for command completion.

86

copytest.cpp

cursorcommands.h
cursorposvisitor.h

document.h
documentview.h
factory.h

highlighterthread.cpp
highlighterthread.h

imagesizedlg.h

ImageSizeDlg.iu
inputcell.cpp
inputcell.h

inputcelldelegate.h

lexer.g
modelicacolors.xml
nbparser.h
notebook.cpp
notebook.h

notebookcommands.h

notebookparser.cpp
notebookparser.h

notebooksocket.cpp
notebooksocket.h

omc_communicator.cpp
omc_communicator.hpp

omcinteractiveenvironment.cpp
omcinteractiveenvironment.h

OMNotebookHelp.onb
openmodelicahighlighter.cpp

openmodelicahighlighter.h

otherdlg.h

OtherDIg.ui

parser.g
parserfactory.h

printervisitor.cpp
printervisitor.h

Small text application, to test copy function for cells.
[deprecated]

Definition and implementation of all commands on cursor level.
Definition and implementation of the CursorPosVisitor class,
responsible for calculate cell cursor position.

Describe interface for a document.

Describe interface for a notebook window.

Describe interface for a cell factory.

Implementation of the HighlighterThread class.

Definition of the HighlighterThread class,

responsible for running the syntax highlighter.

Definition and implementation of the ImageSizeDlg class, adialog
for selecting size of an image.

Define user interface for ImageSizeDIg class.

Implementation of the InputCell class.

Definition of the InputCell class,

asubclass of Cell used to enter codein.

Describe the interface for an input cell delegate.

Grammar file for ANTLR, describe tokens.
Specifies color and font settings for the highlighter.
Describe interface for a parser.

Implementation of the NotebookWindow class.
Definition of the NotebookWindow class,

main window used to display a document.
Definition and implementation of all commands on
document/notebook level.

Implementation of the NotebookParser class.

Definition of the NotebookParser class, responsible for loading
Mathematica notebooks saved in fullform.

Implementation of the NotebookSocket class.

Definition of the NotebookSocket class, for communi-cation
between different OMNotebook processes.

Implementation of the OmcCommunicator class.

Definition of the OmcCommunicator class,

responsible for low level communication with OMC.

Implementation of the OmclnteractiveEnvironment class.
Definition of the OmclnteractiveEnvironment class,
ainteractive environment for evaluation with OMC.

Help documentation about OM Notebook.
Implementation of the OpenM odelicaHighlighter class.
Definition of the OpenModelicaHighlighter class,
asyntax highlighter for modelica code.

Definition and implementation of the OtherDlg class,
adialog for selecting an integer value.

Define user interface for OtherDlg class.

Grammar filefor ANTLR, describe grammar rules.
Describe interface for a parser factory.

Definition of the CellParserFactory,

responsible for creating correct parser for agiven file.
Implementation of the PrinterVisitor class.

Definition of the PrinterVisitor class,

creates the document that is sent to a printer.

78

227
135

180
87

283
95

126

114
1592
210

8l

330
47
66

3348

350

500

171
76

299
63

1420
201

116

114

226
83

302
101

OpenModelica System Documentation 87

puretextvisitor.cpp
puretextvisitor.h

qtapp.cpp
removehighlightervisitor.h

rule.h

seriaizingvisitor.cpp
seriadizingvisitor.h

stripstring.h

stylesheet.cpp
stylesheet.h

stylesheet.xml
syntaxhighlighter.h
textcell.cpp
textcell.h

textcursorcommands.cpp
textcursorcommands.h
treeview.cpp

treeview.h

updategroupcellvisitor.cpp
updategroupcel lvisitor.h

updatelinkvisitor.cpp
updatelinkvisitor.h

visitor.h
walker.g

xmlnodename.h
xmlparser.cpp
xmilparser.h

Implementation of the PureTextVisitor class.
Definition of the PureTextVisitor class,
extracts document contents and save it as pure text.

Contains the main() function.

Definition and implementation of the RemoveHighlighterVisitor
class, remove documents cells from the highlighter thread.
Implementation and definition of the Rule class,

holds format rules for cells and styles.

Implementation of the SerializingVisitor class.

Definition of the SerializingVisitor class,

responsible for saving adocument in .onb format.

Static functions for text manipulation, used in walker.g.

Implementation of the Stylesheet class.

Definition of the Stylesheet class,

holds and manages the different cell styles.

XML file containing specification of ass cell styles.
Define interface for a syntax highlighter.
Implementation of the TextCell class.

Definition of the TextCell class,

asubclass of Cell used to write normal text in.

Implementation of all commands on text cursor level.
Definition of al commands on text cursor level.
Implementation of the TreeView class.

Definition of the TreeView class,

represents an item in the tree view of documents.
Implementation of the UpdateGroupcellVisitor class.
Definition of the UpdateGroupcellVisitor class,
responsible for updating groupcell state when loading.

Implementation of the UpdateLinkVisitor class.
Definition of the UpdateLinkVisitor class,
responsible for updating links when needed.
Describe interface for avisitor.

Grammar file for ANTLR, describe how to walk to created tree and

create acell structure.

Define all xml name used in the .onb file format.
Implementation of the XML Parser class.
Definition of the XML Parser class,

responsible for loading files saved in .onb format.

Sum:

179
95

87
97

101

331
111

353

521
108

146

85
871
167

604
271
220
115

123
86

176
95

96
953

85

600
111

27037

88

4.5 Class overview

The following diagram contains the complete static structure of OMNotebook.
:
JAN

[QApplication | [QObject] QThread

JAN

[OpenModelicaHighlighter]

<< create instance >> «singleton»

CellApplication ! HighlighterThread
1 H «singleton»

«vitual class»
CommandCenter

CommandCompletion

CellCommandCenter

«singleton»
Stylesheet

«vitual class»

——1__ Application
'

e
Command

o 2

Cell _Jeé——]InputTreeView]

11 JAN
InputTreeView

i

QMainWindow
JAN

«vitual class»
DocumentView
N

<<create>>

-
o «witual class» |——{ CellFactory

Document CellStyle

1

I 1 «vitual class»
CellDocument Visitor TextCell

1 . CellCursor

1

1 CellGroup

1

1

NotebookWindow

InputCell

«vitual class»

R Factory

«vitual class»

CellParserFactory

JAN

«vitual class»
NBParser

ParserFactory

QTextBrowser
JAN

<< create >>

MyTextBrowser
MyTextEdit

CursorPosVisitor ‘

ASTFactory

PrinterVisitor ‘

[AntlrNotebookLexer

PureTextVisitor |

[AntirNotebookParser

SerializingVisitor ‘

[AntirNotebookTreeParser

UpdateGroupcellVisitor |

TTIOITT

UpdateLinkVisitor ‘

TextCursorChangeFontFamily ‘ CursorMoveUpCommand ‘

4{ RemoveHighlighterVisitor

TextCursorChangeFontFace ‘ CursorMoveAfterCommand ‘

L—{ ChapterCountervisitor _|

TextCursorChangeFontSize \ CursorMoveDownCommand \

TextCursorChangeFontStretch | SaveDocumentCommand | AddCellCommand |

I T 111

TextCursorChangeFontColor | OpenFileCommand | CreateNewCellCommand |

| TextCursorChangeTextAlignment | OpenOldFileCommand | DeleteCurrentCellCommand |

t—]{ TextCursorChangeVerticalAlignment | PrintDocumentCommand | DeleteSelectedCellsCommand |

TextCursorChangeMargin \ CloseFileCommand \ CopySelectedCellsCommand \

NewFileCommand PasteCellsCommand

TextCursorChangeBorder | ExportToPureText | ChangeStyleOnCurrentCellCommand _ f>—

4{
— TextCursorChangePadding
4{
4{

TextCursorinsertimage | EvalSelectedCells |

1
ChangeStyleOnSelectedCellsCommand kH
1

TextCursorlnsertLink | UpdateChapterCounters | MakeGroupCellCommand |

N N 0 N A R R N
N A R

4{
— TextCursorPasteText |

TextCursorCutText | TextCursorCopyText |

OpenModelica System Documentation 89

4.6 References

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents.Final thesis to be presented spring 2006, Dept. Computer and Information Science, Link&ping
University, Sweden.

Trolltech, Qt Product Overview, http://www.trolltech.com/products/qt/index.htmil.

van Heesch, Dimitri, www.doxygen.org (2006), Doxygen, http://www.doxygen.org.
ANTLR, About The Parser Generator ANTLR, http://www.antlr.org/about.html.

http://www.trolltech.com/products/qt/index.html
http://www.doxygen.org/
http://www.antlr.org/about.html

90

Chapter 5

OpenModelica Eclipse Plugin — MDT

To be updated, until then, consult the Modelica Development Tooling (MDT) website:
http://www.ida.liu.se/labs/pel ab/modelica/OpenM odeliceslMDT

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT

OpenModelica System Documentation 91

Appendix A

Contributors to OpenModelica

This Appendix lists the individua s who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, etc. The individuals
are listed for each year, from 1998 to the current year: the project leader and main author/editor of this
document followed by main contributors followed by contributorsin aphabetical order.

A.1 OpenModelica Contributors 2006
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkoping University, Linkoping, Sweden.
Elmir Jagudin, PELAB, Link&ping University, Linkping, Sweden.
Hakan Lundvall, PELAB, Linkoping University, LinkGping, Sweden.
Kgj Nystrom, PELAB, Linkoping University, Linkoping, Sweden.

L ucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Linktping University, Linkoping, Sweden.
Anders Sandholm, PELAB, Link&ping University, Linkping, Sweden.

A.2 OpenModelica Contributors 2005
Peter Fritzson, PELAB, Link&ping University, Linkoping, Sweden.

Peter Aronsson, PELAB, Link&ping University and MathCore Engineering AB, Link&ping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.
Hakan Lundvall, PELAB, Link&ping University, LinkOping, Sweden.

Ingemar Axelsson, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkoping University, LinkGping, Sweden.
Kaj Nystrém, PELAB, Linkoping University, Linkoping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkoping, Sweden.

A.3 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Link&ping University, Linkoping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Peter Bunus, PELAB, Link&ping University, Linkoping, Sweden.

92

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkoping University, LinkGping, Sweden.
Emma Larsdotter Nilsson, PELAB, Linkdping University, Linkdping, Sweden.
Kg Nystrom, PELAB, Linkdping University, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkoping, Sweden.
L ucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.
A.4 OpenModelica Contributors 2003
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkoping University, Link6ping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Bunus, PELAB, Linkdping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, Link6ping University, Linkoping, Sweden.
Eva-Lena Lengquist-Sandelin, PELAB, Linkdping University, Linkdping, Sweden.
Susanna Monemar, PELAB, Linkdping University, Linkoping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkping, Sweden.
Erik Svensson, MathCore Engineering AB, Link&ping, Sweden.
A.5 OpenModelica Contributors 2002
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkoping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linképing University, Linkoping, Sweden.
Henrik Johansson, PELAB, Linkdping University, Linkdping, Sweden
Andreas Karstrém, PELAB, Linkoping University, Linkdping, Sweden

A.6 OpenModelica Contributors 2001
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

A.7 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

A.8 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linkdping University, Linképing, Sweden

Peter Ronnquist, PELAB, Linkoping University, Linkodping, Sweden.

A.9 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Link&ping University, Linkping, Sweden.
David Kégedal, PELAB, LinkOping University, Linkdping, Sweden.

OpenModelica System Documentation 93

Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

95

Index

Error! Noindex entriesfound.

	�
	Table of Contents
	Preface
	Introduction
	OpenModelica Environment Structure
	OpenModelica Compiler Translation Stages
	Simplified Overall Structure of the Compiler
	Parsing and Abstract Syntax
	Rewriting the AST into SCode
	Code Instantiation
	The instClass and instElement Functions
	Output

	Invoking omc – the OpenModelica Compiler/Interpreter Subsyst
	Command-Line Invokation of the Compiler/Interpreter
	General Compiler Flags
	Compiler Debug Trace Flags

	The OpenModelica Client-Server Architecture
	Client-Server Type-Checked Command API for Scripting
	Examples

	Client-Server Untyped High Performance API
	Definitions
	Example Calls
	Untyped API Functions
	ERROR Handling

	Annotations
	Variable Annotations
	Connection Annotations
	Flat records for Graphic Primitives

	Discussion on Modelica Standardization of the Typed Command
	Naming conventions
	Return type
	Argument types
	Set of API Functions

	Detailed Overview of OpenModelica Packages
	Detailed Interconnection Structure of Compiler Packages
	OpenModelica Source Code Directory Structure
	OpenModelica/Compiler/
	OpenModelica/Compiler/runtime
	OpenModelica/testsuite
	OpenModelica/OMShell
	OpenModelica/c_runtime – OpenModelica Run-time Libraries
	libc_runtime.a
	libsim.a

	Short Overview of Compiler Modules
	Descriptions of OpenModelica Compiler Modules
	Absyn – Abstract Syntax
	Algorithm – Data Types and Functions for Algorithm Sections
	Builtin – Builtin Types and Variables
	Ceval – Constant Evaluation of Expressions and Command Inter
	ClassInf – Inference and Check of Class Restrictions
	ClassLoader – Loading of Classes from $MODELICAPATH
	Codegen – Generate C Code from DAE
	Connect – Connection Set Management
	Corba – Modelica Compiler Corba Communication Module
	DAE – DAE Equation Management and Output
	DAEEXT – External Utility Functions for DAE Management
	DAELow – Lower Level DAE Using Sparse Matrises for BLT
	Debug – Trace Printing Used for Debugging
	Derive – Differentiation of Equations from DAELow
	Dump – Abstract Syntax Unparsing/Printing
	DumpGraphviz – Dump Info for Graph visualization of AST
	Env – Environment Management
	Exp – Expression Handling after Static Analysis
	Graphviz – Graph Visualization from Textual Representation
	Inst – Code Instantiation/Elaboration of Modelica Models
	Overview:
	Code Instantiation of a Class in an Environment
	InstElementListList & Removing Declare Before Use
	The InstElement Function
	The InstVar Function
	Dependencies

	Interactive – Model Management and Expression Evaluation
	Lookup – Lookup of Classes, Variables, etc.
	Main – The Main Program
	Mod – Modification Handling
	ModSim – Communication for Simulation, Plotting, etc.
	ModUtil – Modelica Related Utility Functions
	Parse – Parse Modelica or Commands into Abstract Syntax
	Prefix – Handling Prefixes in Variable Names
	Print – Buffered Printing to Files and Error Message Printin
	RTOpts – Run-time Command Line Options
	SCode – Lower Level Intermediate Representation
	SimCodegen – Generate Simulation Code for Solver
	Socket – (Depreciated) OpenModelica Socket Communication Mod
	Static – Static Semantic Analysis of Expressions
	System – System Calls and Utility Functions
	TaskGraph – Building Task Graphs from Expressions and System
	TaskGraphExt – The External Representation of Task Graphs
	Types – Representation of Types and Type System Info
	Util – General Utility Functions
	Values – Representation of Evaluated Expression Values
	VarTransform – Binary Tree Representation of Variable Transf

	OMNotebook and OMShell
	Qt
	HTML documentation
	Mathematica Notebook Parser
	File list
	Class overview
	References

	OpenModelica Eclipse Plugin – MDT
	Index

