OpenModelica System Documentation

Version, 2008-01-27
for OpenModelica 1.4.5

January 2009

Peter Fritzson
Adrian Pop, Peter Aronsson,

David Akhvlediani, Bernhard Bachmann, Vasile Baluta, Constantin Belyaev,
Simon Bjorklén, Mikael Blom, David Broman, Francesco Casella, Filippo
Donida, Henrik Eriksson, Anders Fernstrom, Pavel Grozman, Daniel Hedberg,
Michael Hanke, Alf Isaksson, Kim Jansson, Daniel Kanth, Joel Klinghed, Juha
Kortelainen, Alexey Lebedev, Magnus Leksell, Oliver Lenord, Hakan Lundvall,
Henrik Magnusson, Eric Meyers, Hannu Niemist6, Kristoffer Norling, Per
Sahlin, Gerhard Schmitz, Klas Sjoholm, Kristian Stavaker, Niklas Worschech,
Robert Wotzlaw, Bjérn Zackrisson

Copyright by:
Programming Environment Laboratory — PELAB
Department of Computer and Information Science
Linkdping University, Sweden

Copyright © 1998-2009, Linkdpings universitet, Department of Computer and Information Science.
SE-58183 Linkoping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF THIS OSMC PUBLIC LICENSE (OSMC-PL).
ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM CONSTITUTES RECIPIENT'S
ACCEPTANCE OF THE OSMC PUBLIC LICENSE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-
PL) are obtained from LinkOpings universitet, either from the above address, from the URL:
http://www.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: www.ida.liu.se/projects/OpenModelica
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of Modelica Association.
MathModelica® is a registered trademark of MathCore Engineering AB.

Mathematica® is a registered trademark of Wolfram Research Inc.

Table of Contents

TADIE OF CONLENTS........eiteeeeee ettt b ettt b b et et e sb et et e e bt e be b eneanesbenean 3
=] 7 (oL RSB SR 7
(O gF=T o) (=T g R V' | # (oo (3T o] o OSSPSR 9
1.1 OpenModelica ENVIronmMENt SEIUCLUIE.........ccveiieieieciee st 9
1.2 OpenModelica Compiler Translation StAgESccccvvierereiierinireese e 10
13 Simplified Overall Structure of the COMPIIEr........coocvoiiiiiee e 10
1.4 Parsing and ADSEFACt SYNTAX.......cccviiviiriieriiese e 11
15 Rewriting the AST INt0 SCOAE......c.ciiiiiiciecie ettt 11
1.6 Model Flattening and INStaNtiation...........coocviieiereieieeiee e 12
1.7 The instClass and inStElement FUNCLIONS ..o 12
1.8 L0 1 1100 | USSR UTRPSRPRRN 14
Chapter 2 Invoking omc — the OpenModelica Compiler/Interpreter Subsystem...........cccccccve.e.. 15
2.1 Command-Line Invokation of the Compiler/INterpreter..........ccooveveveicviieeiene e e 15
2.1.1 General ComPIler FIAgS.......coiioiiiiie et 16
2111 Example of Generating Stand-alone Simulation Code.........c..ccocevvvcvveieinicierene, 16

2.1.2 Compiler Debug TraCe FIagS.......ccuiiviiiieiiiiiieiese s st sie ettt nne s 16
2.2 The OpenModelica Client-Server ArchiteCturecccveviiiie i 18
2.3 Client-Server Type-Checked Command API for SCriptingccccovovvireiiinnieneise e 19
2.3.1 EXAMPIES oottt sttt be et n e et nreareeneenreaneas 21
24 Client-Server Untyped High Performance API for Model QUEry........cccooovvvvvivieiciececeenn, 22
241 DEFINITIONS ...veiiciiiicecc ettt ettt e reera et e nreaneas 22
2.4.2 EXAMPIES OF CallS......iiiiieieiicieee et nrenne s 22
2.4.3 Untyped API Functions for Model Query and Manipulation...........ccccccocevivviveveieniennnnnns 23
24.3.1 ERROR HandliNG........ccovoiiiiiiircese sttt 27
244 ANNOTALIONS ..ottt ettt bbb e bbbt bbbttt b et b e n e 27
2441 Variable ANNOTALIONS.ccoiveiiirie et bbb 27
2442 COoNNECLION ANNOLALIONSviiiiiitiiteite ettt bbb 28
2443 Flat records for Graphic PrimItIVESccooviiiiiiiieieeese s 29

25 Discussion on Modelica Standardization of the Typed Command API...........c.ccccvevevernnnnne 30
251 NamMIiNG CONVENTIONScciiiiiiieii ettt re et e b st esre e s e besbeasaesaesresreeneas 30
T A o (- 101 1T Y] L RPN 30
2.5.3 ATQUIMENT LYPES ..ottt sttt sttt bbbt b e bbbt e bt e b e bt e b e nbe et e bt e nbeenbeenbeenbe e 30
2.5.4 St Of APL FUNCLIONS ..ottt bbbt ee 30
255 Example of Exporting XML from a Modelcccoooiiiiiinniiiieeee e, 31
25.6 Example of Exporting Matlab from a Modelcccooviieiiiiriieesee e 34
Chapter 3 Detailed Overview of OpenModelica Packages............ccccoviviveieiisiiieeese e 35
3.1 Detailed Interconnection Structure of Compiler Packagesccocveveveiieiiiievciie e 35
3.2 OpenModelica Source Code DiIreCtory StrUCTUIE.........cveveiereeieiere e 36
3.2.1 OpenModelica/COMPIIEIcvi et sreeneas 36
3.2.2 OpenModelica/Compiler/rUNTIME........coiiiieeie e 36
3.2.3 OpenMOAeliCATESISUITEvecvieiicieciecc sttt et besreeneas 37
3.24 OpenMOodeliCa/OMSNEIL..........coiiiiiee e enees 37
3.25 OpenModelica/c_runtime — OpenModelica Run-time Libraries.........cccccocevvvieiviiencnnns 37
3.25.1 lDC FUNTIME.AL .ot eaeens 37

3.25.2 1011 - U 37

3.3 Short Overview of Compiler MOAUIES...........covoiiiiiiccc e 38

34 Descriptions of OpenModelica Compiler ModUIESc.coceiieiiiiiiiiceeceec e 39
341 ADSYN — ADSIIACT SYNTAX ..e.veivriiieieiiesieiieie e e ettt see e eesteseesreeneeseesresneeneeeens 39
3.4.2 Algorithm — Data Types and Functions for Algorithm Sections............ccccceevvvivviveierennnns 54
3.4.3 Builtin — Builtin Types and VariablesSc.cccoveiiiiiieeic e 54
3.4.4 Ceval — Constant Evaluation of Expressions and Command Interpretation...................... 54
3.4.5 ClassInf — Inference and Check of Class ReStICtiONS...........coceoiiirereiniiii e 55
3.4.6 ClassLoader — Loading of Classes from $OPENMODELICALIBRARYccccovvinas 55
3.4.7 Codegen — Generate C Code from DAE...........cooviiiiiiiiiienee e 55
3.4.8 Connect — Connection Set ManagemeNt............cceivreeriereresieeresese e e e e seesraenees 55
3.4.9 Corba- Modelica Compiler Corba Communication Moduleccccovevveveiieieiienennns 55
3.4.10 DAE - DAE Equation Management and OUEPUL............cccovrereirienieneneeie e sie e 56
3.4.11 DAEEXT - External Utility Functions for DAE Management...........cccccoocevivvivnieniennnnnns 60
3.4.12 DAELow — Lower Level DAE Using Sparse Matrises for BLTcccccoocevvviiviiveienennens 60
3.4.13 Debug — Trace Printing Used for Debugging........cccccoveiiiiiiiiciececcece e 60
3.4.14 Derive — Differentiation of Equations from DAELOWcccceeeriiivniveieniin e 60
3.4.15 DFA — MetaModelica Pattern MatChingc.cocevviiiiieieiesnse e 60
3.4.16 Dump — Abstract Syntax Unparsing/Printingccccocvevveiiiiiniesiene s 61
3.4.17 DumpGraphviz — Dump Info for Graph visualization of ASTcccccviviieniiiniineeiene 61
3.4.18 Env — Environment Managementccoveiveiieieresieieseseseeeessesseseessessesseeseesaessesseesens 61
3.4.19 Exp - Expression Handling after Static ANalySiS.........c.cccvvviieiiiieiiciieie e 63
3.4.20 Graphviz — Graph Visualization from Textual Representationc.ccccceeviiiieiieiiennns 69
3.4.21 Inst - Code Instantiation/Elaboration of Modelica Models...........ccccoceoiiiininiiiiiciens 69

BiA2L L OVEIVIBW: .ttt sttt b e et b b e bbbt b e et e b et e bt sb e st et ene et e s beneeneaneas 69

3.4.21.2 Code Instantiation of a Class in an ENVIronmentccccoceevevievenesecveece e, 69

3.4.21.3 InstElementListList & Removing Declare Before USecccoovvivvveneiivinnienenins 69

3.4.21.4 The INStEIEMENt FUNCHION ..o 70

3.4.21.5 The INStVar FUNCHION.........ccociiii et 70

3.4.21.6 DEPENUBINCIES. ...cuviveiteeieeriesie e etee et ee et e e stesteeseeseestesseeseeseestesseaneeneeneesneens 70
3.4.22 Interactive — Model Management and Expression Evaluationcccccoeevvviviivniennnnnns 70
3.4.23 Lookup — Lookup of Classes, Variables, tC.cccccevviiiiiiiiiiiie e 72
3.4.24 Main — The Main PrOgramccocviieiiiiiiieene sttt sreenee e saesreeneas 72
3.4.25 MetaUtil — MetaModelica Handling..........cccovoiveiieiiiiinccsc e 72
3.4.26 Mod — Modification HanAlNgcccceiiiiiiiie i 72
3.4.27 ModSim — Communication for Simulation, Plotting, etC.ccccceviviiiiiicii e 73
3.4.28 ModUtil — Modelica Related Utility FUNCLIONS.........ccoveveiiiiiisesc e 73
3.4.29 Parse — Parse Modelica or Commands into Abstract SyntaX............ccccevvveveviiiieiesiieniennens 73
3.4.30 Patternm — MetaModelica Pattern MatChing..........ccocooviiiiiiineiiiene e 73
3.4.31 Prefix — Handling Prefixes in Variable Names..........cccccooeiiiiiinien e 74
3.4.32 Print — Buffered Printing to Files and Error Message Printing...........ccooveveviivieieeienennens 74
3.4.33 RTOpts — Run-time Command Ling OPtioNS.........ccoeviiiieririeisene e 74
3.4.34 SCode — Lower Level Intermediate Representationccocvveveeererienvsieeneseseeieneneens 74
3.4.35 SimCodegen — Generate Simulation Code for SOIVENccceveveviriivieee e 74
3.4.36 Socket — (Depreciated) OpenModelica Socket Communication Module.......................... 75
3.4.37 Static — Static Semantic Analysis OF EXPreSSiONS........ccvevevviieierienesesieneseseseeneesenseens 75
3.4.38 System — System Calls and Utility FUNCLIONS..........cccovieieiiiieeiereceee e 76
3.4.39 TaskGraph — Building Task Graphs from Expressions and Systems of Equations........... 76
3.4.40 TaskGraphExt — The External Representation of Task Graphs..........cccccccveevereiiiinniennnens 76
3.4.41 Types — Representation of Types and Type System INfOcccoevvieviiiiivnieic s, 77
3.4.42 Util — General Utility FUNCLIONScccooiiiiiiieciee e 80
3.4.43 Values — Representation of Evaluated EXpression Values...........ccoceveivienenennenenieenen, 81
3.4.44 VarTransform — Binary Tree Representation of Variable Transformations...................... 81
3.4.45 XMLDump — Dumping of DAE @S XIML........ccocoiiiiiiiiieie e 81
3.4.46 DAEQuery — Dumping of DAE as Matlab..........c.ccoeiiiiinineiiene e 81

Chapter 4 MetaModelica Pattern Matching Compilation ... 82

4.1 MetaModelica Matchcontinue EXPreSsion...........cccceiviiiieieic it 82
41,1 MOAUIES INVOIVEQ ..ottt nreeneas 82
A o1V o RS TSS 82
4112 1L PSPPSR 83
4113 PALEITIM L.ttt 83
A114 DA bbb bbbttt 84
4.2 Value DIOCK EXPIESSIONcviivieiieiiiiie ettt sttt sttt sttt te e sbesresreeneennens 86
4.2.1 MOAUIES INVOIVED.......ccuiiiieiicicce et re et sraeneas 86
T R N o1V o SRS 86
4212 N OO SO USROS URTURTROURPRPN 86
4213 [O0] 01T o PP 86
A.2.14 SEALIC ... eeueeeiitiitee ettt b 86
4215 o =] SO SSS 87
4.2.1.6 COUBUEN ...ttt ettt et e st e e te e s et e s beete e e et e e aeere et e reareens 87
4.3 MELAMOUEIICE LISt ...ttt r e eesreaneas 87
4.3. 1 MOAUIES INVOIVED........ocuiiieie et aesaesraeneas 87
I N oV o SRRSO 87
4312 L0700 [0 o SR 87
4313 DAE .. bbbt bbbt bbb 87
A.3.14 DA bbbttt bbb bt n et st eenea 87
4315 L] OSSR PRRSSSPRPN 88
4.3.1.6 7= T |) S 88
4317 e LU 1 010 TSP 88
4,318 SHALIC..eeiieieeiee ettt r ettt re R te e e e reare e 88
4319 LD L2 TSP PT PP TP 88
I O Y - 1 [T PSP SSPR 88
4.4 MetaMOdelica UNION TYPE ..voiviieieeiie ettt sttt 89
Chapter 5 OMNotebook and OMSREIL ..o 90
5.1 Qt90
5.2 HTML dOCUMENTALION.civiiiiiieic ettt te e e s resaeeneeeesreeneas 90
5.3 Mathematica NOtEDOOK PAISErc.oiiiiiiieiie et 90
5.4 L=] ST SSPRRIN 94
55 ClASS OVEIVIBW ...ttt sttt ettt et et e et e e st e e teese et e s beeteeseesaesbeateeseeneenraaneas 98
5.6] (=] £ [0 ST URSURPRSS 99
Chapter 6 OpenModelica Eclipse Plugin — IMDTcccooiiiiiiieiiieseceeee e 100
Chapter 7 How to Write Test Cases for OpenModelica Developmentccccoceveiiienennnnnn, 101
7.1 GELING STAMEAvecviecce ettt s be e be e e b e s beebeesseneesbeere e 101
7.2 DEVEIOPING @ TESE CASE.. vt iiiriieieiesiesteeie e se ettt sttt esae st e e eseesteeseeneeneeneeereens 101
7.21 Creating the .MO Filecoiiiiie e e 101
7.22 Creating the .mM0OS File.......cc.oiiiiiiice e 102
7221 SIMUIALION NOT FAIHTING ..o 102
7.2.2.2 SIMUIALION FaIl ..o 103
7.3 Status Of SIMUIALEA TESE CASESvecviiveeiiiieiie ettt sttt st re e saesbeste e e e e srearea 103
7.3.1 SHALUS TOF .MO FlES . ei ittt e e e e 103
7.3.2 StAtus fOr .MOS FIlES ..c.eecvieiiieciee e 103
7.4 Adding Test Cases t0 the SUILEccccveriiiiiie s 103
75 T L]0 =TSRSS 104
AT R O 1= ox A] ST OTROURPRPRSPRN 104

T - V|1 T 1= SRS 105

6

Appendix A Exercises (?? Incomplete, version 070204)c.coceoiieiieieiieieieeiece e 106
Al Exercise SimpleTestCase — Write @ SIMple TeSt CaSEcvcvvvrereiirereiee e 106
A2 Exercise UseAPIFunctions — Call Some OMC API FUNCLIONS.......c.cccovvereieneseeienene e 107
A3 Exercise OMCCorbaJava — Commands via Corba from a Java Client..............cccceevevennnnn. 107

A.3.1 How Corba Communication WOIKSccoeieiiiiieieie ettt 107

F N B @ 11V (@1 o (o) gV - V. WSS 108
A4 Corba Clients for C++ and PYthON...........coiviieiiiiceccce e 108
A5 Exercise newAPIFunction — Write a new Simple OMC API Functionc..cccceveviene.n, 108
A.6 Exercise ASTExpTransform — Write A Small Exp AST Transformationc.cccceeveenee. 108
A7 Exercise CodeGen — Generate Code for a new Builtin Function..........cccccoovvovvvevcncnnennnn, 108
A8 Exercise getClassNamesRecursive — Recursive Printout of Class Names in a Model Hierarchy

109

Appendix B Solutions to Exercises (?2INCOMPIELE)ooovviviiiieii e 110
B.1 Solution SimpleTestCase — Write a Simple Test Case........ccoveveiieiiieeni i 110
B.2 Solution UseAPIFunctions — Call Some OMC API FUNCLIONSccoeivviienieineieieeine 111
B.3 Solution OMCCorbalava — Commands via Corba from a Java Clientcccccoenenennne 111
B.4 Solution Corba Clients for C++ and PYthONccccveiiviiiiiece e 111
B.5 Solution newAPIFunction — Write a new Simple OMC API Function............cccccevevvinennn, 111
B.6 Solution ASTExpTransform — Write A Small Exp AST Transformationcccecvevnen. 111
B.7 Solution CodeGen — Generate Code for a new Builtin FUNCLIONccooiniiiiniiiiine 111
B.8 Solution getClassNamesRecursive — Recursive Printout of Class Names in a Model Hierarchy

111

Appendix C Contributors to OpenMOdeliCacceiveiiiiiiiicee s 114
C.l OpenModelica Contributors 2009.........c.cciiiiiiieiere e 114
C.2 OpenModelica Contributors 2008............c.coiiieiiiieieie e 115
C.3 OpenModelica CoNtribULOrs 2007ooviiiiieieere e see e 115
C4 OpenModelica Contributors 2006..........c.cceieiieieieie e ene 116
C5 OpenModelica Contributors 2005..........c.cciiiiieieeie e a e 116
C.6 OpenModelica ContribULOrs 2004oovoieiieieere e see e 116
C.7 OpenModelica Contributors 2003...........coiiiiiieiieie e nneas 116
C38 OpenModelica Contributors 2002...........ccceiiiieieieieceeee et 117
C.9 OpenModelica ContribULOrs 2001ooiiiiieieiere e nee 117
C.10 OpenModelica Contributors 2000...........c.eruereieereerieresieereere e e e e e see s sreeeesresre e 117
C.11 OpenModelica Contributors 1999..........ccoiiiiiieiecicie e 117
C.12 OpenModelica Contributors 1998..........ccovviiiiieiiicie et 117

Preface

This system documentation has been prepared to simplify further development of the OpenModelica
compiler as well as other parts of the environment. It contains contributions from a number of developers.

Chapter 1

Introduction

This document is intended as system documentation for the OpenModelica environment, for the benefit of
developers who are extending and improving OpenModelica. For information on how to use the
OpenModelica environment, see the OpenModelica users guide.

This system documentation, version May 2006, primarily includes information about the OpenModelica
compiler. Short chapters about the other subsystems in the OpenModelica environment are also included.

1.1 OpenModelica Environment Structure

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1
below.

- Eclipse Plugin Gra.phical Model
| ~| Editor/Browser \ / Editor/Browser
! y
: Interactive \
=" _ . Emacs session handler Textual
| Editor/Browser Model Editor
I
| DrModelica ‘// \

: NoteBook

M Model Editor E Modelica

" xecution Compiler

1

[

[\ /
Debugger

Figure 1-1. The overall architecture of the OpenModelica environment. Arrows denote data and control
flow. The interactive session handler receives commands and shows results from evaluating commands and
expressions that are translated and executed. Several subsystems provide different forms of browsing and
textual editing of Modelica code. The debugger currently provides debugging of an extended algorithmic
subset of Modelica, and uses Emacs or Eclipse for display and positioning. The graphical model editor is not
really part of OpenModelica but integrated into the system and available from MathCore Engineering AB
without cost for academic usage.

As mentioned above, this version of the system documentation only includes the OpenModelica
compilation subsystem, translating Modelica to C code. The compiler also includes a Modelica interpreter
for interactive usage and for command and constant expression evaluation. The subsystem includes
facilities for building simulation executables linked with selected numerical ODE or DAE solvers.
Currently the default solver is DASSL.

1.2 OpenModelica Compiler Translation Stages

The Modelica translation process is schematically depicted in Figure 1-2 below. Modelica source code
(typically .mo files) input to the compiler is first translated to a so-called flat model. This phase includes
type checking, performing all object-oriented operations such as inheritance, modifications etc., and fixing
package inclusion and lookup as well as import statements. The flat model includes a set of equations
declarations and functions, with all object-oriented structure removed apart from dot notation within names.
This process is a partial instantiation of the model, called code instantiation or elaboration in subsequent
sections.

The next two phases, the equation analyzer and equation optimizer, are necessary for compiling models
containing equations. Finally, C code is generated which is fed through a C compiler to produce executable
code.

Modelica
Source Code

@4““‘"‘“‘“‘ Modelica model

Translator
{}4’"""""'" Flat Model
Analyzer
@4‘“‘““““" Sorted equations
Optimizer
< Optim_ized sorted
equations
Code
Generator
@«-—--- C Code
C Compiler

{}4--—-—-- Executable

Simulation

Figure 1-2. Translation stages from Modelica code to executing simulation.

1.3 Simplified Overall Structure of the Compiler

The OpenModelica compiler is separated into a number of modules, to separate different stages of the
translation, and to make it more manageable. The top level function is called main, and appears as follows
in simplified form that emits flat Modelica (leaving out the code generation and symbolic equation
manipulation):

function main
input String f; // file name

algorithm
ast := Parser.parse(f);
scodel := SCode.elaborate(ast);
scode2 := Inst.elaborate(scodel);

DAE .dump(scode2?);
end main;

11

The simplified overall structure of the OpenModelica compiler is depicted in Figure 1-3, showing the most
important modules, some of which can be recognized from the above main function. The total system
contains approximately 40 modules.

Main *ao Lookup
® 'S
L LN 1 -
\ﬁ ‘i \\ 4 (Env, name) SCode.Class DAE pump Flat Modelica
Absyn SCode DAE
Parse > SCode Inst DAELow
lexplode
A4
(Exp.Exp, | n SimCodeGen
SCode.Exp| Types. Type) CodeGe
Exp.Exp Static "
C code
(Env, name)
l Values.Value
> Ceval

Figure 1-3. Some module connections and data flows in the OpenModelica compiler. The parser generates
abstract syntax (Absyn) which is converted to the simplified (SCode) intermediate form. The code
instantiation module (Inst) calls Lookup to find a name in an environment. It also generates the DAE
equation representation which is simplified by DAELow. The Ceval module performs compile-time or
interactive expression evaluation and returns values. The Static module performs static semantics and type
checking. The DAELow module performs BLT sorting and index reduction. The DAE module internally
uses Exp.Exp, Types.Type and Algorithm.Algorithm; the SCode module internally uses Absyn.

1.4 Parsing and Abstract Syntax

The function Parser .parse is actually written in C, and calls the parser generated from a grammar by the
ANTLR parser generator tool (ANTLR 1998). This parser builds an abstract syntax tree (AST) from the
source file, using the AST data types in a MetaModelica module called Absyn. The parsing stage is not
really part of the semantic description, but is of course necessary to build a real translator.

1.5 Rewriting the AST into SCode

The AST closely corresponds to the parse tree and keeps the structure of the source file. This has several
disadvantages when it comes to translating the program, and especially if the translation rules should be
easy to read for a human. For this reason a preparatory translation pass is introduced which translates the
AST into an intermediate form, called SCode. Besides some minor simplifications the SCode structure dif-
fers from the AST in the following respects:

e All variables are described separately. In the source and in the AST several variables in a class
definition can be declared at once, as in Real x, y[17];. In the SCode this is represented as two
unrelated declarations, as if it had been written Real x; Real y[17];.

e Class declaration sections. In a Modelica class declaration the public, protected, equation and
algorithm sections may be included in any number and in any order, with an implicit public section
first. In the SCode these sections are collected so that all public and protected sections are
combined into one section, while keeping the order of the elements. The information about which
elements were in a protected section is stored with the element itself.

One might have thought that more work could be done at this stage, like analyzing expression types and
resolving names. But due to the nature of the Modelica language, the only way to know anything about
how the names will be resolved during elaboration is to do a more or less full elaboration. It is possible to

12

analyze a class declaration and find out what the parts of the declaration would mean if the class was to be
elaborated as-is, but since it is possible to modify much of the class while elaborating it that analysis would
not be of much use.

1.6 Model Flattening and Instantiation

To be executed, classes in a model need to be instantiated, i.e., data objects are created according to the
class declaration. There are two phases of instantiation:

e The symbolic, or compile time, phase of instantiation is usually called flattening/elaboration or
code instantiation. No data objects are created during this phase. Instead the symbolic internal
representation of the model to be executed/simulated is transformed, by performing inheritance
operations, modification operations, aggregation operations, etc.

e The creation of the data object, usually called instantiation in ordinary object-oriented terminology.
This can be done either at compile time or at run-time depending on the circumstances and choice
of implementation.

The central part of the translation is the code instantiation or flattening/elaboration of the model. The
convention is that the top-level model in the instance hierarchy in the source file is elaborated, which
means that the equations in that model declaration, and all its subcomponents, are computed and collected.
The elaboration of a class is done by looking at the class definition, elaborating all subcomponents and
collecting all equations, functions, and algorithms. To accomplish this, the translator needs to keep track of
the class context. The context includes the lexical scope of the class definition. This constitutes the
environment which includes the variables and classes declared previously in the same scope as the current
class, and its parent scope, and all enclosing scopes. The other part of the context is the current set of
modifiers which modify things like parameter values or redeclare subcomponents.
model M
constant Real c = 5;
model Foo
parameter Real p = 3;
Real Xx;
equation
X = p * sin(time) + c;
end Foo;

Foo f(p = 17);
end M;

In the example above, elaborating the model M means elaborating its subcomponent f, which is of type Foo.
While elaborating f the current environment is the parent environment, which includes the constant c. The
current set of modifications is (p = 17), which means that the parameter p in the component ¥ will be 17
rather than 3.

There are many semantic rules that takes care of this, but only a few are shown here. They are also
somewhat simplified to focus on the central aspects.

1.7 The instClass and instElement Functions

The function instClass elaborates a class. It takes five arguments, the environment env, the set of mod-
ifications mod, the prefix inPrefix which is used to build a globally unique name of the component in a
hierarchical fashion, a collection of connection sets csets, and the class definition inScodeclass. It
opens a new scope in the environment where all the names in this class will be stored, and then uses a
function called instClassln to do most of the work. Finally it generates equations from the connection
sets collected while elaborating this class. The “result” of the function is the elaborated equations and some
information about what was in the class. In the case of a function, regarded as a restricted class, the result is
an algorithm section.

13

One of the most important functions is instElement, that elaborates an element of a class. An element
can typically be a class definition, a variable or constant declaration, or an extends-clause. Below is shown
only the rule in instElement for elaborating variable declarations.

The following are simplified versions of the instClass and instElement functions.

function instClass '"Symbolic instantiation of a class”

input Env inEnv;
input Mod inMod;
input Prefix inPrefix;

input Connect.Sets inConnectsets;
input Scode.Class inScodeclass;
output list<DAE.Element> outDAEelements;
output Connect.Sets outConnectSets;
output Types.Type outType;
algorithm
(outDAEelements, outConnectSets, outType) :=
matchcontinue (inEnv, inMod, inPrefix, inConnectsets, inScodeclass)
local
Env env,envl; Mod mod; Prefix prefix;
Connect.Sets connectSets,connectSetsl;
... n,r; list<DAE.Element> dael,dae2;
case (env,mod,pre,connectSets, scodeClass as SCode.CLASS(n,_,r,_))
equation
envl = Env.openScope(env);
(dael,_,connectSetsl,ciStatel,tys) = instClassin(envl,mod,prefix,
connectSets, scodeClass);

dae2 = Connect.equations(connectSetsl);
dae = listAppend(dael,dae?);
ty = mktype(ciStatel,tys);

then (dae, {3}, ty);
end matchcontinue;
end instClass;

function instElement '"Symbolic instantiation of an element of a class"

input Env inEnv;

input Mod inMod;

input Prefix inPrefix;

input Connect.Sets inConnectSets;

input Scode.Element inScodeElement;

output list<DAE.Element> outDAEelement;

output Env outEnv;

output Connect.Sets outConnectSets;

output list<Types.Var> outTypesVar;
algorithm

(outDAE, outEnv,outdConnectSets,outdTypesvVar) :=
matchcontinue (inEnv, inMod, inPrefix, inConnectSets, inScodeElement)
local
Env env,envl; Mod mods; Prefix pre;
Connect.Sets csets,csetsl;
... n, final, prot, attr, t, m;

case (env,mods,pre,csets, SCode.COMPONENT(n,final,prot,attr,t,m))

equation
vn = Prefix.prefixCrefCref(pre,Exp.CREF_IDENT(n,{}));
(cl,classmod) = Lookup.lookupClassClass(env,t) /7 Find the class definition
mm = Mod. lookupModification(mods,n);
mod = Mod.merge(classmod,mm); // Merge the modifications
modl = Mod.merge(mod,m);
prel = Prefix.prefixAddAdd(n,[].pre); // Extend the prefix
(dael,csetsl,ty,st) =

instClass(env,modl,prel,csets,cl) // Elaborate the variable
eq = Mod.modEquation(modl); // If the variable is declared with a default equation,

14

binding = makeBinding (env,attr,eq,cl); // add it to the environment
/7 with the variable.

envl = Env.extendFrameFrame_v(env, // Add the variable binding to the
Env.FRAMEVAR(N,attr,ty,binding)); // environment

dae2 = instModEquation(env,pre,n,mod1l); // Fetch the equation, if supplied

dae = listAppendAppend(dael, dae2); // Concatenate the equation lists

then (dae, envl,csetsl, { (n,attr,ty) })

end matchcontinue;
end instElement;

1.8 Output

The equations, functions, and variables found during elaboration (symbolic instantiation) are collected in a
list of objects of type DAEcomp:
uniontype DAEcomp
record VAR Exp.ComponentRef componentRef; VarKind varKind; end VAR;

record EQUATION Exp expl; Exp exp2; end EQUATION;
end DAEcomp;

As the final stage of translation, functions, equations, and algorithm sections in this list are converted to C
code.

Chapter 2

Invoking omc — the OpenModelica
Compiler/interpreter Subsystem

The OpenModelica Compiler/Interpreter subsystem (omc) can be invoked in two ways:

e Asawhole program, called at the operating-system level, e.g. as a command.
e Asaserver, called via a Corba client-server interface from client applications.

In the following we will describe these options in more detail.

2.1 Command-Line Invokation of the Compiler/Interpreter

The OpenModelica compilation subsystem is called omc (OpenModelica Compiler). The compiler can be
given file arguments as specified below, and flags that are described in the subsequent sections.

omc file.mo Return flat Modelica by code instantiating the last class in the file file.mo
omc Ffile.mof Put the flat Modelica produced by code instantiation of the last class within
file._mo in the file named file.mof.
omc file.mos Run the Modelica script file called File.mos.
omc Calling omc with no parameters will display the help:
$./omc

OpenModelica Compiler version: 1.4.5 http://www.OpenModelica.org
Please check the System Guide for full information about flags.

Usage: omc [-runtimeOptions +omcOptions] Model._mo|Model .mof|Script.mos
* runtimeOptions: call omc -help for seeing runtime options

* omcOptions:

++v]+version will print the version and exit
+s Model .mo will generate code for Model:

Model .cpp the model C++ code

Model_functions.cpp the model functions C++ code

Model .makefile the makefile to compile the model.

Model_init._txt the initial values for parameters
+d=interactive will start omc as a server listening on the socket interface
+d=interactiveCorba will start omc as a server listening on the Corba interface
+c=corbaName works togheter with +d=interactiveCorba;

will start omc with a different Corba session name;
this way multiple omc compilers can be started

+s generate simulation code

+annotationVersion=1.x what annotation version should we use
accept 1.x or 2.x (default) or 3.x

+noSimplify do not simplify expressions (default is to simplify)
+q run in quiet mode, ouput nothing
+metaModelica accept MetaModelica grammar and semantics
+d=flags set debug flags:
+d=bltdump dump the blt form
+d=failtrace print what function fail
+d=parsedump dump the parsing tree
+d=parseonly will only parse the given file and exit
+d=dynload display debug information on dynamic loading of compiled functions
* Examples:
omc Model.mo will produce flattened Model on standard output
omc Model .mof will produce flattened Model on standard output

omc Script.mos will run the commands from Script.mos

16

211 General Compiler Flags

The following are general flags for uses not specifically related to debugging or tracing:

omc +s File.mo/.mof Generate simulation code for the model last in file.mo or file.mof.
The following files are generated: modelname.cpp, modelname.h,
mode lname_init.txt, modelname.makefile.

omc +q Quietly run the compiler, no output to stdout.
omc +d=blt Perform BLT transformation of the equations.
omc +d=interactive Run the compiler in interactive mode with Socket communication. This

functionality is depreciated and is replaced by the newer Corba
communication module, but still useful in some cases for debugging
communication. This flag only works under Linux and Cygwin.

omc +d=interactiveCorba Run the compiler in interactive mode with Corba communication. This is
the standard communication that is used for the interactive mode.

omc ++v Returns the version number of the OMC compiler.

21.1.1 Example of Generating Stand-alone Simulation Code

To run omc from the command line and generate simulation code use the following flag:

omc +s model .mo

Currently the classloader does not load packages from MODELICAPATH automatically, so the .mo file
must contain all used classes, i.e., a “total model” must be created.

Once you have generated the C code (and makefile, etc.) you can compile the model using

make —F modelname.makefile

2.1.2 Compiler Debug Trace Flags
Run omc with a comma separated list of flags without spaces,
"omc +d=Fflgl,flg2,..."

Here flgl,flg2,... are one of the flag names in the leftmost column of the flag description below. The
special flag named al I turns on all flags.

A debug trace printing is turned on by giving a flag name to the print function, like:
Debug.fprint('li*", "Lookup information:...")

If omc is run with the following:
omc +d=foo, li,bar,

this line will appear on stdout, otherwise not. For backwards compatibility for debug prints not yet sorted
out, the old debug print call:

Debug.print
has been changed to a call like the following:
Debug.fprint("'olddebug",...)

Thus, if omc is run with the debug flag olddebug (or all), these messages will appear. The calls to
Debug.print should eventually be changed to appropriately flagged calls.

Moreover, putting a "*-"* in front of a flag turns off that flag, i.e.:

17

omc +d=all,-dump

This will turn on all flags except dump.

Using Graphviz for visualization of abstract syntax trees, can be done by giving one of the graphviz flags,
and redirect the output to a file. Then run ""dot —Tps filename —o filename.ps' or "dotty
filename"'.

The following is a short description of all available debug trace flags. There is less of a need for some of
these flags now when the recently developed interactive debugger with a data structure viewer is available.

All debug tracing

all Turn on all debug tracing.

none This flag has default value true if no flags are given.
General

info General information.

olddebug Print messages sent to the old Debug.print

Dump

parsedump Dump the parse tree.

dump Dump the absyn tree.

dumpgraphviz Dump the absyn tree in graphviz format.

daedump Dump the DAE in printed form.

daedumpgraphv Dump the DAE in graphviz format.
daedumpdebug Dump the DAE in expression form.
dumptr Dump trace.

beforefixmodout Dump the PDAE in expression form before moving the modification
equations into the VAR declarations.

Types

tf Types and functions.
tytr Type trace.

Lookup

li Lookup information.
lotr Lookup trace.

locom Lookup compare.
Static

sei Information

setr Trace

SCode

ecd Trace of elab_classdef.

Instantiation

insttr Trace of code instantiation.
Codegen

cg ??

cgtr Tracing matching rules
codegen Code generation.

Env

18

envprint Dump the environment at each class instantiation.
envgraph Same as envprint, but using graphviz.
expenvprint Dump environment at equation elaboration.
expenvgraph dump environment at equation elaboration.

2.2 The OpenModelica Client-Server Architecture

The OpenModelica client-server architecture is schematically depicted in Figure 2-1, showing two typical
clients: a graphic model editor and an interactive session handler for command interpretation.

Parse . .
Client: Graphic
J L _|—> Model Editor
Server: Main Program [
Including Compiler, Corba —
Interpreter, etc. | Client: Mosh
Interactive
Session Handler
- i ‘/V
]

SCode Y Interactive == Client: Eclipse
l T \ Untyped API Plugin
Inst

Typed Checked Command API

1 T system

« — plot
Ceval [« ot

Figure 2-1. Client-Server interconnection structure of the compiler/interpreter main program and interactive
tool interfaces. Messages from the Corba interface are of two kinds. The first group consists of expressions or
user commands which are evaluated by the Ceval module. The second group are declarations of classes,
variables, etc., assignments, and client-server API calls that are handled via the Interactive module, which
also stores information about interactively declared/assigned items at the top-level in an environment
structure.

The SCode module simplifies the Absyn representation, public components are collected together,
protected ones together, etc. The Interactive modul serves the untyped API, updates, searches, and keeps
the abstract syntax representation. An environment structure is not kept/cached, but is built by Inst at each
call. Call Inst for more exact instantion lookup in certain cases. The whole Absyn AST is converted into
Scode when something is compiled, e.g. converting the whole standard library if something.

Commands or Modelica expressions are sent as text from the clients via the Corba interface, parsed, and
divided into two groups by the main program:

e All kinds of declarations of classes, types, functions, constants, etc., as well as equations and
assignment statements. Moreover, function calls to the untyped API also belong to this group — a
function name is checked if it belongs to the API names. The Interactive module handles this group
of declarations and untyped API commands.

e Expressions and type checked APl commands, which are handled by the Ceval module.

The reason the untyped API calls are not passed via SCode and Inst to Ceval is that Ceval can only handle
typed calls — the type is always computed and checked, whereas the untyped API prioritizes performance
and typing flexibility. The Main module checks the name of a called function name to determine if it
belongs to the untyped API, and should be routed to Interactive.

Moreover, the Interactive module maintains an environment of all interactively given declarations and
assignments at the top-level, which is the reason such items need to be handled by the Interactive module.

19

2.3

The following are short summaries of typed-checked scripting commands/ interactive user commands for
the OpenModelica environment.

The emphasis is on safety and type-checking of user commands rather than high performance run-time
command interpretation as in the untyped command interface described in Section 2.4.

These commands are useful for loading and saving classes, reading and storing data, plotting of results,
and various other tasks.

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and
for the scripting function in question. In the following tables we briefly indicate the types or character of
the formal parameters to the functions by the following notation:

Client-Server Type-Checked Command API for Scripting

e Stringtyped argument, e.g. "hello", "myfile.mo".

The following are brief descriptions of the most common scripting commands available in the

TypeName — class, package or function name, e.g. MyClass, Model ica.Math.
VariableName — variable name, e.g. v1, v2, varsi[2].x, etc.

Integer or Real typed argument, e.g. 35, 3.14, xintvariable.

options — optional parameters with named formal parameter passing.

OpenModelica environment. Se also some example calls in the file

animate(className, options)
(NotYetimplemented)

Display a 3D visaulization of the latest simulation. Inputs:
TypeName className; Outputs: Boolean res;

cd(dir) Change directory. Inputs: String dir;
Outputs: Boolean res;
cdQ Return current working directory. Outputs: String res;

checkModel (className)
(NotYetimplemented)

Instantiate model, optimize equations, and report errors.

Inputs: TypeName className; Outputs: Boolean res;
clear(Q Clears everything: symboltable and variables.

Outputs: Boolean res;
clearClasses() Clear all class definitions from symboltable.

(NotYetimplemented)

Outputs: Boolean res;

clearLog() (NotYetimplemented)

Clear the log. Outputs: Boolean res;

clearVvariables()

Clear all user defined variables. Outputs: Boolean res;

closePlots()(NotYetimplemented)

Close all plot windows. Outputs: Boolean res;

getLog()(NotYetimplemented)

Return log as a string. Outputs: String log;

instantiateModel (className)

Instantiate model, resulting in a .mo¥ file of flattened Modelica.
Inputs: TypeName className; Outputs: Boolean res;

list(className)

Print class definition. Inputs: TypeName className;
Outputs: String classDef;

listQ)

Print all loaded class definitions. Output: String classdefs;

listvariables(Q)

Print user defined variables. Outputs: VariableName res;

loadFile(FileName)

Load models from file.
Inputs: String fileName Outputs: Boolean res;

loadModel (className)

Load the file corresponding to the class, using the Modelica class
name-to-file-name mapping to locate the file.
Inputs: TypeName className Outputs: Boolean res;

plot(variables, options)

Plots vars, which is a vector of variable names.

20

Inputs: VariableName variables; String title;
Boolean legend; Boolean gridLines;

Real xrange[2] i.e. {xmin,xmax};

Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plot(var, options)

(??Optional arguments xrange and yrange
not yet implemented)

Plots variable with name var.

Inputs: VariableName var; String title; Boolean
legend; Boolean gridLines;

Real xrange[2] i.e. {xmin,xmax};

Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plotParametric(varsl,
vars2, options)
(??partly implemented)

Plot each pair of corresponding variables from the vectors of
variables vars1, vars2 as a parametric plot.

Inputs: VariableName varsl[:]; VariableName
vars2[size(variablesl,1)]; String title; Boolean
legend; Boolean gridLines; Real range[2,2];
Outputs: Boolean res;

plotParametric(varl,
var2, options)

Plot the variable var2 against var1l as a parametric plot.

Inputs: VariableName varl; VariableName var2;
String title; Boolean legend; Boolean gridLines;
Real range[2,2]; Outputs: Boolean res;

plotVectors(vl, v2, options)
(??NotYetImplemented)

Plot vectors v1 and v2 as an x-y plot. Inputs: VariableName
vl; VariableName v2; Outputs: Boolean res;

readMatrix(fileName,
matrixName)
(??NotYetImplemented)

Read a matrix from a file given filename and matrixname.
Inputs: String fileName; String matrixName;
Outputs: Boolean matrix[:,:];

readMatrix(fileName,
matrixName, nRows, nColumns)
(??NotYetImplemented)

Read a matrix from a file, given file name, matrix name, #rows
and #columns. Inputs: String fileName;

String matrixName; int nRows; int nColumns;
Outputs: Real res[nRows,nColumns];

readMatrixSize(FfileName,
matrixName)
(??NotYetImplemented)

Read the matrix dimension from a file given a matrix name.
Inputs: String fileName; String matrixName;
Outputs: Integer sizes[2];

readSimulationResult(
fileName, variables, size)

Reads the simulation result for a list of variables and returns a
matrix of values (each column as a vector or values for a variable.)
Size of result is also given as input. Inputs: String fileName;
VariableName variables[:]; Integer size;

Outputs: Real res[size(variables,1),size)];

readSimulationResultSize(
fileName)
(??NotYetImplemented)

Read the size of the trajectory vector from a file. Inputs: String
fileName; Outputs: Integer size;

runScript(fileName)

Executes the script file given as argument.
Inputs: String fileName; Outputs: Boolean res;

savelLog(fileName)
(??NotYetImplemented)

Save the log to afile.
Inputs: String fileName; Outputs: Boolean res;

saveModel (FileName,
className) (NotYetimplemented)

Save class definition in a file. Inputs: String fileName;
TypeName className Outputs: Boolean res;

save(className)

Save the model (Al) into the file it was loaded from.

21

Inputs: TypeName className

saveTotalModel (fileName,
className)
(??NotYetImplemented)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className Outputs: Boolean res;

simulate(className, options)

Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfintervals;
Real outputlinterval; String method;

Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

system(FileName)

Execute system command. Inputs: String fileName; Outputs:

Integer res;

translateModel (className)
(??NotYetImplemented)

Instantiate model, optimize equations, and generate code. Inputs:
TypeName className; Outputs: SimulationObject res;

writeMatrix(fileName,
matrixName, matrix)
(??NotYetImplemented)

Write matrix to file given a matrix name and a matrix.
Inputs: String fileName; String matrixName; Real
matrix[:,:]; Outputs: Boolean res;

2.3.1 Examples

The following session in OpenModelica illustrates the use of a few of the above-mentioned functions.

>> model test Real x; end test;

Ok
>> s:=list(test);
>> g
"model test
Real x;
equation
der(x)=x;
end test;

>> jnstantiateModel (test)
"fclass test
Real x;
equation
der(x) = x;
end test;

>> simulate(test)
record

resultFile = "C:\OpenModelical.2.1\test res.plt"

end record

>> a:=1:10
{1,2,3,4,5,6,7,8,9,10}
>> a*2

{2,4,6,8,10,12,14,16,18,20}

>> clearVariables()
true
>> list(test)
"model test
Real x;
equation
der(x)=x;
end test;

22

>> clear()
true
>> list(Q)

The common combination of a simulation followed by a plot:

> simulate(mycircuit, stopTime=10.0);
> plot({R1.v});

2.4 Client-Server Untyped High Performance API for Model Query

The following API is primarily designed for clients calling the OpenModelica compiler/interpreter via the
Corba (or socket) interface to obtain information about and manipulate the model structure, but the
functions can also be invoked directly as user commands and/or scripting commands. The API has the
following general properties:

e Untyped, no type checking is performed. The reason is high performance, low overhead per call.

e All commands are sent as strings in Modelica syntax; all results are returned as strings.

e Polymorphic typed commands. Commands are internally parsed into Modelica Abstract syntax, but
in a way that does not enforce uniform typing (analogous to what is allowed for annotations). For
example, vectors such as {true, 3.14, "*hello*"} can be passed even though the elements have mixed
element types, here (Boolean, Real, String), which is currently not allowed in the Modelica type
system.

The API for interactive/incremental development consist of a set of Modelica functions in the Interactive
module. Calls to these functions can be sent from clients to the interactive environment as plain text and
parsed using an expression parser for Modelica. Calls to this API are parsed and routed from the Main
module to the Interactive module if the called function name is in the set of names in this API. All API
functions return strings, e.g. if the value true is returned, the text "true' will be sent back to the caller, but
without the string quotes.

e When a function fails to perform its action the string "*-1"" is returned.
o All results from these functions are returned as strings (without string quotes).

The API can be used by human users when interactively building models, directly, or indirectly by using
scripts, but also by for instance a model editor who wants to interact with the symbol table for
adding/changing/removing models and components, etc.

(??Future extension: Also describe corresponding internal calls from within OpenModelica)

241 Definitions

An Argument no. n, e.g. Al is the first argument, A2 is the second, etc.
<ident> Identifier, e.g. A or Modelica.

<string> Modelica string, e.g. "Nisse' or ""foo".

<expr> Arbitrary Modelica expression..

<cref> Class reference, i.e. the name of a class, e.g. Resistor.

242 Examples of Calls

Calls fulfill the normal Modelica function call syntax. For example:

saveModel (""MyResistorFile.mo" ,MyResistor)

23

will save the model MyResistor into the file "MyResistorFile.mo".
For creating new models it is most practical to send a model declaration to the API, since the API also
accepts Modelica declarations and Modelica expressions. For example, sending:

model Foo end Foo;

will create an empty model named Foo, whereas sending:

connector Port end Port;
will create a new empty connector class named Port.

Many more APl example calls can be found in the OMNotebook file ModelQueryAPlexamples.onb in the
OpenModelica testmodels directory.

2.4.3 Untyped API Functions for Model Query and Manipulation

The following are brief descriptions of the untyped API functions available in the OpenModelica
environment for obtaining information about models and/or manipulate models. API calls are decoded by
evaluateGraphicalApi and evaluateGraphicalApi2 in the Interactive package. Results from a call
are returned as as a text string (without the string delimiters ***). The functions in the typed API (Section
2.3) are handled by the Ceval package.

Executable example calls to these functions are available in the file ModelQueryAPIexample.onb in
the OpenModelica testmodels directory. T

---— Source Files ---

getSourceFile (Al<string>) Gets the source file of the class given as argument (A1).

setSourceFile (Al<string>,

r Associates the class given as first argument (Al) to a source
A2<string>)

file given as second argument (A2)

-—— Environment Variables ---

getEnvironmentvar(Al<string>) |Retrieves an evironment variable with the specified name.

setEnvironmentVar(Al<string>,

! Sets the environment variable with the specified name (Al) to
A2<string>)

a given value (A2).

--— Classes and Models ---

loadFile(Al<string>) Loads all models in the file. Also in typed API. Returns list of

names of top level classes in the loaded files.

loadFilelnteractiveQualified
(Al<string>)

Loads all models in the file. Also in typed API. Returns list of
gualified names of top level classes in the loaded files.

loadFilelnteractive(Al<string>)

Loads the file given as argument into the compiler symbol
table. ??What is the difference to loadFile??

loadModel (Al<cref>)

Loads the model (A1) by looking up the correct file to load in
$OPENMODEL ICAL I1BRARY. Loads all models in that file into
the symbol table.

saveModel (Al<string>,A2<cref>)

Saves the model (A2) in a file given by a string (Al). This call
is also in typed API.
NOTE: ?? Not yet completely implemented.

save(Al<cref>)

Saves the model (Al) into the file it was previously loaded
from. This call is also in typed API.

deleteClass(Al<cref>)

Deletes the class from the symbol table.

24

renameClass(Al<cref>, A2<cref>)

Renames an already existing class with from_name Al to
to_name (A2). The rename is performed recursively in all
already loaded models which reference the class Al.
NOTE: ??The implementation is currently buggy/very slow.

-—- Class Attributes ---

getElementsinfo(Al<cref>)

Retrieves the Info attribute of all elements within the given
class (Al). This contains information of the element type,
filename, isReadOnly, line information, name etc., in the form
of a vector containing element descriptors on record
constructor form rec(...), e.g.: "{rec(attrl=valuel,
attr2=value2 . ., rec(attrl=valuel,
attr2=value2 ...)}"

setClassComment(Al<cref>,A2<stri
ng>)

Sets the class (Al) string comment (A2).

addClassAnnotation(Al<cref>,
annotate=<expr>)

Adds annotation given by A2(in the form annotate=
classmod(. . .)) to the model definition referenced by Al.
Should be used to add Icon Diagram and Documentation
annotations.

getlconAnnotation(Al<cref>)

Returns the Icon Annotation of the class named by Al.

getDiagramAnnotation(Al<cref>)

Returns the Diagram annotation of the class named by Al.
NOTEZ1: Since the Diagram annotations can be found in base
classes a partial code instantiation is performed that flattens the
inheritance hierarchy in order to find all annotations.

NOTE2: Because of the partial flattening, the format returned
is not according the Modelica standard for Diagram
annotations.

getPackages(Al<cref>)

Returns the names of all Packages in a class/package named by
Al asalist, e.g.: {Electrical ,Blocks,Mechanics,
Constants,Math,Slunits}

getPackages()

Returns the names of all package definitions in the global
scope.

getClassNames(Al<cref>)

Returns the names of all class defintions in a class/package.

getClassNames()

Returns the names of all class definitions in the global scope.

getClassNamesForSimulation()

Returns a list of all “open models” in client that are candidates
for simulation.

setClassNamesForSimulation(Al<st
ring>)

Set the list of all “open models” in client that are candidates for
simulation. The string must be on format:
“{modell,model2,model3}”

getClassAttributes(Al<cref>)

Returns all the possible class information in the following
form: rec(attrl=valuel, attr2=value2 ...)

getClassRestriction(Al<cref>)

Returns the kind of restricted class of <cref>, e.g. "model",

"'connector”, "function", ""package", etc

getClassiInformation(Al<cref>)

Returns a list of the following information about the class Al:
{"'restriction”,"comment”,"filename.mo",{bool,bool,bool},{"re

adonly|writable" int,int,int,int}}

-—- Restricted Class Predicates

isPrimitive(Al<cref>)

Returns "true' if class is of primitive type, otherwise

25

“"false"

isConnector(Al<cref>)

Returns "true" if class is a connector, otherwise ""false"".

isModel (Al<cref>) Returns "true" if class is a model, otherwise "false".
isRecord(Al<cref>) Returns "true" if class is a record, otherwise "false™.
isBlock(Al<cref>) Returns "true" if class is a block, otherwise ""false".
isType(Al<cref>) Returns "true if class is a type, otherwise ""false".

isFunction(Al<cref>)

Returns "true" if class is a function, otherwise ""false.

isPackage(Al<cref>)

Returns "true™ if class is a package, otherwise "false".

isClass(Al<cref>)

Returns "true if Al is a class, otherwise ""false™.

isParameter(Al<cref>)

Returns "true" if Al is a parameter, otherwise "false".
NOTE: ??Not yet implemented.

isConstant(Al<cref>)

Returns true' if Al is a constant, otherwise "false".
NOTE: ??Not yet implemented.

isProtected(Al<cref>)

Returns "true' if Al is protected, otherwise false".
NOTE: ??Not yet implemented.

existClass(Al<cref)

Returns "true™ if class exists in symbolTable, otherwise
"false"

-—- Components ---

getComponents(Al<cref>)

Returns a list of the component declarations within class Al:
"{{Atype,varidA, "commentA"},{Btype,varidB,com

mentB"}, {...3}}"

setComponentProperties(Al<cref>,
A2<cref>,
A3<Boolean>,
A4d<Boolean>,
A5<Boolean>,
A6<Boolean>,
A7<String>,
A8<{Boolean,
A9<String>
)

Boolean}>,

Sets the following properties of a component (A2) in a class
(AL).

- A3 final (true/false)

- A4 flow (true/false)

- A5 protected(true) or public(false)
- A6 replaceable (true/false)

- A7 variablity: "constant™ or "discrete" or
""parameter or """’

- A8 dynamic_ref: {inner, outer} - two boolean values.

- A9 causality: "input’ or "output' or """

getComponentAnnotations(Al<cref>

)

Returns a list {. . .} of all annotations of all components in
Al, in the same order as the components, one annotation per
component.

getCrefInfo(Al<cref>)

Gets the component reference file and position information.
Returns a list: {file, readonly|writable, start
line, start column, end line, end column}

>> getCrefiInfo(BouncingBall)
{C:/0OpenModelical.4.1/testmodels/BouncingBall.
mo,writable,1,1,20,17}

addComponent(Al<ident>,A2<cref>,
A3<cref>,annotate=<expr>)

Adds a component with name (A1), type (A2), and class (A3)
as arguments. Optional annotations are given with the named
argument annotate.

26

deleteComponent(Al<ident>,
A2<cref>)

Deletes a component (A1) within a class (A2).

updateComponent(Al<ident>,
A2<cref>,
A3<cref>,annotate=<expr>)

Updates an already existing component with name (Al), type
(A2), and class (A3) as arguments. Optional annotations are
given with the named argument annotate.

renameComponent(Al<cref>,
A2<ident>,
A3<ident>)

Renames an already existing component with name A2 defined
in a class with name (A1), to the new name (A3). The rename
is performed recursively in all already loaded models which
reference the component declared in class A2. NOTE: ??The
implementation is currently buggy/very slow.

getNthComponentAnnotation(
Al<cref>,A2<int>)

Returns the flattened annotation record of the nth component
(AZ2) (the first is has no 1) within class/component Al. Consists
of a comma separated string of 15 values, see Annotations in
Section 2.4.4 below, e.g "false,10,30,..."

getNthComponentModification(
Al<cref>,A2<int>)

Returns the modification of the nth component (A2) where the
first has no 1) of class/component Al.

getComponentModifierValue(Al<cre
>, A2<cref)

Returns the value of a component (e.g. variable, parameter,
constant, etc.) (A2) in a class (Al).

setComponentModifierValue(Al<cre
>, A2<cref>,A3<exp>)

Sets the modfier value of a component (e.g. variable,
parameter, constant, etc.) (A2) in a class (Al) to an expression
(unevaluated) in A3.

getComponentModifierNames(Al<cre
>, A2<cref>)

Retrieves the names of ?? all components in the class.

-—- Inheritance ---

getlnheritanceCount(Al<cref>)

Returns the number (as a string) of inherited classes of a class.

getNthlnheritedClass(Al<cref>,
A2<int>)

Returns the type name of the nth inherited class of a class. The
first class has number 1.

getExtendsModifierNames(Al<cref>

)

Return the modifier names of a modification on an extends
clause. For instance:

)

"model test extends A(pl=3,p2(z=3)); end

test;"

getExtendsModifierNames(test,A) => {pl,p2}
getExtendsModifierValue(Al<cref> o

Return the submodifier value of an extends clause for

instance, "model test extends A(pl=3,p2(z=3));end
test;" getExtendsModifierValue(test,A,pl) =>=3

--- Connections ---

getConnectionCount(Al<cref>)

Returns the number (as a string) of connections in the model.

getNthConnection(Al<cref>,
A2<int>)

Returns the nth connection, as a comma separated pair of
connectors, e.g. "'R1.n,R2.p". The first has number 1.

getNthConnectionAnnotation(
Al<cref>,A2<int>)

Returns the nth connection annotation as comma separated list
of values of a flattened record, see Annotations in Section 2.4.4
below.

addConnection(Al<cref>,A2<cref>,
A3<cref>, annotate=<expr>)

Adds connection connect(A1,A2) to model A3, with
annotation given by the named argument annotate.

updateConnection(Al<cref>,
A2<cref>,A3<cref>,

Updates an already existing connection.

27

annotate=<expr>)

deleteConnection(Al<cref>,
A2<cref>,A3<cref>)

Deletes the connection connect(A1,A2) in class given by A3.

--- Equations ---

addEquation(Al<cref>,A2<expr>,
A3<expr>)(??NotYetimplemented)

Adds the equation A2=A3 to the model named by Al.

getEquationCount(Al<cref>)
(??NotYetImplemented)

Returns the number of equations (as a string) in the model
named Al. (This includes connections)

getNthEquation(Al<cref>,A2<int>)
(??NotYetImplemented)

Returns the nth (A2) equation of the model named by Al. e.g.
"der(x)=-1" or "connect(A.b,C.a)". The first has
number 1.

deleteNthEquation(Al<cref>,
A2<int>)(??NotYetimplemented)

Deletes the nth (A2) equation in the model named by A1. The
first has number 1.

--- Misc ---

getVersion()

returns the OMC version, e.g. "'1.4.2"

dumpXMLDAE (modelname[,asInSimula
tionCode=<Boolean>]

[, FilePrefix=<String>]
[,storelnTemp=<Boolean>]

[,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a
model using an XML representation, with optional parameters
Inputs: TypeName className;

Boolean asinSimulationCode; String filePrefix;
Boolean storelnTemp;

Boolean addMathMLCode;

Outputs: String xmlFile

In particular, asInSimulationCode defines where to stop in
the translation process (before dumping the model), the other
options are relative to the file storage: filePrefix for
specifying a different name and storelnTemp to use the
temporary directory. The optional parameter addMathMLCode
gives the possibility to don't print the MathML code within the
xml file, to make it more readable.Usage is trivial, just:
addMathMLCode=true/false (default value is false).
For an example, See Section 2.5.5.

exportDAEtoMatlab(mode lname)

Dumps the incidence matrix of model in a Matlab format. See
Section 2.5.6.

24.3.1 ERROR Handling

When an error occurs in any of the above functions, the string -1 is returned.

2.4.4 Annotations

Annotations can occur for several kinds of Modelica constructs.

2.4.4.1 Variable Annotations

Variable annotations (i.e., component annotations) are modifications of the following (flattened) Modelica

record:

record Placement

28

Boolean visible = true;
Real transformation.x=0;
Real transformation.y=0;
Real transformation.scale=1;
Real transformation.aspectRatio=1;
Boolean transformation.flipHorizontal=false;
Boolean transformation.flipVertical=false;
Real transformation.rotation=0;
Real iconTransformation.x=0;
Real iconTransformation.y=0;
Real iconTransformation.scale=1;
Real iconTransformation.aspectRatio=1;
Boolean iconTransformation.flipHorizontal=false;
Boolean iconTransformation.flipVertical=false;
Real iconTransformation.rotation=0;
end Placement;

2.4.4.2 Connection Annotations

Connection annotations are modifications of the following (flattened) Modelica record:

record Line
Real points[2][:];
Integer color[3]={0,0,0};
enumeration(None,Solid,Dash,Dot,DashDot,DashDotDot) pattern = Solid;
Real thickness=0.25;
enumeration(None,Open,Filled,Half) arrow[2] = {None, None};
Real arrowSize=3.0;
Boolean smooth=false;
end Line;

This is the Flat record Icon, used for Icon layer annotations

record lcon
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
Graphicltem[:] graphics;

end lcon;

The textual representation of this flat record is somewhat more complicated, since the graphics vector can
conceptually contain different subclasses, like Line, Text, Rectangle, etc. To solve this, we will use
record constructor functions as the expressions of these. For instance, the following annotation:
annotation (
Icon(coordinateSystem={{-10,-10}, {10,10}},

graphics={Rectangle(extent={{-10,-10}, {10,10}}),
Text({{-10,-10}, {10,10}}, textString="lcon')}));

will produce the following string representation of the flat record 1con:

{{{-10,10},{10,10}},{Rectangle(true,{0,0,0},{0,0,0},
LinePattern.Solid,FillPattern.None,0.25,BorderPattern.None,
{{-10,-10},{10,10}},0),Text({{-10,-10},{10,10}}, textString=""lcon')}}

The following is the flat record for the Diagram annotation:

record Diagram
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
Graphicltem[:] graphics;

end Diagram;

The flat records string representation is identical to the flat record of the 1con annotation.

29

2443 Flat records for Graphic Primitives

record Line
Boolean visible = true;
Real points[2,:];
Integer color[3] = {0,0,0};
LinePattern pattern = LinePattern.Solid;

Real thickness = 0.25;

Arrow arrow[2] = {Arrow.None, Arrow.None};
Real arrowSize = 3.0;

Boolean smooth = false;

end Line;

record Polygon
Boolean visible = true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real points[2,:];
Boolean smooth = false;
end Polygon;

record Rectangle
Boolean visible=true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
BorderPattern borderPattern = BorderPattern.None;
Real extent[2,2];
Real radius;

end Rectangle;

record Ellipse
Boolean visible = true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real extent[2,2];
end Ellipse;

record Text
Boolean visible = true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real extent[2,2];
String textString;
Real fontSize;
String fontName;
TextStyle textStyle[:];
end Text;

record BitMap
Boolean visible = true;
Real extent[2,2];
String fileName;
String imageSource;

end BitMap;

30

2.5 Discussion on Modelica Standardization of the Typed Command
API

An interactive function interface could be part of the Modelica specification or Rationale. In order to add
this, the different implementations (OpenModelica, Dymola, and others) need to agree on a common API.
This section presents some naming conventions and other API design issues that need to be taken into
consideration when deciding on the standard API.

25.1 Naming conventions

Proposal: function names should begin with a Non-capital letters and have a Capital character for each new
word in the name, e.g.

loadModel
openModelFile

25.2 Return type

There is a difference between the currently implementations. The OpenModelica untyped API returns
strings, ""OK™, "-1", ""false", ""true", etc., whereas the typed OpenModelica command APl and Dymola
returns Boolean values, e.g true or false.

Proposal: All functions, not returning information, like for instance getModelName, should return a
Boolean value. (??Note: This is not the final solution since we also need to handle failure indications for
functions returning information, which can be done better when exception handling becomes available).

25.3 Argument types

There is also a difference between implementations regarding the type of the arguments of certain
functions. For instance, Dymola uses strings to denote model and variable references, while OpenModelica
uses model/variable references directly.
For example, loadModel (*'Resistor'™) in Dymola, but loadModel (Resistor) in OpenModelica.
One could also support both alternatives, since Modelica will probably have function overloading in the
near future.

254 Set of API Functions

The major issue is of course which subset of functions to include, and what they should do.

Below is a table of Dymola and OpenModelica functions merged together. The table also contains a
proposal for a possible standard.

<s> == string
<cr> == component reference
[1 == list constructor, e.g. [<s>] == vector of strings
Dymola OpenModelica Description Proposal
listQ) listvariables(Q) List all user-defined listvariables()
variables.
listfunctions() - List builtin function listFunctions(Q)
names and descriptions.

31

listQ

List all loaded class
definitions.

listQ

list(<cref>)

List model definition of
<cref>.

list(<cref>) or
list(<string>)

classDirectory() cdQ) Return current currentDirectory()
directory.

eraseClasses() clearClasses() Removes models. clearClasses()

clear() clear() Removes all, including |[clearAll ()
models and variables.

- clearVariables() Removes all user clearVariables()
defined variables.

- clearClasses() Removes all class clearClasses()

definitions.

openModel (<string>)

loadFile(<string>)

Load all definitions
from file.

loadFile(<string>)

openModelFile(loadModel (<cref>) Load file that contains |loadModel (<cref>),
<string>) model loadModel (<string>
')
saveTotalModel (- Save total model saveTotalModel (<st
<string>,<string>) definition of a model in|ring>,<cref>) or
fil saveTotalModel (<st
anie. ring>,<string>)
- saveModel (<cref>, Save model in a file. saveModel (<string>
<string>) ,<cref>) or
saveModel (<string>
,<string>)
- createModel (<cref>) Create new empty createModel (<cref>
) or
model. createModel (<strin
9>)
eraseClasses(deleteModel (<cref>) Remove model(s) from |deleteModel(<cref>
{<string>}) symbol table) or
y ' deleteModel (<strin
g9>)
instantiateModel (instantiateClass(Perform code instantiateClass(<
<string> <cref>) instantiation of class. |CT€T>) or
instantiateClass(<
string>)

2.5.5

Example of Exporting XML from a Model

The following is an example of using the function dumpXMLDAE to export an XML representation of a

model.

model Circuitl

parameter Real C(min=5e-07, max=2e-06)=1e-06;
parameter Real R1=50;
parameter Real R2=50;
parameter Real R3(min=500, max=2000)=1000;

input Real i0;
Real 1i1;
Real 1i3;

Real vi1;

32

Real v2;
output Real Vv3;

equation
C*der(v1)=i0 - i1l;
vl - v2=il1*R1;
v2 - v3=i1*R2;
C*der(v3)=il - i3;
v3=R3*13;

end Circuitl;

loadFile("../path_to _mo_file/Circuitl.mo");
dumpXMLDAE(Circuitl);

will produce the following result:

{"<?xml version="1.0" encoding="UTF-8"?>
<dae xmlns:p1="http://www.w3.0rg/1998/Math/MathML" xmIns:xlink="http://www.w3.0rg/1999/xlink"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal ocation="http://home.dei.polimi.it/donida/Projects/AutoEdit/Images/DAE.xsd">
<variables dimension="11">
<orderedVariables dimension="6">
<variablesList>
<variable id="1" name="v3" variability="continuousState" direction="output"
type="Real" index="-1" origName="v3" fixed="true" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="2" name="v2" variability="continuous" direction="none"
type="Real" index="-1" origName="v2" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="3" name="v1" variability="continuousState" direction="none"
type="Real" index="-1" origName="v1" fixed="true" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="4" name="i3" variability="continuous" direction="none"
type="Real" index="-1" origName="i3" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="5" name="i1" variability="continuous" direction="none"
type="Real" index="-1" origName="i1" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="6" name="$dummy" variability="continuousState" direction="none"
type="Real" index="-1" origName="$dummy" fixed="true" flow="NonConnector">
<attributesValues>
<fixed string="true">
<MathML> <math xmlIns="http://www.w3.0rg/1998/Math/MathML"> <apply> <true/> </apply> </math> </MathML>
<[fixed>
</attributesValues>
</variable>
</variablesList>
</orderedVariables>
<knownVariables dimension="5">
<variablesList>
<variable id="1" name="i0" variability="continuous" direction="input"
type="Real" index="-1" origName="i0" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="2" name="R3" variability="parameter" direction="none"
type="Real" index="-1" origName="R3" fixed="true" flow="NonConnector">
<hindValueExpression>
<bindExpression string="1000">
<MathML> <math xmlns="http://www.w3.0rg/1998/Math/MathML"> <cn type="integer">1000 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
<attributesValues>
<minValue string="500.0">
<MathML> <math xmlIns="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">500.0 </cn> </math> </MathML>

33

</minValue>
<maxValue string="2000.0">
<MathML> <math xmIns="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">2000.0 </cn> </math> </MathML>
</maxValue>
</attributesValues>
</variable>
<variable id="3" name="R2" variability="parameter" direction="none"
type="Real" index="-1" origName="R2" fixed="true" flow="NonConnector">
<bindValueExpression>
<bindExpression string="50">
<MathML> <math xmlIns="http://www.w3.0rg/1998/Math/MathML"> <cn type="integer">50 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="4" name="R1" variability="parameter" direction="none"
type="Real" index="-1" origName="R1" fixed="true" flow="NonConnector">
<bindValueExpression>
<bindExpression string="50">
<MathML> <math xmlIns="http://www.w3.0rg/1998/Math/MathML"> <cn type="integer">50 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="5" name="C" variability="parameter" direction="none"
type="Real" index="-1" origName="C" fixed="true" flow="NonConnector">
<bindValueExpression>
<bindExpression string="1e-06">
<MathML> <math xmlIns="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">1e-06 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
<attributesValues>
<minValue string="5e-07">
<MathML> <math xmlIns="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">5e-07 </cn> </math> </MathML>
</minValue>
<maxValue string="2e-06">
<MathML> <math xmlns="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">2e-06 </cn> </math> </MathML>
</maxValue>
</attributesValues>
</variable>
</variablesList>
</knownVariables>
</variables>
<equations dimension="6">
<equation id="1">
C*der(vl)=i0-i1 <MathML>
<math xmlIns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/>
<apply>
<times/> <ci>C </ci> <apply> <diff/> <ci>v1 </ci> </apply> </apply> <apply> <minus/> <ci>i0 </ci> <ci>il </ci>
</apply>
<lapply>
</math>
</MathML>
</equation>
<equation id="2">
vli-v2=il*Rl <MathML>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/>
<apply> <minus/> <ci>v1 </ci> <ci>v2 </ci> </apply>
<apply> <times/> <ci>il </ci> <ci>R1 </ci> </apply>
</apply>
</math>
</MathML>
</equation>
<equation id="3">
v2-v3=il*R2 <MathML>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/>
<apply> <minus/> <ci>v2 </ci> <ci>v3 </ci> </apply>
<apply> <times/> <ci>il </ci> <ci>R2 </ci> </apply>
</apply>

34

</math>
</MathML>
</equation>
<equation id="4">
C*der(v3)=il-i3 <MathML> <math xmIns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/>
<apply> <times/> <ci>C </ci> <apply> <diff/> <ci>v3 </ci> </apply> </apply>
<apply> <minus/> <ci>il </ci> <ci>i3 </ci> </apply>
</apply>
</math>
</MathML>
</equation>
<equation id="5">
v3=R3*i3 <MathML> <math xmIns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/> <ci>v3 </ci> <apply> <times/> <ci>R3 </ci> <ci>i3 </ci> </apply> </apply>
</math>
</MathML>
</equation>
<equation id="6">
der($dummy) = sin(time * 628.318530717) <MathML> <math xmlIns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/> <apply> <diff/> <ci>$dummy </ci> </apply>
<apply> <sin/> <apply> <times/> <ci>time </ci> <cn type="real">628.318530717 </cn> </apply> </apply> </apply>
</math>
</MathML>
</equation>
</equations>
</dae>","The model has been dumped to xml file: Circuitl.xml"}

2.5.6 Example of Exporting Matlab from a Model

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname) ;

This command dumps the mathematical representation of a model using a Matlab representation. Example:

$ cat daequery.mos
loadFile(*"'BouncingBall.mo™);
exportDAEtoMatlab(BouncingBall);
readFile('BouncingBall_imatrix.m"™);

$ omc daequery.mos
true

"The equation system was dumped to Matlab Ffile:BouncingBall_imatrix.m"
% Incidence Matrix

%
% number of rows: 6

IM={[3,-6],[1,{"if", "true”,"==" {3},{}.}].[2.{"if", "edge(impact)”
{3}.{5}.31.[4.2].[5.{"if", "true”,"==" {4},{}.}1.[6.-51}:

VL = {"foo","v_new", "impact”,"flying","v","h"};

EqStr = {"impact = h <= 0.0;","foo = if impact then 1 else 2;","when {h <= 0.0 AND
v <= 0.0, impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end
when; ", *when {h <= 0.0 AND v <= 0.0, impact} then flying = v_new > 0.0; end
when; ", "der(v) = if flying then -g else 0.0;","der(h) = v;"};

OldeEqgStr={"fclass BouncingBall*, "parameter Real e = 0.7 "coefficient of
restitution”; ", "parameter Real g = 9.81 "gravity acceleration";","Real h(start =
1.0) "height of ball";","Real v "velocity of ball";","Boolean flying(start = true)
"true, if ball is flying";", "Boolean impact;","Real v_new;", "Integer

foo; ", "equation®,” impact = h <= 0.0;"," foo = if impact then 1 else 2;","
der(v) = if flying then -g else 0.0;"," der(h) = v;"," when {h <= 0.0 AND v <=
0.0, impact} then®," v_new = if edge(impact) then (-e) * pre(v) else 0.0;","
flying = v_new > 0.0;"," reinit(v,v_new);"," end when;","end
BouncingBall;",""};"

Chapter 3

Detailed Overview of OpenModelica Packages

This chapter gives overviews of all packages in the OpenModelica compiler/interpreter and server
functionality, as well as the detailed interconnection structure between the modules.

3.1 Detailed Interconnection Structure of Compiler Packages

A fairly detailed view of the interconnection structure, i.e., the main data flows and and dependencies
between the modules in the OpenModelica compiler, is depicted in Figure 3-1 below. (??Note that there is a
Word bug that arbitrarily changes the width of the arrows)

: Mod Connect DAE Dump :
Main - T T Tone Flat Modelica
® = Types.Mod | SCode.Mod Exp.Componentref
AR DAEEXT
IR Prefix Lookup 3
Prefix.Prefix Exp.Ident T SCode Class Derive VarTransform
ClassLoader (Env, name) —
Exp.Exp Exp.Exp
I | DAE DAE,
1 I DAE: Equations ¥ y J substlist
mo | Parse Absyn | SCode SCode | Inst Algorithms DAELow
/explode
1 tO_‘ DAE: Fuhctions
DAELow.DAELow
ClassInf.Event| ClassInf.State (Exp.Exp, \ y
v | SCode.Exp Types.Type) Exp.Exp .
—_ 2 l I | CodeGen [e— SimCodeGen
Classinf Static Values.Value
Data Type l =
. C code
Modules: Exp.Exp Patternm N
(Env, name) v Utility
Absyn SCode J Ceval t Modules:
DFA
Types DAE Dump Debug

Print System RTOpts

Figure 3-1. Module connections and data flows in the OpenModelica compiler.

One can see that there are three main kinds of modules:

36

Function modules that perform a specified function, e.g. Lookup, code instantiation, etc.

Data type modules that contain declarations of certain data types, e.g. Absyn that declares the
abstract syntax.

Utility modules that contain certain utility functions that can be called from any module, e.g. the
Util module with list processing funtions.

Note that this functionality classification is not 100% clearcut, since certain modules performs several
functions. For example, the SCode module primarily defines the lower-level SCode tree structure, but also
transforms Absyn into SCode. The DAE module defines the DAE equation representation, but also has a
few routines to emit equations via the Dump module.

We
.

3.2

have the following approximate description:
The Main program calls a number of modules, including the parser (Parse), SCode, etc.

The parser generates abstract syntax (Absyn) which is converted to the simplified (SCode)
intermediate form.

The code instantiation module (Inst) is the most complex module, and calls many other modules. It
calls Lookup to find a name in an environment, calls Prefix for analyzing prefixes in qualified
variable designators (components), calls Mod for modifier analysis and Connect for connect
equation analys. It also generates the DAE equation representation which is simplified by DAELow
and fed to the SimCodeGen code generator for generating equation-based simulation code, or
directly to CodeGen for compiling Modelica functions into C functions

The Ceval module performs compile-time or interactive expression evaluation and returns values.
The Static module performs static semantics and type checking.

The DAELow module performs BLT sorting and index reduction. The DAE module internally uses
Exp.Exp, Types.Type and Algorithm.Algorithm; the SCode module internally uses Absyn

The Vartransform module called from DAELow performs variable substitution during the symbolic
transformation phase (BLT and index reduction).

The Patternm module performs compilation of pattern match expressions in the MetaModelica
language extension, calling the DFA and MetaUtil modules.

OpenModelica Source Code Directory Structure

The following is a short summary of the directory structure of the OpenModelica compiler and interactive
subsystem.

3.2.1

OpenModelica/Compiler/

Contains all MetaModelica files of the compiler, listed in Section ??.

3.2.2

OpenModelica/Compiler/runtime

This directory contains runtime modules, both for the compiler and for interactive system and
communication needs. Mostly written in C.

rtops.c Accessing compiler options.

printimpl.c Print routines, e.g. for debug tracing.

socketimpl.c Phased out. Should not be used. Socket communication between clients and the
OpenModelica main program.

corbaimpl.cpp Corba communication between clients and the OpenModelica main program.

ptolemyio.cpp 10 routines from the Ptolemy system to store simulation data for plotting, etc.

Open Source Modelica System Documentation 37

systemimpl.c Operating system calls.
daeext.cpp C++ routines for external DAE bit vector operations, etc.

3.2.3 OpenModelicaltestsuite

This directory contains the Modelica testsuite consisting two subdirectories mofiles and mosfiles. The
moFi les directory contains more than 200 test models. The mosFi les directory contains a few Modelica
script files consisting of commands according to the general command API.

3.2.4 OpenModelica/OMShell

Files for the OpenModelica interactive shell, called OMShel 1 for OpenModelica Shell.

3.25 OpenModelica/c_runtime — OpenModelica Run-time Libraries

This directory contains files for the Modelica runtime environment. The runtime contains a number of C
files, for which object code versions are are packaged in of two libraries, libc_runtime.a and
libsim.a. We group the C files under the respective library, even though the files occur directly under the
c_runtime directory.

3.25.1 libc_runtime.a

The libc_runtime is used for executing Modelica functions that has been generated C code for. It
contains the following files.

boolean_array.* How arrays of booleans are represented in C.

integer_array.* How arrays of integers are represented in C.
real_array.* How arrays of reals are represented in C.
string_array.* How arrays of strings are represented in C.
index_spec.c Keep track of dimensionsizes of arrays.
memory_pool .c Memory allocation for local variables.
read_write.* Reading and writing of data to file.
utility.c Utility functions

3.25.2 libsim.a

The library Libsim.a is the runtime library for simulations, it contains solvers and a main function for the
simulation. The following files are included:

simulation_runtime.* Includes the main function, solver wrappers,etc.

daux.f Auxiliary Fortran functions.

ddasrt.f DDASRT solver.

ddassl.f DASSL solver.

dlamch.f Determine machine parameters for solvers.
dlinpk.f Gaussian elimination routines, used by solvers.
Isame.f LAPACK axuiliary routine LSAME.

Non-linear solver:

hybrdl.f Non-linear solver with approximate jacobian.
hybrj.f Non-linear solver with analythical jacobian.- alternative for non-linear solver.

38

fdjacl.f
enorm.f

dpmpar.f
dogleg.T

Helper routines
Helper routines.
Helper routines
Helper routines

3.3 Short Overview of Compiler Modules

The following is a list of the OpenModelica compiler modules with a very short description of their
functionality. Chapter 3 describes these modules in more detail.

??Note: Some new modules in version 1.4.5 are not yet listed and described here and in Chapter 3.

Absyn
Algorithm
Builtin
Ceval
ClassInf
ClassLoader
Codegen
Connect
Corba
DAE
DAEEXT
DAELow
Debug
Derive
DFA
Dump
DumpGraphviz
Env

Exp
Graphviz
Inst
Interactive

Lookup
Main
MetaUtil
Mod
ModSim
ModUtil
Parse
Patternm
Prefix
Print
RTOpts

Abstract Syntax

Data Types and Functions for Algorithm Sections
Builtin Types and Variables

Evaluation/interpretation of Expressions.

Inference and check of class restrictions for restricted classes.
Loading of Classes from $OPENMODELICALIBRARY
Generate C Code from functions in DAE representation.
Connection Set Management

Modelica Compiler Corba Communication Module

DAE Equation Management and Output

External Utility Functions for DAE Management

Lower Level DAE Using Sparse Matrises for BLT
Trace Printing Used for Debugging

Differentiation of Equations from DAELow

A deterministic finite automata (DFA) used by the pattern match algorithm in Patternm.
Abstract Syntax Unparsing/Printing

Dump Info for Graph visualization of AST

Environment Management

Typed Expressions after Static Analysis /*updated)
Graph Visualization from Textual Representation

Code Instantiation/Elaboration of Modelica Models

Model management and expression evaluation — the function Interactive.evaluate. Keeps
interactive symbol tables. Contains Graphic Model Editor API.

Lookup of Classes, Variables, etc.

The Main Program. Calls Interactive, the Parser, the Compiler, etc.
MetaModelica Related Utility Functions

Modification Handling

[*Depreciated, not used). Previously communication for Simulation, Plotting, etc.
Modelica Related Utility Functions

Parse Modelica or Commands into Abstract Syntax

The MetaModelica pattern match compilation algorithm.

Handling Prefixes in VVariable Names

Buffered Printing to Files and Error Message Printing

Run-time Command Line Options

Open Source Modelica System Documentation 39

SCode Simple Lower Level Intermediate Code Representation.

SimCodegen Generate simulation code for solver from equations and algorithm sections in DAE.
Socket (Partly Depreciated) OpenModelica Socket Communication Module

Static Static Semantic Analysis of Expressions

System System Calls and Utility Functions

TaskGraph Building Task Graphs from Expressions and Systems of Equations. Optional module.
TaskGraphExt External Representation of Task Graphs. Optional module.

Types Representation of Types and Type System Info

util General Utility Functions

Values Representation of Evaluated Expression Values

VarTransform Binary Tree Representation of Variable Transformations
XMLDump Dump the DAE representation of a model in XML format
DAEQuery Dump the incidence matrix of a model in Matlab format

3.4 Descriptions of OpenModelica Compiler Modules

The following are more detailed descriptions of the OpenModelica modules.

3.4.1 Absyn — Abstract Syntax

This module defines the abstract syntax representation for Modelica in MetaModelica. It primarily contains
datatypes for constructing the abstract syntax tree (AST), functions for building and altering AST nodes
and a few functions for printing the AST:

e Abstract Syntax Tree (Close to Modelica)
— Complete Modelica 2.2
— Including annotations and comments
e Primary AST for e.g. the Interactive module
— Model editor related representations (must use annotations)
e Functions
— A few small functions, only working on Absyn types, e.g.:
e pathToCref(Path) => ComponentRef
e joinPaths(Path, Path) => (Path)
* etc.

The constructors defined by the Absyn module are primarily used by the walker
(Compiler/absyn_bui lder/walker.g) which takes an ANTLR internal syntax tree and converts it into
an MetaModelica abstract syntax tree. When the AST has been built, it is normally used by the SCode
module in order to build the SCode representation. It is also possible to send the AST to the unparser
(Dump) in order to print it.

For details regarding the abstract syntax tree, check out the grammar in the Modelica language
specification.

The following are the types and datatypes that are used to build the AST:

An identifier, for example a variable name:
type ldent = String;

40

Info attribute type.

The Info attribute type is not needed to represent Modelica language constructs or for the semantics.
Instead, Info contains various pieces of information needed by tools for debugging and browsing support.

uniontype Info

""Modextension: Various pieces of information needed for debugging and browsing"
record INFO

String fileName "fileName where the class is defined in" ;

Boolean isReadOnly "isReadOnly : (true|false). Should be true for libraries™ ;
Integer lineNumberStart;
Integer columnNumberStart;
Integer lineNumberEnd;
Integer columnNumberEnd;
end INFO;
end Info;

Programs, the top level construct:

A program is simply a list of class definitions declared at top level in the source file, combined with a
within clause. that indicates the hierarchical position of the program.

Nodes such as BEGIN_DEFINITION and END_DEFINITION can be used for representing packages and
classes that are entered piecewise, e.g., first entering the package head (as BEGIN_DEFINITION), then the
contained definitions, then an end package repesented as END_DEFINITION.

uniontype Program
record PROGRAM
list<Class> classes 'List of classes" ;

Within within_ "Within clause" ;
end PROGRAM;

record BEGIN_DEFINITION

Path path "path for split definitions" ;
Restriction restriction "Class restriction” ;
Boolean partial _ "true if partial” ;
Boolean encapsulated_ "true if encapsulated" ;

end BEGIN_DEFINITION;

record END_DEFINITION

ldent name "name for split definitions" ;
end END_DEFINITION;

record COMP_DEFINITION

ElementSpec element “element for split definitions"” ;
Option<Path> insertinto "insert into, Default: NONE" ;
end COMP_DEFINITION;

record IMPORT_DEFINITION
ElementSpec importElementFor "For split definitions" ;

Option<Path> insertinto "Insert into, Default: NONE" ;
end IMPORT_DEFINITION;

end Program;

Within Clauses:

uniontype Within
record WITHIN
Path path;
end WITHIN;

record TOP end TOP;

end Within;

Open Source Modelica System Documentation 41

Classes:

A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared
class restriction, and the body of the declaration.
uniontype Class

record CLASS
ldent name;

Boolean partial_ "true if partial"” ;
Boolean final _ "true if final” ;
Boolean encapsulated_ "true if encapsulated" ;

Restriction restricion '"Restriction" ;
ClassDef body;
Info info "Information: FileName the class is defined in +
isReadOnly bool + start line no + start column no +
end line no + end column no'';
end CLASS;

end Class;

ClassDef:

The ClassDef type contains the definition part of a class declaration. The definition is either explicit, with
a list of parts (public, protected, equation, and algorithm), or it is a definition derived from
another class or an enumeration type.

For a derived type, the type contains the name of the derived class and an optional array dimension
and a list of modifications.

uniontype ClassDef
record PARTS
list<ClassPart> classParts;
Option<String> comment;
end PARTS;

record DERIVED
TypeSpec typeSpec "typeSpec specification includes array dimensions';
ElementAttributes attributes ;
list<ElementArg> arguments;
Option<Comment> comment;
end DERIVED;

record ENUMERATION
EnumDef enumLiterals;
Option<Comment> comment;

end ENUMERATION;

record OVERLOAD
list<Path> functionNames;
Option<Comment> comment;

end OVERLOAD;

record CLASS_EXTENDS
Ident name "class to extend" ;
list<ElementArg> arguments;
Option<String> comment;
list<ClassPart> parts;
end CLASS_EXTENDS;

record PDER

Path functionName;
list<ldent> vars "derived variables" ;
end PDER;

end ClassDef;

42

EnumDef:

The definition of an enumeration is either a list of literals or a colon, :, which defines a supertype of all
enumerations.

uniontype EnumDef
record ENUMLITERALS
list<EnumLiteral> enumLiterals "enumLiterals" ;
end ENUMLITERALS;

record ENUM_COLON end ENUM_COLON;

end EnumDef;

EnumLiteral:

An enumeration type contains a list of EnumLiteral, which is a name in an enumeration and an optional
comment.

uniontype EnumLiteral

record ENUMLITERAL
ldent literal
Option<Comment> comment
end ENUMLITERAL;

end EnumLiteral;
ClassPart:

A class definition contains several parts. There are public and protected component declarations, type
definitions and extends-clauses, collectively called elements. There are also equation sections and
algorithm sections. The EXTERNAL part is used only by functions which can be declared as external C or
FORTRAN functions.

uniontype ClassPart

record PUBLIC
list<Elementltem> contents;
end PUBLIC;

record PROTECTED
list<Elementltem> contents;
end PROTECTED;

record EQUATIONS
list<Equationltem> contents;
end EQUATIONS;

record INITIALEQUATIONS
list<Equationltem> contents;
end INITIALEQUATIONS;

record ALGORITHMS
list<Algorithmltem> contents;
end ALGORITHMS;

record INITIALALGORITHMS
list<Algorithmltem> contents;
end INITIALALGORITHMS;

record EXTERNAL
ExternalDecl externalDecl;

Open Source Modelica System Documentation 43

Option<Annotation> annotation_

end EXTERNAL;

end ClassPart;

Elementltem:

An element item is either an element or an annotation

uniontype Elementltem

record ELEMENTITEM
Element element;
end ELEMENTITEM;

record ANNOTATIONITEM
Annotation annotation_;
end ANNOTATIONITEM;

end Elementltem;

Element;

The basic element type in Modelica.
uniontype Element

record ELEMENT
Boolean final_;

Option<RedeclareKeywords> redeclareKeywords "i.e., replaceable or redeclare™ ;

InnerOuter innerOuter "
ldent name;

ElementSpec specification " Actual element specification” ;
Info info "The File name the class

inner / outer" ;

is defined in + line no + column no" ;

Option<ConstrainClass> constrainClass "only valid for classdef and component';

end ELEMENT;

record TEXT
Option<ldent> optName *

String string;
Info info;
end TEXT;

end Element;

Constraining type:

optional name of text, e.g. model with syntax error.
We need the name to be able to browse it..." ;

Constraining type (i.e., not inheritance), specified using the extends keyword.

uniontype ConstrainClass

record CONSTRAINCLASS

ElementSpec elementSpec "must be extends" ;

Option<Comment> comment;
end CONSTRAINCLASS;

end ConstrainClass;

ElementSpec:

44

An element is something that occurs in a public or protected section in a class definition. There is one
constructor in the ElementSpec type for each possible element type. There are class definitions
(CLASSDEF), extends clauses (EXTENDS) and component declarations (COMPONENTS).
As an example, if the element extends TwoPin; appears in the source, it is represented in the AST as
EXTENDS(IDENT (" TwoPin™),{}).
uniontype ElementSpec

record CLASSDEF
Boolean replaceable_ 'true if replaceable™;
Class class_;

end CLASSDEF;

record EXTENDS
Path path;
list<ElementArg> elementArg;
end EXTENDS;

record IMPORT
Import import_;
Option<Comment> comment;
end IMPORT;

record COMPONENTS
ElementAttributes attributes;
Path typeName;
list<Componentltem> components;

end COMPONENTS;

end ElementSpec;

InnerOuter:

One of the keywords inner or outer or the combination inner outer can be given to reference an inner,
outer or inner outer component. Thus there are four disjoint possibilities.
uniontype InnerOuter

record INNER end INNER;

record OUTER end OUTER;

record INNEROUTER end INNEROUTER;
record UNSPECIFIED end UNSPECIFIED;

end InnerOuter;

Import:

Import statements of different kinds.
uniontype Import

record NAMED_IMPORT
lIdent name "name" ;
Path path "path" ;
end NAMED_IMPORT;

record QUAL_IMPORT
Path path "path" ;
end QUAL_IMPORT;

record UNQUAL_IMPORT

Open Source Modelica System Documentation 45

Path path "path" ;
end UNQUAL_IMPORT;

end Import;

Componentltem:

Collection of component and an optional comment.
uniontype Componentltem
record COMPONENTITEM

Component component;
Option<ComponentCondition> condition;
Option<Comment> comment;

end COMPONENTITEM;

end Componentltem;

ComponentCondition:

A Componentltem can have a condition that must be fulfilled if the component should be instantiated.
type ComponentCondition = Exp;

Component:

A component represents some kind of Modelica entity (object or variable). Note that several component
declarations can be grouped together in one ElementSpec by writing them in the same declaration in the
source. However, this type contains the information specific to one component.

uniontype Component

record COMPONENT
lIdent name "'component name' ;
ArrayDim arrayDim "Array dimensions, if any"
Option<Modification> modification "Optional modification"
end COMPONENT;

end Component;

Equationltem:
uniontype Equationltem

record EQUATIONITEM
Equation equation_;
Option<Comment> comment;
end EQUATIONITEM;

record EQUATIONITEMANN
Annotation annotation_;
end EQUATIONITEMANN;

end Equationltem;

Algorithmltem:

Info specific for an algorithm item.

46

uniontype Algorithmltem

record ALGORITHMITEM
Algorithm algorithm_;
Option<Comment> comment;
end ALGORITHMITEM;

record ALGORITHMITEMANN
Annotation annotation_;
end ALGORITHMITEMANN;

end Algorithmltem;

Equation:

Information on one (kind) of equation, different constructors for different kinds of equations
uniontype Equation

record EQ_IF

Exp i TExp "Conditional expression" ;

list<Equationltem> equationTrueltems "true branch" ;

list<tuple<Exp, list<Equationltem>>> elselfBranches;

list<Equationltem> equationElseltems ""Standard 2-side eqgn' ;
end EQ_IF;

record EQ EQUALS

Exp leftSide;

Exp rightSide "rightSide Connect eqn' ;
end EQ_EQUALS;

record EQ_CONNECT
ComponentRef connectorl;
ComponentRef connector?2;
end EQ_CONNECT;

record EQ_FOR

lIdent forVariable;

Exp forExp;

list<Equationltem> forEquations;
end EQ_FOR;

record EQ WHEN_E

Exp whenExp;

list<Equationltem> whenEquations;

list<tuple<Exp, list<Equationltem>>> elseWhenEquations;
end EQ_WHEN_E;

record EQ_NORETCALL

lIdent functionName;

FunctionArgs functionArgs "fcalls without return value" ;
end EQ _NORETCALL;

end Equation;

Algorithm:

The Algorithm type describes one algorithm statement in an algorithm section. It does not describe a
whole algorithm. The reason this type is named like this is that the name of the grammar rule for algorithm
statements is algorithm.

uniontype Algorithm

Open Source Modelica System Documentation 47

Wrapper for things that modi

record ALG_ASSIGN
ComponentRef assignComponent;
Exp value;

end ALG_ASSIGN;

record ALG_TUPLE_ASSIGN
Exp tuple_;
Exp value;

end ALG_TUPLE_ASSIGN;

record ALG_IF
Exp 1TExp;
list<Algorithmltem> trueBranch;

list<tuple<Exp, list<Algorithmltem>>> elselfAlgorithmBranch;

list<Algorithmltem> elseBranch;
end ALG_IF;

record ALG_FOR
lIdent forVariable;
Exp forStmt;
list<Algorithmltem> forBody;
end ALG_FOR;

record ALG_WHILE
Exp whileStmt;
list<Algorithmltem> whileBody;
end ALG_WHILE;

record ALG_WHEN_A
Exp whenStmt;
list<Algorithmltem> whenBody;

list<tuple<Exp, list<Algorithmltem>>> elseWhenAlgorithmBranch;

end ALG_WHEN_A;

record ALG_NORETCALL
ComponentRef functionCall;
FunctionArgs functionArgs
end ALG_NORETCALL;

end Algorithm;

Modifications:

uniontype Modification

record CLASSMOD
list<ElementArg>
Option<Exp>

end CLASSMOD;

elementArglLst;
expOption;

end Modification;

ElementArg:

uniontype ElementArg

record MODIFICATION
Boolean finalltem;
Each each_;

general fcalls without return value™ ;

Modifications are described by the Modification type. There are two forms of modifications:
redeclarations and component modifications.

fy elements, modifications and redeclarations.

48

ComponentRef componentReg;
Option<Modification> modification;
Option<String> comment;

end MODIFICATION;

record REDECLARATION
Boolean Ffinalltem;

RedeclareKeywords redeclareKeywords "keywords redeclare, or replaceable™ ;

Each each_;
ElementSpec elementSpec;

Option<ConstrainClass> constrainClass "class definition or declaration" ;

end REDECLARATION;

end ElementArg;

RedeclareKeywords:

The keywords redeclare and replaceable can be given in three different combinations, each one by

themselves or both combined.

uniontype RedeclareKeywords

record REDECLARE end REDECLARE;

record REPLACEABLE end REPLACEABLE;

record REDECLARE_REPLACEABLE end REDECLARE_REPLACEABLE;
end RedeclareKeywords;

Each:

The Each attribute represented by the each keyword can be present in both

REDECLARATION's

uniontype Each

record EACH end EACH;

record NON_EACH end NON_EACH;
end Each;

ElementAttributes:

MODIFICATION's and

This represents component attributes which are properties of components which are applied by type
prefixes. As an example, declaring a component as input Real x; will give the attributes ATTR(

{},false,VAR, INPUT).
uniontype ElementAttributes

record ATTR
Boolean flow_ "flow" ;

Variability variability "variability ; parameter, constant etc." ;

Direction direction "direction" ;
ArrayDim arrayDim "arrayDim" ;
end ATTR;

end ElementAttributes;

Variability:
Component/variable attribute variability:

uniontype Variability
record VAR end VAR;
record DISCRETE end DISCRETE;
record PARAM end PARAM;

Open Source Modelica System Documentation 49

record CONST end CONST;
end Variability;

Direction:

Component/variable attribute Direction.

uniontype Direction
record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;
end Direction;

ArrayDim:

Array dimensions are specified by the type ArrayDim. Components in Modelica can be scalar or arrays
with one or more dimensions. This datatype is used to indicate the dimensionality of a component or a type

definition.
type ArrayDim = list<Subscript>;

Exp:

The Exp datatype is the container for representing a Modelica expression.

uniontype Exp

record INTEGER
Integer value;
end INTEGER;

record REAL
Real value;
end REAL;

record CREF
ComponentRef componentReg;
end CREF;

record STRING
String value;
end STRING;

record BOOL
Boolean value ;

record BINARY ‘'Binary operations, e.g. a*b, a+b, etc."

end BOOL;
Exp expl;
Operator op;
Exp exp2;

end BINARY;

record UNARY "Unary operations, e.g. -(xX)"

Operator op;

record LBINARY "Logical binary operations: and, or"

Exp exp;
end UNARY;

Exp expl;

Operator op;

Exp exp2;

end LBINARY;

50

record LUNARY ™"Logical unary operations: not"
Operator op;
Exp exp;

end LUNARY;

record RELATION "Relations, e.g. a >= 0"

Exp expl;
Operator op;
Exp exp2 ;

end RELATION;

record IFEXP "If expressions"

Exp iTExp;

Exp trueBranch;

Exp elseBranch;

list<tuple<Exp, Exp>> elselfBranch ;
end IFEXP;

record CALL "Function calls"
ComponentRef function_;
FunctionArgs functionArgs ;
end CALL;

record ARRAY "Array construction using { } or array(Q"
list<Exp> arrayExp ;
end ARRAY;

record MATRIX "Matrix construction using [1"
list<list<Exp>> matrix;
end MATRIX;

record RANGE ™matrix Range expressions, e.g. 1:10 or 1:0.5:10"

Exp start;

Option<Exp> step;

Exp stop;
end RANGE;

record TUPLE "Tuples used in function calls returning several values™
list<Exp> expressions;
end TUPLE;

record END "Array access operator for last element, e.g. a[end]:=1;"
end END;

record CODE "Modelica AST Code constructors"
Code code;
end CODE;

end Exp;

Code:
The Code datatype is a proposed meta-programming extension of Modelica. It originates from the Code
quoting mechanism, see paper in the Modelica’2003 conference.

uniontype Code

record C_TYPENAME
Path path;
end C_TYPENAME;

record C_VARIABLENAME
ComponentRef componentRef;

Open Source Modelica System Documentation 51

end C_VARIABLENAME;

record C_EQUATIONSECTION
Boolean boolean;
list<Equationltem> equationltemLst;
end C_EQUATIONSECTION;

record C_ALGORITHMSECTION
Boolean boolean;
list<Algorithmltem> algorithmltemLst;
end C_ALGORITHMSECTION;

record C_ELEMENT
Element element;
end C_ELEMENT;

record C_EXPRESSION
Exp exp;
end C_EXPRESSION;

record C_MODIFICATION
Modification modification;
end C_MODIFICATION;

end Code;

FunctionArgs:
The FunctionArgs datatype consists of a list of positional arguments followed by a list of named
arguments.

uniontype FunctionArgs

record FUNCTIONARGS
list<Exp> args;
list<NamedArg> argNames;
end FUNCTIONARGS;

record FOR_ITER_FARG

Exp from;
ldent var;
Exp to;

end FOR_ITER_FARG;

end FunctionArgs;

NamedArg:
The NamedArg datatype consist of an Identifier for the argument and an expression giving the value of the
argument.

uniontype NamedArg

record NAMEDARG
Ident argName "argName'
Exp argValue "argValue"
end NAMEDARG;

end NamedArg;

Operator:

The Operator type can represent all the expression operators, binary or unary.

52

uniontype Operator "Expression operators'
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
record POW end POW;
record UPLUS end UPLUS;
record UMINUS end UMINUS;
record AND end AND;
record OR end OR;
record NOT end NOT;
record LESS end LESS;
record LESSEQ end LESSEQ;
record GREATER end GREATER;
record GREATEREQ end GREATEREQ;
record EQUAL end EQUAL;
record NEQUAL end NEQUAL;

end Operator;

Subscript:

The Subscript data type is used both in array declarations and component references. This might seem
strange, but it is inherited from the grammar. The NOSUB constructor means that the dimension size is
undefined when used in a declaration, and when it is used in a component reference it means a slice of the
whole dimension.

uniontype Subscript
record NOSUB end NOSUB;

record SUBSCRIPT
Exp subScript “subScript” ;
end SUBSCRIPT;

end Subscript;

ComponentRef:
A component reference is the fully or partially qualified name of a component. It is represented as a list of
identifier-subscript pairs.

uniontype ComponentRef

record CREF_QUAL

ldent name;
list<Subscript> subScripts;
ComponentRef componentRef;

end CREF_QUAL;
record CREF_IDENT
ldent name;
list<Subscript> subscripts;
end CREF_IDENT;

end ComponentRef;

Path:

The type Path is used to store references to class names, or names inside class definitions.
uniontype Path

Open Source Modelica System Documentation 53

record

ldent

Path

QUALIFIED
name;
path;

end QUALIFIED;

record

ldent

IDENT
name;

end IDENT;

end Path;

Restrictions:

These constructors each correspond to a different kind of class declaration in Modelica, except the last four,
which are used for the predefined types. The parser assigns each class declaration one of the restrictions,
and the actual class definition is checked for conformance during translation. The predefined types are

created in the Bui I'tin module and are assigned special restrictions.

uniontype Restriction
record R_CLASS end R_CLASS;
record R_MODEL end R_MODEL;
record R_RECORD end R_RECORD;
record R_BLOCK end R_BLOCK;
record R_CONNECTOR end R_CONNECTOR;
record R_EXP_CONNECTOR end R_EXP_CONNECTOR;
record R_TYPE end R_TYPE;
record R_PACKAGE end R_PACKAGE;
record R_FUNCTION end R_FUNCTION;
record R_ENUMERATION end R_ENUMERATION;
record R_PREDEFINED_INT end R_PREDEFINED_INT;
record R_PREDEFINED_REAL end R_PREDEFINED_REAL;
record R_PREDEFINED_STRING end R_PREDEFINED_STRING;
record R_PREDEFINED_BOOL end R_PREDEFINED_BOOL;
record R_PREDEFINED_ENUM end R_PREDEFINED_ENUM;
end Restriction;

Annotation:

An Annotation is a class_modification.
uniontype Annotation

record ANNOTATION
list<ElementArg> elementArgs;
end ANNOTATION;

end Annotation;

Comment:
uniontype Comment

record COMMENT
Option<Annotation> annotation_;
Option<String> comment;

end COMMENT;

end Comment;

ExternalDecl:

54

The type ExternalDecl is used to represent declaration of an external function wrapper.
uniontype ExternalDecl
record EXTERNALDECL

Option<ldent> funcName "The name of the external function” ;
Option<String> lang "Language of the external function® ;
Option<ComponentRef> output_ "output parameter as return value" ;
list<Exp> args "only positional arguments, i.e. expression list" ;

Option<Annotation> annotation_;
end EXTERNALDECL;

end ExternalDecl;

Dependencies:

Module dependencies of the Absyn module: Debug, Dump, Util, Print.

3.4.2 Algorithm — Data Types and Functions for Algorithm Sections

This module contains data types and functions for managing algorithm sections. The algorithms in the AST
are analyzed by the Inst module which uses this module to represent the algorithm sections. No processing
of any kind, except for building the data structure is done in this module. It is used primarily by the Inst
module which both provides its input data and uses its *"output'* data.

Module dependencies: Exp, Types, SCode, Util, Print, Dump, Debug.

3.4.3 Builtin — Builtin Types and Variables

This module defines the builtin types, variables and functions in Modelica. The only exported functions
are initial_env and simple_initial_env. There are several builtin attributes defined in the builtin
types, such as unit, start, etc.

Module dependencies: Absyn, SCode, Env, Types, Classinf, Debug, Print.

3.4.4 Ceval — Constant Evaluation of Expressions and Command
Interpretation

This module handles constant propagation and expression evaluation, as well as interpretation and
execution of user commands, e.g. plot(...). When elaborating expressions, in the Static module, expressions
are checked to find out their type. This module also checks whether expressions are constant. In such as
case the function ceval in this module will then evaluate the expression to a constant value, defined in the
Values module.

Input:
Env: Environment with bindings.
Exp: Expression to check for constant evaluation.
Bool flag determines whether the current instantiation is implicit.
InteractiveSymbolTable is optional, and used in interactive mode, e.g. from mosh.

Output:
Value: The evaluated value
InteractiveSymbolTable: Modified symbol table.

Open Source Modelica System Documentation 55

Subscript list : Evaluates subscripts and generates constant expressions.

Module dependencies: Absyn, Env, Exp, Interactive, Values, Static, Print, Types, ModUtil, System, SCode,
Inst, Lookup, Dump, DAE, Debug, Util, Modsim, ClassInf, RTOpts, Parse, Prefix, Codegen, ClassLoader.

3.45 ClassInf — Inference and Check of Class Restrictions

This module deals with class inference, i.e., determining if a class definition adheres to one of the class
restrictions, and, if specifically declared in a restricted form, if it breaks that restriction.

The inference is implemented as a finite state machine. The function start initializes a new machine,
and the function trans signals transitions in the machine. Finally, the state can be checked against a
restriction with the val id function.

Module dependencies: Absyn, SCode, Print.

3.4.6 ClassLoader — Loading of Classes from $OPENMODELICALIBRARY

This module loads classes from $OPENMODELICALIBRARY. It exports only one function: the
loadClassClass function. It is used by module Ceval when using the loadClass function in the
interactive environment.

Module dependencies: Absyn, System, Lookup, Interactive, Util, Parse, Print, Env, Dump.

3.4.7 Codegen — Generate C Code from DAE

Generate C code from DAE (Flat Modelica) for Modelica functions and algorithms (SimCodeGen is
generating code from equations). This code is compiled and linked to the simulation code or when
functions are called from the interactive environment.

Input: DAE

Output: (generated code output by the Print module)

Module dependencies: Absyn, Exp, Types, Inst, DAE, Print, Util, ModUstil, Algorithm, ClassInf, Dump,
Debug.

3.4.8 Connect — Connection Set Management

Connections generate connection sets (represented using the datatype Set defined in this module) which
are constructed during code instantiation. When a connection set is generated, it is used to create a number
of equations. The kind of equations created depends on the type of the set.

The Connect module is called from the Inst module and is responsible for creation of all connect-
equations later passed to the DAE module.

Module dependencies: Exp, Env, Static, DAE.

3.4.9 Corba — Modelica Compiler Corba Communication Module

The Corba actual implementation differs between Windows and Unix versions. The Windows
implementation is located in . /winruntime and the Unix version lies in ./runtime.

56

OpenModelica does not in itself include a complete CORBA implementation. You need to download
one, for example MICO from http://www.mico.org. There also exists some options that can be sent to
configure concerning the usage of CORBA:

e —-with-CORBA=/location/of/corba/library
e —-without-CORBA

No module dependencies.

3.4.10 DAE - DAE Equation Management and Output

This module defines data structures for DAE equations and declarations of variables and functions. It also
exports some help functions for other modules. The DAE data structure is the result of flattening,
containing only flat Modelica, i.e., equations, algorithms, variables and functions.

uniontype DAElist A DAElist is a list of Elements. Variables, equations,
functions, algorithms, etc. are all found in this list."
record DAE
list<Element> elementLst;
end DAE;

end DAElist;

type ldent = String;
type InstDims = list<Exp.Subscript>;
type StartValue = Option<Exp.Exp>;

uniontype VarKind
record VARIABLE end VARIABLE;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end VarKind;

uniontype Type
record REAL end REAL;
record INT end INT;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;

record ENUMERATION
list<String> stringlLst;
end ENUMERATION;

end Type;

uniontype Flow "The Flow of a variable indicates if it is a Flow variable or not,
or if
it Is not a connector variable at all."
record FLOW end FLOW;
record NON_FLOW end NON_FLOW;
record NON_CONNECTOR end NON_CONNECTOR;
end Flow;

uniontype VarDirection
record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;
end VarDirection;

uniontype Element

Open Source Modelica System Documentation 57

record VAR
Exp.ComponentRef componentRef;
VarKind varible "variable name" ;
VarDirection variable "variable, constant, parameter, etc.' ;
Type input_ "input, output or bidir" ;
Option<Exp.Exp> one "one of the builtin types" ;
InstDims binding "Binding expression e.g. for parameters" ;
StartValue dimension "dimension of original component™ ;
Flow value "value of start attribute” ;

list<Absyn.Path> flow_ "Flow of connector variable. Needed for
unconnected flow variables™” ;
Option<VariableAttributes> variableAttributesOption;
Option<Absyn.Comment> absynCommentOption;
end VAR;

record DEFINE
Exp-ComponentRef componentRef;
ExXp.Exp exp;

end DEFINE;

record INITIALDEFINE
Exp.ComponentRef componentRef;
Exp.Exp exp;

end INITIALDEFINE;

record EQUATION

ExXp.Exp exp;

Exp.Exp scalar "Scalar equation” ;
end EQUATION;

record ARRAY_EQUATION
list<Integer> dimension ‘"‘dimension sizes" ;
ExXp.Exp exp;
Exp.-Exp array "array equation' ;

end ARRAY_EQUATION;

record WHEN_EQUATION
Exp.Exp condition ""Condition" ;
list<Element> equations "Equations" ;
Option<Element> elsewhen_ "Elsewhen should be of type"™ ; end WHEN_EQUATION;

record IF_EQUATION
Exp.Exp conditionl "Condition" ;
list<Element> equations2 "Equations of true branch™ ;
list<Element> equations3 "Equations of false branch" ;
end IF_EQUATION;

record INITIAL_IF_EQUATION
Exp.Exp conditionl "Condition" ;
list<Element> equations2 "Equations of true branch™ ;
list<Element> equations3 "Equations of false branch" ;
end INITIAL_IF_EQUATION;

record INITIALEQUATION
Exp.-Exp expl;
EXp.Exp exp2;

end INITIALEQUATION;

record ALGORITHM
Algorithm_Algorithm algorithm_;
end ALGORITHM;

record INITIALALGORITHM
Algorithm_Algorithm algorithm_;
end INITIALALGORITHM;

58

record COMP
Ident ident;
DAElist dAElist "a component with subelements, normally
only used at top level." ;
end COMP;

record FUNCTION
Absyn_Path path;
DAElist dAElist;
Types.Type type_;
end FUNCTION;

record EXTFUNCTION
Absyn_Path path;
DAElist dAElist;
Types.Type type_;
ExternalDecl externalDecl;
end EXTFUNCTION;

record ASSERT
ExXp.Exp exp;
end ASSERT;

record REINIT
Exp.ComponentRef componentRef;
Exp.Exp exp;

end REINIT;

end Element;

uniontype VariableAttributes
record VAR_ATTR_REAL
Option<String> quantity "quantity" ;
Option<String> unit "unit” ;
Option<String> displayuUnit "displayunit" ;
tuple<Option<Real>, Option<Real>> min "min , max"™ ;
Option<Real> initial_ "Initial value" ;
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables" ;
Option<Real> nominal "nominal™ ;
Option<StateSelect> stateSelectOption;
end VAR_ATTR_REAL;

record VAR_ATTR_INT
Option<String> quantity 'quantity" ;
tuple<Option<Integer>, Option<Integer>> min "min , max" ;
Option<Integer> initial_ "Initial value" ;
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables" ;
end VAR_ATTR_INT;

record VAR_ATTR_BOOL
Option<String> quantity "quantity" ;
Option<Boolean> initial_ "Initial value” ;
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables" ;
end VAR_ATTR_BOOL;

record VAR_ATTR_STRING
Option<String> quantity "quantity" ;
Option<String> initial_ "Initial value" ;
end VAR_ATTR_STRING;

record VAR_ATTR_ENUMERATION

Open Source Modelica System Documentation 59

Option<String> quantity "quantity" ;
tuple<Option<Exp.Exp>, Option<Exp.Exp>> min "min , max" ;
Option<Exp.Exp> start ''start" ;
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables" ;
end VAR_ATTR_ENUMERATION;

end VariableAttributes;

uniontype StateSelect
record NEVER end NEVER;
record AVOID end AVOID;
record DEFAULT end DEFAULT;
record PREFER end PREFER;
record ALWAYS end ALWAYS;
end StateSelect;

uniontype ExtArg
record EXTARG
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type_;
end EXTARG;

record EXTARGEXP
ExXp.Exp exp;

Types.Type type_;
end EXTARGEXP;

record EXTARGSIZE
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type_;
Exp-Exp exp;

end EXTARGSIZE;

record NOEXTARG end NOEXTARG;
end ExtArg;

uniontype ExternalDecl
record EXTERNALDECL
Ident ident;
list<ExtArg> external_ "external function name" ;
ExtArg parameters '‘parameters" ;
String return "return type" ;
Option<Absyn.Annotation> language "'language e.g. Library" ;
end EXTERNALDECL;

end ExternalDecl;

Som of the more important functions for unparsing (dumping) flat Modelica in DAE form:

The function dump unparses (converts into string or prints) a DAElist into the standard output format by
calling dumpFunctionFunction and dumpCompElement. We also have (?? explain more):
dumpStrStr: DAElist => string

dumpGraphvizGraphviz: DAElist => ()
dumpDebugbDebug

dumpCompElement (classes) calls dumpElementsElements, which calls:

dumpVarsVars
dumpListList equations
dumpListList algorithm

60

dumpListList compElement (classes)

Module dependencies: Absyn, Exp, Algorithm, Types, Values.

3.4.11 DAEEXT - External Utility Functions for DAE Management

The DAEEXT module is an externally implemented module (in file runtime/daeext.cpp) used for the
BLT and index reduction algorithms in DAELow. The implementation mainly consists of bit vector
datatypes and operations implemented using std::vector<bool> since such functionality is not
available in MetaModelica.

No module dependencies.

3.4.12 DAELow — Lower Level DAE Using Sparse Matrises for BLT

This module handles a lowered form of a DAE including equations, simple equations with equal operator
only, and algorithms, in three separate lists: equations, simple equations, algorithms. The variables are
divided into two groups: 1) known variables, parameters, and constants; 2) unknown variables including
state variables and algebraic variables.

The module includes the BLT sorting algorithm which sorts the equations into blocks, and the index
reduction algorithm using dummy derivatives for solving higher index problems. It also includes an
implementation of the Tarjan algorithm to detect strongly connected components during the BLT sorting.

Module dependencies: DAE, Exp, Values, Absyn, Algorithm.

3.4.13 Debug — Trace Printing Used for Debugging

Printing routines for debug output of strings. Also flag controlled printing. When flag controlled printing
functions are called, printing is done only if the given flag is among the flags given in the runtime
arguments to the compiler.

If the +d-flag, i.e., if +d=inst, lookup is given in the command line, only calls containing these flags
will actually print something, e.g.: fprint('inst”, 'Starting instantiation..."). See
runtime/rtopts.c for implementation of flag checking.

Module dependencies: Rtopts, Dump, Print.

3.4.14 Derive — Differentiation of Equations from DAELow

This module is responsible for symbolic differentiation of equations and expressions. It is currently (2004-
09-28) only used by the solve function in the Exp module for solving equations.
The symbolic differentiation is used by the Newton-Raphson method and by the index reduction.

Module dependencies: DAELow, Exp, Absyn, Util, Print.

3.4.15 DFA - MetaModelica Pattern Matching

This module is part of the MetaModelica language extension. This module contains a deterministic finite
automata (DFA) and a matrix data structure. These are used by the pattern match algorithm found in
Patternm. There are also several functions for handling DFAs (for instance a function for adding a new arc

Open Source Modelica System Documentation 61

to a DFA) and matrices (functions for adding a row to matrix, singling out the first row of a matrix,
removing the first row of a matrix, etc.). The union type RenamedPat can also be found in this module.

A renamed pattern is a pattern (an Absyn expression) tagged with a variable name (an Absyn identifier).

This module also contains the functions that transforms a DFA into a value block expression with
nested if-elseif-else nodes. The function fromDFAtolfNodes is the entry point for this transformation;
generatel fEIseifAndElse, fromStatetoAbsynCode, etc. are then invoked.

See the OMC MetaModelica extension chapter (chapter 4) for more information.

Module dependencies: Absyn, Util, Env, Lookup, Types, SCode, ClassInf

3.4.16 Dump — Abstract Syntax Unparsing/Printing

Printing routines for unparsing and debugging of the AST. These functions do nothing but print the data
structures to the standard output.

The main entry point for this module is the function dump which takes an entire program as an
argument, and prints it all in Modelica source form. The other interface functions can be used to print
smaller portions of a program.

Module dependencies: Absyn, Interactive, ClassInf, Rtopts, Print, Util, Debug..

3.4.17 DumpGraphviz — Dump Info for Graph visualization of AST

Print the abstract syntax into a text form that can be read by the GraphViz tool (www.graphviz.org) for
drawing abstract syntax trees.

Module dependencies: Absyn, Debug, Graphviz, Classinf, Dump.

3.4.18 Env — Environment Management

This module contains functions and data structures for environment management.

“Code instantiation is made in a context which consists of an environment an an ordered set of parents”,
according to the Modelica Specification

An environment is a stack of frames, where each frame contains a number of class and variable
bindings. Each frame consist of the following:

e A frame name (corresponding to the class partially instantiated in that frame).

e A binary tree/hash table?? containing a list of classes.

e A binary tree/hash table?? containing a list of functions (functions are overloaded so that several
identical function names corresponding to different functions can exist).

e Alist of unnamed items consisting of import statements.

type Env = list<Frame>;

uniontype Frame
record FRAME
Option<ldent> class_1 *"'Class name™ ;

BinTree list_2 "List of uniquely named classes and variables" ;
BinTree list_3 "List of types, which DOES NOT be uniquely named, eg. size have

several types" ;

list<ltem> list_4 "list of unnamed items (imports)" ;

list<Frame> list 5 "list of frames for inherited elements" ;
list<Exp.ComponentRef> current6 "current connection set crefs" ;
Boolean encapsulated_7 "encapsulated bool=true means that FRAME is created due

to encapsulated class" ;

end FRAME;

62

end Frame;

uniontype Item
record VAR

Types.Var instantiated "instantiated component' ;

Option<tuple<SCode.Element, Types.Mod>> declaration "declaration if not fully
instantiated."” ;

Boolean if_ "if it typed/fully instantiated or not" ;

Env env "The environment of the instantiated component

Contains e.g. all sub components

end VAR;

record CLASS
SCode.Class class_;
Env env;

end CLASS;

record TYPE
list<Types.Type> list_ "list since several types with the same name can exist

in the same scope (overloading)" ;
end TYPE;

record IMPORT
Absyn. Import import_;
end IMPORT;

end ltem;

The binary tree data structure BinTree used for the environment is generic and can be used in any
application. It is defined as follows:
uniontype BinTree "The binary tree data structure
The binary tree data structure used for the environment is generic and can
be used in any application.”
record TREENODE
Option<TreeValue> value '"Value" ;
Option<BinTree> left "left subtree” ;
Option<BinTree> right "right subtree" ;
end TREENODE;

end BinTree;

Each node in the binary tree can have a value associated with it.

uniontype TreeValue
record TREEVALUE
Key key;
Value value;
end TREEVALUE;
end TreeValue;
type Key = lIdent "Key" ;
type Value = ltem;

constant Env emptyEnv;

As an example lets consider the following Modelica code:

Open Source Modelica System Documentation 63

package A
package B
import Modelica.Slunits.™>;
constant Voltage V=3.3;

function foo
end foo;

model M1
Real Xx,y;
end M1;

model M2
end M2;

end B;
end A;

When instantiating M1 we will first create the environment for its surrounding scope by a recursive
instantiation on A.B giving the environment:

FRAME("'A"™, {Class:B},{}.{}.false) ,
FRAME('B", {Class:M1, Class:M2, Variable:V}, {Type:foo},
{import Modelica.Slunits.*},false)
}

Then, the class M1 is instantiated in a new scope/Frame giving the environment:

FRAME('A™, {Class:B},{}.{}.false) ,

FRAME("'B", {Class:M1, Class:M2, Variable:V}, {Type:foo},
{Import Modelica.Slunits.*},false),

FRAME(*'M1, {Variable:x, Variable:y},{}.{},false)

}

Note: The instance hierarchy (components and variables) and the class hierarchy (packages and classes) are
combined into the same data structure, enabling a uniform lookup mechanism.

The most important functions in Env:

function newFrame : (Boolean) => Frame

function openScope : (Env,Boolean, Option<ldent>) => Env

function extendFrameC : (Env, SCode.Class) => Env

function extendFrameClasses : (Env, SCode.Program) => Env

function extendFrameV : (Env, Types.Var,
Option<tuple<SCode.Element,Types.Mod>>, Boolean) => Env

function updateFrameV : (Env, Types.Var,bool) => Env

function extendFrameT : (Env,ldent,Types.Type) => Env
function extendFramel : (Env, Absyn.Import) => Env
function topFrame : Env => Frame

function getEnvPath: (Env) => Absyn.Path option

Module dependencies: Absyn, Values, SCode, Types, ClassInf, Exp, Dump, Graphviz, DAE, Print, Util,
System.

3.4.19 Exp — Expression Handling after Static Analysis

This file contains the module Exp, which contains data types for describing expressions, after they have
been examined by the static analyzer in the module Static. There are of course great similarities with the
expression types in the Absyn module, but there are also several important differences.

No overloading of operators occur, and subscripts have been checked to see if they are slices.
Deoverloading of overloaded operators such as ADD (+) is performed, e.g. to operations ADD_ARR,
ADD(REAL), ADD(INT). Slice operations are also identified, e.g.:

64

model A Real b; end A;

model B

A a[10];
equation

a.b=Fill(1.0,10); // a.b is a slice
end B;

All expressions are also type consistent, and all implicit type conversions in the AST are made explicit
here, e.g. Real (1)+1.5 converted from 1+1.5.

Functions:

Some expression simplification and solving is also done here. This is used for symbolic transformations
before simulation, in order to rearrange equations into a form needed by simulation tools. The functions
simplify, solve, expContainsContains, expEqual, extendCref, etc. perform this functionality,
e.g.

extendCrefCref (ComponentRef, Ident, list<Subscript>) => ComponentRef

simplify(Exp) => Exp
The simplify function simplifies expressions that have been generated in a complex way, i.e., not a
complete expression simplification mechanism.

This module also contains functions for printing expressions, for 10, and for conversion to strings.

Moreover, graphviz output is supported.

Identifiers :
type ldent = String;

Define 1dent as an alias for String and use it for all identifiers in Modelica.

Basic types:

uniontype Type
record INT end INT;
record REAL end REAL;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;
record OTHER "e.g. complex types, etc.'" end OTHER;

record T_ARRAY

Type type_;
list<Integer> arrayDimensions;
end T_ARRAY;

end Type;

These basic types are not used as expression types (see the Types module for expression types). They are
used to parameterize operators which may work on several simple types.

Expressions:

The Exp union type closely corresponds to the Absyn.Exp union type, but is used for statically analyzed
expressions. It includes explicit type promotions and typed (non-overloaded) operators. It also contains
expression indexing with the ASUB constructor. Indexing arbitrary array expressions is currently not
supported in Modelica, but it is needed here.

uniontype Exp "Expressions
record ICONST
Integer integer "Integer constants" ;
end ICONST;

Open Source Modelica System Documentation 65

record RCONST
Real real '""Real constants" ;
end RCONST;

record SCONST
String string "String constants™ ;
end SCONST;

record BCONST
Boolean bool '""Bool constants" ;
end BCONST;

record CREF

ComponentRef componentReT;

Type component "‘component references, e.g. a-b[2]-c[1]" ;
end CREF;

record BINARY

Exp exp;

Operator operator;

Exp binary "Binary operations, e.g. a+4" ;
end BINARY;

record UNARY

Operator operator;

Exp unary "Unary operations, -(4x)" ;
end UNARY;

record LBINARY

Exp exp;

Operator operator;

Exp logical "Logical binary operations: and, or" ;
end LBINARY;

record LUNARY

Operator operator;

Exp logical *"Logical unary operations: not™ ;
end LUNARY;

record RELATION

Exp exp;

Operator operator;

Exprelation_ "Relation, e.g. a <= 0" ;
end RELATION;

record IFEXP

Exp expl;

Expexp2;

Exp if_3 "If expressions” ;
end IFEXP;

record CALL

Absyn_Path path;

list<Exp> expLst;

Boolean tuple_ "tuple" ;

Boolean builtin "builtin Function call™ ;
end CALL;

record ARRAY

Type type_;

Boolean scalar "scalar for codegen" ;

list<Exp> array "Array constructor, e.g. {1,3,4}" ;
end ARRAY;

record MATRIX

66

Type type_;

Integer integer;

list<list<tuple<Exp, Boolean>>> scalar "Matrix constructor. e.g. [1,0;0,1]" ;
end MATRIX;

record RANGE

Type type_;
exp;

Option<Exp> expOption;

Exp range '""Range constructor, e.g. 1:0.5:10" ;
end RANGE;

record TUPLE
list<Exp> PR "PR. Tuples, used in func calls returning several
arguments" ;
end TUPLE;

record CAST

Type type_;
Exp cast '""Cast operator" ;
end CAST;

record ASUB

Exp exp;

Integer array "Array subscripts" ;
end ASUB;

record SIZE

Exp exp;

Option<Exp> the "'The ssize operator" ;
end SIZE;

record CODE

Absyn.Code code;

Type modelica ""Modelica AST constructor™ ;
end CODE;

record REDUCTION

Absyn_Path path;

Exp expr "expr' ;

Ident ident;

Exp range 'range Reduction expression' ;
end REDUCTION;

record END "array index to last element, e.g. a[end]:=1;" end END;

end Exp;

Operators:

Operators which are overloaded in the abstract syntax are here made type-specific. The Integer addition
operator ADD(INT) and the Real addition operator ADD(REAL) are two distinct operators.

uniontype Operator

record ADD

Type type_;
end ADD;

record SUB

Type type_;
end SUB;

record MUL
Type type_;

Open Source Modelica System Documentation 67

end MUL;

record DIV

Type type_;
end DIV;

record POW

Type type_;
end POW;

record UMINUS

Type type_;
end UMINUS;

record UPLUS

Type type_;
end UPLUS;

record UMINUS_ARR

Type type_;
end UMINUS_ARR;

record UPLUS_ARR

Type type_;
end UPLUS_ARR;

record ADD_ARR

Type type_;
end ADD_ARR;

record SUB_ARR

Type type_;
end SUB_ARR;

record MUL_SCALAR_ARRAY
Type a "a { b, c }" ;
end MUL_SCALAR_ARRAY;

record MUL_ARRAY_SCALAR

Type type_ "{a, b} c" ;
end MUL_ARRAY_SCALAR;

record MUL_SCALAR_PRODUCT
Type type_ "{a, b} {c, d}" ;
end MUL_SCALAR_PRODUCT;
record MUL_MATRIX_PRODUCT
Type type_ "{{--},--} {{--}.{--}3}";
end MUL_MATRIX_PRODUCT;
record DIV_ARRAY_SCALAR
Type type_ "{a, b} /7 c" ;
end DIV_ARRAY_SCALAR;
record POW_ARR
Type type_;
end POW_ARR;
record AND end AND;
record OR end OR;
record NOT end NOT;

record LESS

68

Type type_;
end LESS;

record LESSEQ

Type type_;
end LESSEQ;

record GREATER

Type type_;
end GREATER;

record GREATEREQ

Type type_;
end GREATEREQ;

record EQUAL

Type type_;
end EQUAL;

record NEQUAL

Type type_;
end NEQUAL;

record USERDEFINED

Absyn_Path the "The fully qualified name of the overloaded operator function";
end USERDEFINED;

end Operator;

Component references:

uniontype ComponentRef - Component references
CREF_QUAL(...) is used for qualified component names, e.g. a.b.c
CREF_IDENT(..) is used for non-qualifed component names, e.g. X "
record CREF_QUAL
ldent ident;
list<Subscript> subscriptLst;
ComponentRef componentRef;
end CREF_QUAL;

record CREF_IDENT

ldent ident;

list<Subscript> subscriptLst;
end CREF_IDENT;

end ComponentRef;
The Subscript and ComponentRef datatypes are simple translations of the corresponding types in the
Absyn module.
uniontype Subscript
record WHOLEDIM "a[:,1]" end WHOLEDIM;
record SLICE

Exp a "a[1:3,1], a[1:2:10,2]" ;
end SLICE;

record INDEX
Exp a "a[i+1]" ;
end INDEX;

end Subscript;

Open Source Modelica System Documentation 69

Module dependencies: Absyn, Graphviz, Rtopts, Util, Print, ModUtil, Derive, System, Dump.

3.4.20 Graphviz — Graph Visualization from Textual Representation

Graphviz is a tool for drawing graphs from a textual representation. This module generates the textual input
to Graphviz from a tree defined using the data structures defined here, e.g. Node for tree nodes. See
http://www.research.att.com/sw/tools/graphviz/ .

Input: The tree constructed from data structures in Graphviz
Output: Textual input to graphviz, written to stdout.

3.4.21 Inst—- Code Instantiation/Elaboration of Modelica Models

This module is responsible for code instantiation of Modelica models. Code instantiation is the process of
elaborating and expanding the model component representation, flattening inheritance, and generating
equations from connect equations.

The code instantiation process takes Modelica AST as defined in SCode and produces variables and
equations and algorithms, etc. as defined in the DAE module

This module uses module Lookup to lookup classes and variables from the environment defined in Env.
It uses the Connect module for generating equations from connect equations. The type system defined in
Types is used for code instantiation of variables and types. The Mod module is used for modifiers and
merging of modifiers.

3.4.21.1 Overview:
The Inst module performs most of the work of the flattening of models:

1. Build empty initial environment.
2. Code instantiate certain classes implicitly, e.g. functions.
3. Code instantiate (last class or a specific class) in a program explicitly.

The process of code instantiation consists of the following:

1. Open a new scope => a new environment

Start the class state machine to recognize a possible restricted class.
Instantiate class in environment.

Generate equations.

Read class state & generate Type information.

akrwn

3.4.21.2 Code Instantiation of a Class in an Environment
(?? Add more explanations)

Function: instClassdef
PARTS: instElementListList
DERIVED (i.e class A=B(mod);):
1. lookup class
2. elabModMod
3. Merge modifications
4. instClassin(...,mod, ...)

3.4.21.3 InstElementListList & Removing Declare Before Use

The procedure is as follows:

70

2.
3.

First implicitly declare all local classes and add component names (calling
extendComponentsToEnvComponentsToEnv), Also merge modifications (This is done by
saving modifications in the environment and postponing to step 3, since type information is not yet
available).

Expand all extends nodes.

Perform instantiation, which results in DAE elements.

Note: This is probably the most complicated parts of the compiler!

Design issue: How can we simplify this? The complexity is caused by the removal of Declare-before-use in
combination with sequential translation structure (Absyn->Scode->(Exp,Mod,Env)).

3.4.21.4 The InstElement Function

This is a huge function to handle element instantiation in detail, including the following items:

Handling extends clauses.

Handling component nodes (the function update_components_in_env is called if used before it
is declared).

Elaborated dimensions (?? explain).

Instvar called (?? explain).

ClassDefs (?? explain).

3.4.21.5 The InstVar Function

The instvar function performs code instantiation of all subcomponents of a component. It also
instantiates each array element as a scalar, i.e., expands arrays to scalars, e.g.:

Real

x[2] => Real x[1]; Real x[2]:; in flat Modelica.

3.4.21.6 Dependencies

Module dependencies: Absyn, Classinf, Connect, DAE, Env, Exp, SCode, Mod, Prefix, Types.

3.4.22 Interactive — Model Management and Expression Evaluation

This module contain functionality for model management, expression evaluation, etc. in the interactive
environment. The module defines a symbol table used in the interactive environment containing the

following:
e Modelica models (described using Absyn abstract syntax).
e Variable bindings.
e Compiled functions (so they do not need to be recompiled).
¢ Instantiated classes (that can be reused, not implemented. yet).

Modelica models in SCode form (to speed up instantiation. not implemented. yet).

The most important data types:

uniontype InteractiveSymbolTable "The Interactive Symbol Table™
record SYMBOLTABLE

Absyn._Program ast "The ast" ;

SCode.Program explodedAst "The exploded ast" ;

list<InstantiatedClass> instClsLst "'List of instantiated classes" ;

list<InteractiveVariable> IstvVarVal "List of variables with values" ;

list<tuple<Absyn.Path, Types.Type>> compiledFunctions "List of compiled
functions, fully qualified name + type" ;

end SYMBOLTABLE;

end

InteractiveSymbolTable;

Open Source Modelica System Documentation 71

uniontype InteractiveStmt "The Interactive Statement:
An Statement given in the interactive environment
can either be an Algorithm statement or an expression"
record IALG
Absyn.Algorithmltem algltem;
end IALG;

record I1EXP
Absyn.Exp exp;
end IEXP;
end InteractiveStmt;

uniontype InteractiveStmts "The Interactive Statements:
Several interactive statements are used in the
Modelica scripts”
record ISTMTS
list<InteractiveStmt> interactiveStmtLst "interactiveStmtLst" ;
Boolean semicolon "when true, the result will not be shown in
the Interactive environment" ;
end ISTMTS;
end InteractiveStmts;

uniontype InstantiatedClass "The Instantiated Class"
record INSTCLASS
Absyn.Path qualName " The fully qualified name of the inst:ed class";
list<DAE.Element> daeElementLst " The list of DAE elements';
Env.Env env "The env of the inst:ed class";
end INSTCLASS;
end InstantiatedClass;

uniontype InteractiveVariable - Interactive Variable"”
record IVAR
Absyn.ldent varldent "The variable identifier";
Values.Value value "The expression containing the value';
Types.Type type_ " The type of the expression';
end IVAR;
end InteractiveVariable;

Two of the more important functions and their input/output:

function evaluate
input InteractiveStmts inlnteractiveStmts;
input InteractiveSymbolTable inlnteractiveSymbolTable;
input Boolean inBoolean;
output String outString;
output InteractiveSymbolTable outlnteractiveSymbolTable;
algorithm

end evaluate;

function updateProgram
input Absyn.Program inPrograml;
input Absyn.Program inProgram2;
output Absyn.Program outProgram;
algorithm

end updateProgram;

Module dependencies: Absyn, SCode, DAE, Types, Values, Env, Dump, Debug, Rtops, Util, Parse, Prefix,
Mod, Lookup, ClassInf, Exp, Inst, Static, ModUtil, Codegen, Print, System, ClassLoader, Ceval.

72

3.4.23 Lookup — Lookup of Classes, Variables, etc.

This module is responsible for the lookup mechanism in Modelica. It is responsible for looking up classes,
types, variables, etc. in the environment of type Env by following the lookup rules.
The important functions are the following:

e lookupClassClass - to find a class.
o lookupTypeType — to find types (e.g. functions, types, etc.).
e lookupVarVvar —to find a variable in the instance hierarchy.

Concerning builtin types and operators:

e Built-in types are added in initialEnvEnv => same lookup for all types.
e Built-in operators, like size(...), are added as functions to initialEnvEnv.

Note the difference between Type and Class: the type of a class is defined by Classinfo state + variables
defined in the Types module.

Module dependencies: Absyn, ClassInf, Types, Exp, Env, SCode.

3.4.24 Main — The Main Program

This is the main program in the OpenModelica system. It either translates a file given as a command line
argument (see Chapter 2) or starts a server loop communicating through CORBA or sockets. (The Win32
implementation only implements CORBA). It performs the following functions:

e Calls the parser

e Invokes the Interactive module for command interpretation which in turn calls to Ceval for
expression evaluation when needed.

e Outputs flattened DAEs if desired.

e Calls code generation modules for C code generation.

Module dependencies: Absyn, Modutil, Parse, Dump, Dumpgraphviz, SCode, DAE, DAElow, Inst,
Interactive, Rtopts, Debug, Codegen, Socket, Print, Corba, System, Util, SimCodegen.

Optional dependencies for parallel code generation: ??

3.4.25 MetaUtil — MetaModelica Handling

This module is part of the MetaModelica language extension. This module contains several functions that
handles different MetaModelica extensions such as the list construct and the union type construct. These
functions have been moved to this module in order to more clearly separate the MetaModelica extension
code from the rest of the code in the compiler.

See the OMC MetaModelica extension chapter (chapter 4) for more information.

Module dependencies: Types, Exp, Util, Lookup, Debug, Env, Absyn, SCode, DAE

3.4.26 Mod — Modification Handling

Modifications are simply the same kind of modifications used in the Absyn module.

This type is very similar to SCode .Mod. The main difference is that it uses Exp.Exp in the Exp module
for the expressions. Expressions stored here are prefixed and type checked.

The datatype itself (Types.Mod) has been moved to the Types module to prevent circular
dependencies.

Open Source Modelica System Documentation 73

A few important functions:

e elabModMod(Env.Env, Prefix.Prefix, Scode.Mod) => Mod Elaborate modifications.
e merge(Mod, Mod) => Mod Merge of Modifications according to merging rules in Modelica.

Module dependencies: Absyn, Env, Exp, Prefix, SCode, Types, Dump, Debug, Print, Inst, Static, Values,
Util.

3.4.27 ModSim — Communication for Simulation, Plotting, etc.

This module communicates with the backend (through files) for simulation, plotting etc. Called from the
Ceval module.

Module dependencies: System, Util.

3.4.28 ModUtil — Modelica Related Utility Functions

This module contains various utility functions. For example converting a path to a string and comparing
two paths. It is used pretty much everywhere. The difference between this module and the Util module is
that ModUtil contains Modelica related utilities. The Util module only contains “low-level” “generic”
utilities, for example finding elements in lists.

Module dependencies: Absyn, DAE, Exp, Rtopts, Util, Print.

3.4.29 Parse — Parse Modelica or Commands into Abstract Syntax

Interface to external code for parsing Modelica text or interactive commands. The parser module is used for
both parsing of files and statements in interactive mode. Some functions never fails, even if parsing fails.
Instead, they return an error message other than "OKk".

Input: String to parse

Output: Absyn.Program or InteractiveStmts

Module dependencies: Absyn, Interactive.

3.4.30 Patternm — MetaModelica Pattern Matching

This module is part of the MetaModelica extension. This module contains a big part of the pattern
match algorithm. This module contains the functions that transforms a matchcontinue/match expression (an
Absyn expression) into a deterministic finite automata (DFA). The DFA is transformed into a value block
expression by functions in the DFA module. The "main™ function of this module is matchMain, which
calls a number of functions.

See the OMC MetaModelica extension chapter (chapter 4) for more information.

Input: Absyn.Exp
Output: Absyn.Exp
Module dependencies: Absyn, DFA, Util, Env, SCode, Lookup

74

3.4.31 Prefix — Handling Prefixes in Variable Names

When performing code instantiation of an expression, there is an instance hierarchy prefix (not package
prefix) that for names inside nested instances has to be added to each variable name to be able to use it in
the flattened equation set.

An instance hierarchy prefix for a variable x could be for example a.b.c so that the fully qualified
name is a.b.c.x, if x is declared inside the instance c, which is inside the instance b, which is inside the
instance a.

Module dependencies: Absyn, Exp, Env, Lookup, Util, Print..

3.4.32 Print — Buffered Printing to Files and Error Message Printing

This module contains a buffered print function to be used instead of the builtin print function, when the
output should be redirected to some other place. It also contains print functions for error messages, to be
used in interactive mode.

No module dependencies.

3.4.33 RTOpts — Run-time Command Line Options

This module takes care of command line options. It is possible to ask it what flags are set, what arguments
were given etc. This module is used pretty much everywhere where debug calls are made.

No module dependencies.

3.4.34 SCode - Lower Level Intermediate Representation

This module contains data structures to describe a Modelica model in a more convenient way than the
Absyn module does. The most important function in this module is elaborate which turns an abstract
syntax tree into an SCode representation. The SCode representation is used as input to the Inst module.
o Defines a lower-level elaborated AST.
e Changed types:
e Modifications
e Expressions (uses Exp module)
ClassDef (PARTS divided into equations, elements and algorithms)
Algorithms uses Algorithm module
Element Attributes enhanced.
e Three important public Functions
e elaborate (Absyn.Program) => Program
e elabClassClass: Absyn.Class => Class
e buildModMod (Absyn._Modification option, bool) => Mod

Module dependencies: Absyn, Dump, Debug, Print.

3.4.35 SimCodegen — Generate Simulation Code for Solver

This module generates simulation code to be compiled and executed to a (humeric) solver. It outputs the
generated simulation code to a file with a given filename.

Input: DAELow.
Output: To file

Open Source Modelica System Documentation 75

Module dependencies: Absyn, DAElow, Exp, Util, RTOpts, Debug, System, Values.

3.4.36 Socket — (Depreciated) OpenModelica Socket Communication Module

This module is partly depreciated and replaced by the Corba implementation. It is the socket connection
module of the OpenModelica compiler, still somewhat useful for debugging, and available for Linux and
CygWin. Socket is used in interactive mode if the compiler is started with +d=interactive. External
implementation in C is in ./runtime/soecketimpl.c.

This socket communication is not implemented in the Win32 version of OpenModelica. Instead, for
Win32 build using +d=interactiveCorba.

No module dependencies.

3.4.37 Static — Static Semantic Analysis of Expressions

This module performs static semantic analysis of expressions. The analyzed expressions are built using the
constructors in the Exp module from expressions defined in Absyn. Also, a set of properties of the
expressions is calculated during analysis. Properties of expressions include type information and a boolean
indicating if the expression is constant or not. If the expression is constant, the Ceval module is used to
evaluate the expression value. A value of an expression is described using the Values module.

The main function in this module is eval_exp which takes an Absyn.Exp abstract syntax tree and
transforms it into an Exp . Exp tree, while performing type checking and automatic type conversions, etc.

To determine types of builtin functions and operators, the module also contain an elaboration handler
for functions and operators. This function is called elabBui I tinHandler. Note: These functions should
only determine the type and properties of the builtin functions and operators and not evaluate them.
Constant evaluation is performed by the Ceval module.

The module also contain a function for deoverloading of operators, in the deoverload function. It
transforms operators like '+' to its specific form, ADD, ADD_ARR, etc.

Interactive function calls are also given their types by elabExpExp, which calls
elabCallInteractiveCalllInteractive.

Elaboration for functions involve checking the types of the arguments by filling slots of the argument
list with first positional and then named arguments to find a matching function. The details of this
mechanism can be found in the Modelica specification. The elaboration also contain function
deoverloading which will be added to Modelica in the future when lookup of overloaded user-defined
functions is supported.

We summarize a few of the functions:

Expression analysis:

e elabExpExp: Absyn.Exp => (Exp.Exp, Types.Properties) — Static analysis, finding
out properties.

e elabGraphicsExp — for graphics annotations.

e elabCrefCref — check component type, constant binding.

e elabSubscripts: Absyn.Subscript => Exp.Subscript — Determine whether subscripts are
constant

Constant propagation
e ceval
The elabExpExp function handles the following:

e constants: integer, real, string, bool
e binary and unary operations, relations

76

e conditional: ifexp
e function calls
e arrays: array, range, matrix

The ceval function:

e Compute value of a constant expressions
e Results as Values.Value type

The canonCrefCref function:

e Convert Exp.ComponentReT to canonical form
e Convert subscripts to constant values

The elabBui ltinHandlerBui ltinHandler function:
e Handle builtin function calls such as size, zeros, ones, Fill, etc.

Module dependencies: Absyn, Exp, SCode, Types, Env, Values, Interactive, Classinf, Dump, Print,
System, Lookup, Debug, Inst, Codegen, Modutil, DAE, Util, RTOpts, Parse, ClassLoader, Mod, Prefix,
CEval

3.4.38 System — System Calls and Utility Functions

This module contain a set of system calls and utility functions, e.g. for compiling and executing stuff,
reading and writing files, operations on strings and vectors, etc., which are implemented in C.
Implementation in runtimesystemimpl.c In comparison, the Util module has utilities implemented in
MetaModelica.

Module dependencies: Values.

3.4.39 TaskGraph —Building Task Graphs from Expressions and Systems of
Equations

This module is used in the optional modpar part of OpenModelica for bulding task graphs for automatic
parallelization of the result of the BLT decomposition.

The exported function build_taskgraph takes the lowered form of the DAE defined in the
DAELow module and two assignments vectors (which variable is solved in which equation) and the list of
blocks given by the BLT decomposition.

The module uses the TaskGraphExt module for the task graph datastructure itself, which is
implemented using the Boost Graph Library in C++.

Module dependencies: Exp, DAELow, TaskGraphExt, Util, Absyn, DAE, CEval, Values, Print.

3.4.40 TaskGraphExt — The External Representation of Task Graphs

This module is the interface to the externally implemented task graph using the Boost Graph Library in
C++.

Module dependencies: Exp, DAELow.

Open Source Modelica System Documentation 77

3.4.41 Types — Representation of Types and Type System Info

This module specifies the Modelica Language type system according to the Modelica Language
specification. It contains an MetaModelica type called Type which defines types. It also contains functions
for determining subtyping etc.

There are a few known problems with this module. It currently depends on SCode.Attributes,
which in turn depends on Absyn.ArrayDim. However, the only things used from those modules are
constants that could be moved to their own modules.

Identifiers:
type ldent = string

Variables:

uniontype Var - Variables"
record VAR
lIdent name "‘name' ;
Attributes attributes "attributes” ;
Boolean protected_ "protected" ;
Type type_ "type" ;
Binding binding " equation modification™ ;
end VAR;
end Var;

uniontype Attributes - Attributes”
record ATTR
Boolean flow_ "flow"™ ;
SCode.Accessibility accessibility "accessibility" ;
SCode.Variability parameter_ "parameter' ;
Absyn_Direction direction "direction" ;
end ATTR;
end Attributes;

uniontype Binding ''- Binding"
record UNBOUND end UNBOUND;

record EQBOUND
Exp.Exp exp "'exp"™ ;
Option<Values.Value> evaluatedExp "evaluatedExp; evaluated exp"
Const constant_ 'constant' ;

end EQBOUND;

record VALBOUND
Values.Value valBound '"valBound" ;
end VALBOUND;
end Binding;

Types:

type Type = tuple<TType, Option<Absyn._Path>> "A Type is a tuple of a TType
(containing the actual type)
and a optional classname
for the class where the
type originates from.';

uniontype TType '"-TType contains the actual type"
record T_INTEGER
list<Var> varLstInt "varLstInt" ;
end T_INTEGER;

record T_REAL
list<Var> varLstReal "varLstReal" ;
end T_REAL;

78

record T_STRING
list<Var> varLstString "varLstString" ;
end T_STRING;

record T_BOOL
list<Var> varLstBool '"varLstBool™ ;
end T_BOOL;

record T_ENUM end T_ENUM;

record T_ENUMERATION
list<String> names "‘names" ;
list<Var> varLst "varLst" ;
end T_ENUMERATION;

record T_ARRAY
ArrayDim arrayDim "arrayDim" ;
Type arrayType "arrayType" ;
end T_ARRAY;

record T_COMPLEX
ClassiInf.State complexClassType ' The type of. a class" ;
list<Var> complexVarLst " The variables of a complex type" ;
Option<Type> complexTypeOption " A complex type can be a subtype of another
primitive) type (through extends).
In that case the varlist is empty” ;
end T_COMPLEX;

record T_FUNCTION

list<FuncArg> funcArg "funcArg" ;

Type funcResultType "Only single-result" ;
end T_FUNCTION;

record T_TUPLE
list<Type> tupleType " For functions returning multiple values.
Used when type is not yet known™ ;
end T_TUPLE;

record T_NOTYPE end T_NOTYPE;

record T_ANYTYPE
Option<ClassInf.State> anyClassType "Used for generic types. When class state
present the type is assumed to be a
complex type which has that restriction”;
end T_ANYTYPE;

end TType;
uniontype ArrayDim "- Array Dimensions"
record DIM
Option<Integer> integerOption;
end DIM;

end ArrayDim;
type FuncArg = tuple<ldent, Type> "- Function Argument" ;
Expression properties:

A tuple has been added to the Types representation. This is used by functions returning multiple
arguments.

Used by splitPropsProps:

Open Source Modelica System Documentation 79

uniontype Const " Variable properties: The degree of constantness of an expression
is determined by the Const datatype.
Variables declared as "constant”™ will get C_CONST constantness.
Variables declared as \"parameter\® will get C_PARAM constantness and
all other variables are not constant and will get C_VAR constantness."
record C_CONST end C_CONST;

record C_PARAM ""\"constant\"s, should always be evaluated™ end C_PARAM;

record C_VAR "\"parameter\"s, evaluated if structural not constants,
never evaluated"
end C_VAR;
end Const;

uniontype TupleConst "A tuple is added to the Types.
This is used by functions whom returns multiple arguments.
Used by split_props"
record CONST
Const const;
end CONST;

record TUPLE_CONST
list<TupleConst> tupleConstLst "tupleConstLst" ;
end TUPLE_CONST;
end TupleConst;

uniontype Properties "Expression properties:
For multiple return arguments from functions,
one constant flag for each return argument.
The datatype "Properties\" contain information about an
expression. The properties are created by analyzing the
expressions.”
record PROP
Type type_ "type" ;
Const constFlag "if the type is a tuple, each element have a const flag.";
end PROP;

record PROP_TUPLE

Type type_;

TupleConst tupleConst " The elements might be tuple themselfs.™;
end PROP_TUPLE;

end Properties;

The datatype Properties contains information about an expression. The properties are created by
analyzing the expressions.

To generate the correct set of equations, the translator has to differentiate between the primitive types
Real, Integer, String, Boolean and types directly derived from then from other, complex types. For
arrays and matrices the type T_ARRAY is used, with the first argument being the number of dimensions,
and the second being the type of the objects in the array. The Type type is used to store information
about whether a class is derived from a primitive type, and whether a variable is of one of these types.

Modification datatype:

uniontype EgMod "To generate the correct set of equations, the translator has to
differentiate between the primitive types “Real\", ~Integer\”,
“String\", "Boolean\" and types directly derived from then from
other, complex types. For arrays and matrices the type
“T_ARRAY\" is used, with the first argument being the number of
dimensions, and the second being the type of the objects in the
array. The “Type\" type is used to store information about
whether a class is derived from a primitive type, and whether a

80

variable is of one of these types.

record TYPED

Exp.Exp modifierAsexp "modifierAsexp ; modifier as expression” ;

Option<Values.Value> modifierAsValue "

Properties properties ''properties" ;
end TYPED;

record UNTYPED
Absyn.Exp exp;
end UNTYPED;
end EqMod;

uniontype SubMod "-Sub Modification"
record NAMEMOD
ldent ident;
Mod mod;
end NAMEMOD;

record IDXMOD
list<Integer> integerLst;
Mod mod;
end I1DXMOD;
end SubMod;

uniontype Mod "Modification"
record MOD
Boolean final_ "final" ;
Absyn_Each each_;
l1ist<SubMod> subModLst;
Option<EgMod> eqModOption;
end MOD;

record REDECL
Boolean final_ "final" ;

modifier as

Value option™ ;

list<tuple<SCode.Element, Mod>> tplSCodeElementModLst;

end REDECL;

record NOMOD end NOMOD;
end Mod;

Module dependencies: Absyn, Exp, ClassInf, Values, SCode, Dump, Debug, Print, Util.

3.4.42 Util — General Utility Functions

This module contains various utility functions, mostly list operations. It is used pretty much everywhere.
The difference between this module and the ModUtil module is that ModUtil contains Modelica related
utilities. The Util module only contains “low-level” general utilities, for example finding elements in lists.
This modules contains many functions that use type variables. A type variable is exactly what it sounds
like, a type bound to a variable. It is used for higher order functions, i.e., in MetaModelica the possibility to
pass a "handle" to a function into another function. But it can also be used for generic data types, like in

C++ templates.

A type variable in MetaModelica is written as ??? "a.

For instance, in the function list_fill ("a,int) => "a list the type variable "a is here used as
a generic type for the function List_fill, which returns a list of n elements of a certain type.

No module dependencies.

Open Source Modelica System Documentation 81

3.4.43 Values — Representation of Evaluated Expression Values

The module Values contains data structures for representing evaluated constant Modelica values. These
include integer, real, string and boolean values, and also arrays of any dimensionality and type.
Multidimensional arrays are represented as arrays of arrays.

uniontype Value
record INTEGER Integer integer; end INTEGER;
record REAL Real real; end REAL;
record STRING String string; end STRING;
record BOOL Boolean boolean; end BOOL;
record ENUM String string; end ENUM;
record ARRAY list<Value> valuelLst; end ARRAY;
record TUPLE list<Value> valuelLst; end TUPLE;

record RECORD
Absyn_Path record_ *“record name™ ;
list<vValue> orderd "orderd set of values" ;
list<Exp.ldent> comp "comp names for each value" ;
end RECORD;

record CODE
Absyn.Code A "A record consist of value Ildent pairs" ;
end CODE;
end Value;

Module dependencies: Absyn, Exp.

3.4.44 VarTransform — Binary Tree Representation of Variable
Transformations

VarTransform contains Binary Tree representation of variables and variable replacements, and performs
simple variable subsitutions and transformations in an efficient way. Input is a DAE and a variable
transform list, output is the transformed DAE.

Module dependencies: Exp, DAELow, System, Util, Algorithm.

3.4.45 XMLDump — Dumping of DAE as XML

XMLDump contains functionality to dump the DAE representation as XML.

3.4.46 DAEQuery — Dumping of DAE as Matlab
DAEQuery contains functionality for dumping the DAE Incidence Matrix in a Matlab format.

82

Chapter 4

MetaModelica Pattern Matching Compilation

This chapter gives a more detailed description of the methods used for compilation of pattern matching as
implemented in the modules Patternm and DFA.

In addition to the pattern matching, several other language constructs have been added to the
OpenModelica Compiler (OMC). A majority of these constructs are MetaModelica constructs. This chapter
describes the implementation of these constructs in order to ease the continuous implementation.

The most important construct that has been added to the OMC is the matchcontinue expression. It has
been implemented using an algorithm for pattern matching developed by Mikael Pettersson (former
PELAB member). This algorithm first transforms the matchcontinue expression into a Deterministic Finite
Automata (DFA). This DFA is then transformed into if-elseif-else nodes.

Other constructs that have been added (or are currently being added) include the MetaModelica list
type, MetaModelica union type and the MetaModelica tuple type.

A value block expression has been added to the OMC. The value block expression is simply an
expression consisting of a local variable declaration section, an equation or algorithm section and a return
statement. Similar block constructs may be found in languages such as Java and C. This construct is only
available internally and not for the end-user. The matchcontinue expression makes use of the value block
expression.

A number of modules have been altered. The implementation of the value block expression resulted in
the altering of many modules since it created circular dependencies in the compiler and a number of data
structures and functions had to be replicated. This replication, however, should only be seen as a temporary
solution. A later version of the OMC will hopefully be able to handle circular dependencies better.

4.1 MetaModelica Matchcontinue Expression

The matchcontinue expression is transformed from an Absyn.Exp into a new Absyn.Exp, hamely a value
block (see section 4.2). The matchcontinue expression is first encountered in the function instStatement
in the Inst module. From here the expression is dispatched to the function matchMain in Patternm.
Patternm contains the code that transforms the Absyn .Exp into a DFA.

The DFA data structure can be found in the module DFA. The DFA module also contains functions that
convert the DFA into a value block with if-elseif-else nodes. The pattern matching code is clearly separated
from the rest of the code since there is only one point of entry, in Inst, and the rest of the algorithm is
located in DFA and Patternm.

411 Modules Involved

41.1.1 Absyn

The abstract syntax for the matchcontinue expression was added to Absyn by Adrian Pop.

Open Source Modelica System Documentation 83

41.1.2 Inst

Two new cases have been added to the function instStatement, one for the case (vari,...,varN)
:= matchcontinue () ... (tuple assignment) and one for the case var := matchcontinue (O
- .. (single variable assignment). The pattern match algorithm is invoked (this algorithm has its entry point
in the function matchMain in the module Patternm) and a value block expression is given in return. The
reason why we single out the matchcontinue expression in this function and this module (instead of in
Static.elabExp) is that we need to know the return type(s) of the value block that we create (and the
names of the assigned variables). The return type(s) is given by the types of the variables on the left side of
the assignments. As of now, the left-hand side variables are used as the return variables of the value
block/matchcontinue expression so that no new variables have to be created.

4.1.1.3 Patternm

This module contains most of the pattern match algorithm. This module contains the functions that takes a
matchcontinue expression and transforms it into a DFA. The DFA is transformed into a value block
expression by functions in DFA.

The "main" function of this module is matchMain, this function calls several functions. First it calls
ASTtoMatrixForm which transforms the matchcontinue expression into a matrix and a vector/list. The
matrix contains renamed patterns (patterns containing “path” variables). The vector contains right-hand
side records (records containing equations and variables belonging to a right-hand side of the initial
matchcontinue expression).

After ASTtoMatrixForm the function matchFuncHelper is called. This function takes care of all the
pattern matching and transforms the renamed pattern matrix and right-hand side list into a DFA. The last
thing matchMain does is to call DFA. fromDFAtolfNodes which transforms the DFA into a value block
expression.

The function ASTtoMatrixForm goes through each and every case-clause in the matchcontinue
expression, adds path variables to the patterns, singles out the right-hand sides and takes care of all the as-
bindings (a pattern such as e as Absyn.INTEGER(1) will result in a new variable assignment in the
corresponding right-hand side, involving the path variable and the variable e).

The function extractFromMatchAST simply creates one list of patterns and one vector of right-hand
sides out of the matchcontinue expression. A matrix which contains renamed patterns is then created.

This matrix is then filled with renamed patterns by the function fil IMatrix. This function takes one
tuple at a time from the list of patterns, rename all the patterns (add path variables) and then add a new row
to the matrix.

The function addRow adds a new row to the matrix after it has invoked the function renameMain on
each pattern in the row.

The function renameMain recursively adds path variables to a pattern. The function renamePatList
calls renameMain on each pattern in a list of patterns.

The function matchFuncHelper is the workhorse of the pattern match algorithm. This function
dispatches to a number of cases. Which case that should be executed is determined by the upper row of the
matrix. If the matrix, and thus the upper row, is empty, a final state is created. This can be seen as the stop
condition of the algorithm. A final state is a state that contains the variables and equations from a right-
hand side record. There are three other main cases as given below. The matchFuncHelper function will
assign a unique number, a stamp, to each state.

e Case 1, all of the top-most patterns consist of wildcards. The leftmost wildcard is used to create
an arc to a new state. The function matchFuncHelper is invoked on this new state with what is
left of the upper row (actually, since this row only contains wildcards we can discard all these
wildcards and go directly to a final state). An else arc to a new state is created; matchFuncHe lper
is invoked on this new state with the rest of the matrix with the upper-row removed.

84

e Case 2, the top-most column consists of wildcards and constants but no constructors (record
calls or cons expressions). Select the left-most column with a constant at the uppermost position. If
this is the only column in the matrix do the following: Create a new arc with the constant and a new
(final) state. Create an else branch and a new state and invoke matchFuncHe lper on this new state
with what is left of the column. Otherwise if there is more than one column left in the matrix:
Create one new arc and state for each constant and one new arc and state for all the wildcards. This
is done by calling the functions addNewArcForEachC and addNewArcForWi ldcards.

e Case 3, there is a column whose top-most pattern is a constructor. Select this column. The
function matchFuncHelper calls the function matchCase3. We create a new arc for each
constructor c. For each constructor c: Select the rows that match ¢ (wildcards included). Extract the
sub patterns, create a new arc and state and invoke matchFuncHelper on what is left on the
matrix appended with the extracted sub patterns. This is mainly done in the function
addNewArcForEachCHelper. If this is the only column in the matrix do the following: Create an
else arc and a new "union” state for all the wildcards and constants. This is done by the function
createUnionState. Otherwise if there is more than one column left in the matrix: create an arc
and state for each constant, in the same way as for the constructors. Create one new arc and state for
all the wildcards.

An array containing states already created is passed along in the pattern match algorithm. Whenever a new
state is about to be created, we search in this array to see whether an equal state already has been created. If
this is the case we simply create a goto-state containing the name of the old state. We use the
stamps/numbers assigned to each state to jump between equal states and to access the array.

41.1.4 DFA
This module contains the DFA data structure. The DFA data structure has the following components.

e A DFA record which contains the start state, the number of states the DFA contains, an optional
else case, and a list of variables that will be added to the local variable section in the resulting value
block.

e A state record which contains a state stamp (identifier), a list of outdoing arcs, and an optional
right-hand side (if the state is a final state). There is also a goto-state record; it simply contains the
name of the state to jump to.

e An arc record which contains the state the arc is leading to, a list of numbers representing all the
right-hand sides that this arc leads to down the path, the name of the arc, and an optional renamed
pattern (the arc may be an else arc which means it does not have a renamed pattern).

This module also contains the functions that transform a DFA into a value block expression with nested if-
elseif-else nodes. The entry point is the function fromDFAto I fNodes. This function will start by creating
some variables that are mostly needed for the failure handling (a case-clause in a matchcontinue expression
may fail which leads to the matching of the next case).

After this the function generateAlgorithmBlock is invoked. The function
fromStatetoAbsynCode will be called with the start state of the DFA. Depending on whether an else-
case exists or not we might need to generate some extra code in generateAlgorithmBlock.

The function fromStatetoAbsynCode will take a state as input, extract the outgoing arcs from this
state, create an if-elseif-else statement for all the arcs and recursively invoke itself on each state that each
arc leads to.

The recursive call is made by the function generatelfElseifAndElse which is the function that
creates the if-elseif-else statements. The function generatel fElseifAndElse is a function that takes a

Open Source Modelica System Documentation 85

list of arcs as input and accumulates if-elseif cases in a list until the list of arcs is empty and the actual if-
elseif-else statement is created.

The function fromStatetoAbsynCode must keep track of the type of the incoming arc to the current
state. If the incoming arc was a constructor then new path variables must be declared and initialized to the
field values of the record. This is done by the function generatePathvarDeclerations. This function
looks up the type and name of each field in the record so that a new variable may be declared.

The module DFA also contains the renamed patterns union type. A renamed pattern is similar to an
Absyn .Exp except that we have added a path variable to each pattern. This module also contains functions
for handling matrices: adding a row to a matrix, picking out the first row of a matrix, removing the first row
of a matrix, singling out a column from a matrix, etc..

In order to handle matchcontinue failures (a case-clause may fail which should lead to the matching of
the next case-clause) the following scheme is used.

e As mentioned earlier, the numbers of the right-hand sides that each arc eventually leads to are saved
in a list in the arc record.

e An array of Boolean values is added to the final value block. The array contains one entry for each
right-hand side.

e Whenever a right-hand side section fails, we catch this failure and set the corresponding entry in the
Boolean array to false.

o In every if-else-elseif statement, in the generated code, we access the Boolean array to see whether
all the right-hand sides that this arc leads to already have been visited.

An example follows.

y = matchcontinue(x)
case (1) equation .. <codel> fail(); <code2> .. then 1;
case (2) equation .. <code3> .. then 2;

end matchcontinue;

The code above would result in the following C-code (note that the code is somewhat simplified).

{

Bool BOOLVAR[2] = {true,true};
Int LASTFINALSTATE = 0;

Bool NOTDONE = true;

while(l)
{
try {
if (x == 1 && BOOLVAR[1]D) {

LASTFINALSTATE = 1;
<codel>
throw 1; //fail
<code2>

NOTDONE = false;

}

else if (x == 2 && BOOLVAR[2]) {
LASTFINALSTATE = 2;
<code3>
NOTDONE = false;

86

}
catch (.) {

BOOLVAR[LASTFINALSTATE] = false;
}

it (INOTDONE) break;

“

4.2 Value block Expression

The value block expression makes it possible to have equations and algorithm statements nested within
another equation or algorithm statement. This fact makes the implementation of this construct rather
complicated. Circular dependencies arise in the compiler. The compiler design also becomes unclean in the
sense that the original patterns of design are altered: we may find pieces of code in places we did not
expect.

421 Modules Involved

421.1 Absyn

A value block record has been added to Absyn._Exp. This record consists of a list of elementltems (local
variable declarations), a ValueblockBody union type (this union type consists of two records, one
representing a list of equations and the other one representing a list of algorithm statements) and a result
expression.

42.1.2 Exp

A value block record has been added to this module. Since a value block may contain variable declarations
and algorithm statements (if any equations exist at the outset these are converted into algorithm assignment
statements by a function in the Static module) and since we do not want circular dependencies we had to
duplicate many data structure into Exp. We had to move (duplicate) type data structures from Types, DAE
and Algorithm. In Static when the value block is first encountered these data structures are converted from
being union types of Types, DAE and Algorithm into being union types of Exp. In Codegen they are then
converted back. This converting is done by the module Convert, see the next paragraph.

4.2.1.3 Convert

This module contains functions that convert union types from Types, DAE and Algorithm into
corresponding union types in Exp, and then back again.

4214 Static

The value block expression is first encountered in this module in the function elabExp. First a new scope
is added to the environment. After this the local variable list is elaborated and the variables are added to the
environment. After this the algorithm section is instantiated and the return expression is elaborated.
However, in order to avoid circular dependencies we had to add some extra data structures to Exp as
mentioned above. Therefore we must call functions in the module Convert that converts these data
structures. If we have a value block with an equation section instead of an algorithm section we simply use
the function fromEquationsToAlgAssignments to transform each equation into an algorithm
assignment statement.

Open Source Modelica System Documentation 87

4215 Prefix

In the function prefixExp we must now handle a value block expression. New functions that can add
prefixes to elements and algorithm section have been added: prefixDecls, prefixAlgorithm and
prefixStatements.
4.2.1.6 Codegen

The value block expression (an Exp.Exp record) is encountered in the function generateExpression.
First the list of elements and algorithm statements are converted from Exp union types into DAE, Types
and Algorithm union types. After this the C code is generated in a rather straightforward fashion.

4.3 MetaModelica list

The MetaModelica language contains a list construct, similar to the one found in languages like Lisp.

list<Integer> listint;

listint = {1,2,3,4};
listint = cons(1,{1,2,3});
listint = (1 :: {1,2,3}); // :: is the cons operator

This list type has now been added to the OMC. The C code that is generated consists of void pointers
and function calls to the C runtime functions mk_nil and mk_cons.

431 Modules Involved

43.1.1 Absyn

The :: operator is represented by the CONS record in the Exp union type in Absyn. A L1ST record has also
been added to the Exp union type. This one is used internally in the compiler to represent an Absyn.ARRAY
(the parser cannot decide whether curly brackets, { ... }, denotes a list or an array constructor). In some
places in the code (where type information is available), an Absyn.ARRAY expression is replaced by an
Absyn.LIST expression.

4.3.1.2 Codegen

C code is generated for the Exp.L1ST and Exp.CONS expressions in the function generateExpression.
DAE.Type and Types.T_LIST are handled in several places in this module and C void pointers are
generated.

4.3.1.3 DAE

A list type has been added to the union type DAE. Type.

43.1.4 DFA

The handling of lists has been added to this module. A renamed cons pattern should result in an appropriate
if-statement. Given a list variable, we must create two new variables that should be assigned the car and cdr
parts of the list variable. An example follows.

matchcontinue (x)

88

case (1 :: {}) ---
The above example should result in the following (somewhat simplified) code.
it O {

Type x1 = car(x);
list<Type> x2 = cdr(x);
it (x1 ==1) {

if 2= {---}

}

An extra environment variable must be passed along. This environment contains the types of the variables
generated from a cons pattern (such as x1 and x2 above). This is needed because when we encounter a path
variable such as x1 and x2 (that have been generated from a cons pattern) we need to know the type of this
variable.

43.15 Inst

Extra clauses have been added to the functions instElement and instStatement. In the function
instElement, a list element must be dealt with separately. The basic underlying type of the list is handled
as usual and at the end the Types.T_LIST is added to the resulting DAE element. Nested lists, for instance
list<list<Integer>>, are also supported.

4.3.1.6 Metautil

This module contains a number of functions that deals with the list construct. These functions are invoked
from Inst, Static and Codegen. This module was added so that the code dealing with MetaModelica
constructs would be more strictly separated from the rest of the code.

4.3.1.7 Patternm

The cons and empty-list patterns are handled in renameMain and in a few other functions.

43.1.8 Static

Several extra clauses have been added to the function elabExp. When the MetaModelica flag is set, we
must go through all the arguments to a function call to see if there are any Absyn.ARRAY expressions. If
this is the case and the underlying type is a list, we must replace this Absyn.ARRAY expression with an
Absyn.LIST expression. In the function elabExp we also handle the Absyn.LIST and Absyn.CONS
records. The elaboration of these records results in an Exp.LIST or Exp . CONS record.

4.3.1.9 Types
A T_LIST record has been added to the TType union type. This record is handled by for instance the
function subtype.

4.3.1.10 Values

A list value has been added to this module. However, it is not used as of now (and may never have to be
used in the future).

Open Source Modelica System Documentation 89

4.4 MetaModelica Union Type
NA.

90

Chapter 5

OMNotebook and OMShell

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook. Both
OMNotebook and OMShell uses the development framework Qt.

51 Ot

Qt is an object-oriented, platform independent, C++ development framework created and maintained by
Trolltech. Qt includes a comprehensive class library, with more then 400 classes, and several tools for
development. The Qt API has a rich set of classes and functionality for several types of development and
programming. In OMNotebook Qt have been used for GUI programming, file handling and XML, but Qt
can be used for database programming, networking, internationalization, OpenGL integration and much
more.

Qt is consistent across all supported platforms, which enable developers to create truly platform
independent applications. Using Qt, developers can create native applications for Windows, Mac and X11
platforms. Qt requires no virtual machines, emulation layers or bulky runtime environments. Instead Qt
writes directly to low-level graphics function like native applications, which allows Qt applications to run
natively. Trolltech have designed Qt to be easy and intuitive to use.

5.2 HTML documentation

Using Doxygen a HTML documentation have been generated from the source files. This documentation
contatins information about the different classes, functions and files belonging to OMNotebook. The
documentation is found on the SVN under OMNotebook/Doxygen_doc.

53 Mathematica Notebook Parser

OMNotebook have a parser implemented that can read Mathematica notebooks. This parser is generated by
ANTLR using grammar descriptions. This is an EBNF grammar for the Mathematica notebook fullform
format, taken from the grammar definition for the Mathematica notebook parser.

document s <expr>
(FrontEnd™)* <exprheader>
<value>

<attribute>

expr

Open Source Modelica System Documentation 91

exprheader Ii=
Notebook [<expr> (, <rule>)*]
| List [(<listbody>)* (, <listbody>)*]
| list [(<listbody>)* (, <listbody>)*]
| Cell [<expr> (, <expr>)? (, <rule>)*]
| CellGroupData [<expr> (, Open|Closed))]
| TextData [<expr> (, <expr>)* (, <rule>)*]
| StyleBox [<expr> (, <expr>)* (, <rule>)*]
| StyleData [<expr> (, <expr>)* (, <rule>)*]
| SuperscriptBox [<expr>, <expr>]
| SubscriptBox [<expr>, <expr>]
| SubsuperscriptBox [<expr> (, <expr>)* (, <rule>)*]
| UnderscriptBox [<expr> (, <expr>)* (, <rule>)*]
| OverscriptBox [<expr> (, <expr>)* (, <rule>)*]
| UnderoverscriptBox [<expr> (, <expr>)* (, <rule>)*]
| FractionBox [<expr> (, <expr>)* (, <rule>)*]
| SqrtBox [<expr> (, <expr>)* (, <rule>)*]
| RadicalBox [<expr> (, <expr>)* (, <rule>)*]
| RowBox [<expr> (, <expr>)* (, <rule>)*]
| GridBox [<expr> (, <expr>)* (, <rule>)*]
| FormBox [<expr> (, <expr>)* (, <rule>)*]
| TagBox [<expr> (, <expr>)* (, <rule>)*]
| CounterBox [<expr> (, <expr>)* (, <rule>)*]
| AdjustmentBox [<expr> (, <expr>)* (, <rule>)*]
| ButtonBox [<expr> (, <expr>)* (, <rule>)*]
| InterpretationBox [<expr>, <expr>]
| Annotation [<expr> (, <expr>)* (, <rule>)*]
| Equal [<expr> (, <expr>)* (, <rule>)*]
| Diagram [<expr> (, <expr>)* (, <rule>)*]
| Icon [<expr> (, <expr>)* (, <rule>)*]
| Polygon [<expr> (, <expr>)* (, <rule>)*]
| Ellipse [<expr> (, <expr>)* (, <rule>)*]
| Line [<expr> (, <expr>)* (, <rule>)*]
| GreyLevel [<expr> (, <expr>)* (, <rule>)*]
| OLEData [<expr> (, <expr>)* (, <rule>)*]
| RGBColor [Number, Number, Number]
| Filename [<expr> (, <expr>)* (, <rule>)*]
| BoxData [<expr> (, <expr>)* (, <rule>)*]
| GraphicsData [String, String (, <rule>)*]
| DirectedInfinity [Number]
| StartModelEditor []
| ParentDirectory []

listbody 1= (<expr>|<rule>)

rule 2= Rule [<expr> (, <expr>)]
| rule [<expr> (, <expr>)]
| RuleDelayed [<expr> (, <expr>)]

value 1= String
| Number
| True

92

attribute

False

Right

Left

Center

Smaller
Inherited
PaperWidth
WindowWidth
TraditionalForm
StandardForm
InputForm
OutputForm
DefaultlnputFormatType
Automatic

None

Null

All

FontSlant
FontSize
FontColor
FontWeight
FontFamily
FontVariation
TextAlignment
TextJustification
InitializationCell
FormatType
PageWidth
PageHeaders
PageHeaderLines
PageFooters
PageFooterLines
PageBreakBelow
PageBreakWithin
BoxMargins
BoxBaselineShift
LineSpacing
Hyphenation
Active

Visible
Evaluatable
ButtonFuncion
ButtonData
ButtonEvaluator
ButtonStyle
CharacterEncoding
ShowStringCharacters
ScreenRectangle
AutoGeneratedPackage
AutoltalicWords
InputAutoReplacements
ScriptMinSize

Open Source Modelica System Documentation

93

StyleMenuListing
Counterlincrements
CounterAssignments
PrivateEvaluationOptions
GroupPageBreakWithin
DefaultFormatType
NumberMarks
LinebreakAdjustments
VisioLineFormat
VisioFillFormat
Extent

NamePosition
CellTags

CellFrame
CellFrameColor
CellFramelLabels
CellFrameMargins
CellFrameLabelMargins
CellLabelMargins
CellLabelPositioning
CellMargins
CellDingbat
CellHorizontalScrolling
CellOpen
GeneratedCell
ShowCel IBracket
ShowCel ILabel
CellBracketOptions
Editable

Background
CellGroupingRules
WindowSize
WindowMargins
WindowFrame
WindowElements
WindowTitle
WindowToolbars
WindowMoveable
WindowFloating
WindowClickSelect
StyleDefinitions
FrontEndVersion
ScreenStyleEnvironment
PrintingStyleEnvironment
PrintingOptions
PrintingCopies
PrintingPageRange
PrivateFontOptions
Magnification
GenerateCell
CellAutoOverwrite
ImageSize
ImageMargins

94

54 File list

ImageRegion
ImageRangeCache
ImageCache
ModelEditor

This file list lists all source files belonging to OMNotebook in alphabetical order with a short description.
In addition to these files a set of files are also generated by Qt and ANTLR, but those files are not listed
below. The lines of code (LOC) specified for each file is with comments and blank rows (counted May

2006).

File Description LOC

application.h Describe interface for the core application. 88

cell.cpp Implementation of the Cell class. 923

cell.h Definition of the Cell class, superclass for all cells. 234

cellapplication.cpp Implementation of the Cell Application class. 706

cellapplication.h Definition of the CellApplication class, 106
the main application class.

cellcommandcenter.cpp Implementation of the CellCommandCenter class. 134

cellcommandcenter.h Definition of the CellCommandCenter class, 77
responsible for storing and executing commands.

cellcommands.cpp Implementation of all commands on cell level. 766

cellcommands.h Definition of all commands on cell level. 201

cellcursor.cpp Implementation of the CellCursor class. 580

cellcursor.h Definition of the CellCursor class, 131
a subclass of Cell used as a cursor within a document.

celldocument.cpp Implementation of the CellDocument class. 1359

celldocument.h Definition of the CellDocument class, 218
represent a document, contains all cells.

celldocumentview.h Describe interface for a notebook window. 93
[deprecated]

cellfactory,cpp Implementation of the CellFactory class. 208

cellfactory.h Definition of the CellFactory class, 85
responsible for creating all cells.

cellgrammar.cpp Small text application, to test grammar description. 109
[deprecated]

cellgroup.cpp Implementation of the CellGroup class. 500

cellgroup.h Definition of the CellGroup, 129
a subclass of Cell used to group together cells.

cellparserfactory.cpp Implementation of the CellParserFactory class. 96

cellstyle.h Definition and Implementation of the CellStyle class, 131
holds different style options for cells.

chaptercountervisitor.cpp Implementation of the ChapterCounterVisitor class. 187

chaptercountercisitor.h Definition of the ChapterCounterVisitor class, 92
responsible for updating chapter counters.

command.h Describe interface for a commands. 134

commandcenter.h Describe interface for a command center. 74

commandcompletion.cpp Implementation of the CommandCompletion class. 408

commandcompletion.h Definition of the CommandCompletion class, 103
responsible for command completion.

commands.xml XML file containing all commands and keywords for 114
CommandCompletion class.

commandunit.h Definition and Implementation of the CellStyle class, 116

Open Source Modelica System Documentation 95

holds a command/keyword for command completion.

96

copytest.cpp

cursorcommands.h
cursorposvisitor.h

document.h
documentview.h
factory.h

highlighterthread.cpp
highlighterthread.h

imagesizedlg.h

ImageSizeDlg.iu
inputcell.cpp
inputcell.h

inputcelldelegate.h

lexer.g
modelicacolors.xml
nbparser.h
notebook.cpp
notebook.h

notebookcommands.h

notebookparser.cpp
notebookparser.h

notebooksocket.cpp
notebooksocket.h

omc_communicator.cpp
omc_communicator.hpp

omcinteractiveenvironment.cpp
omcinteractiveenvironment.h

OMNotebookHelp.onb
openmodelicahighlighter.cpp

openmodelicahighlighter.h

otherdlg.h

OtherDlIg.ui

parser.g
parserfactory.h

printervisitor.cpp
printervisitor.h

Small text application, to test copy function for cells.
[deprecated]

Definition and implementation of all commands on cursor level.
Definition and implementation of the CursorPosVisitor class,
responsible for calculate cell cursor position.

Describe interface for a document.

Describe interface for a notebook window.

Describe interface for a cell factory.

Implementation of the HighlighterThread class.

Definition of the HighlighterThread class,

responsible for running the syntax highlighter.

Definition and implementation of the ImageSizeDlg class, a dialog
for selecting size of an image.

Define user interface for ImageSizeDlg class.

Implementation of the InputCell class.

Definition of the InputCell class,

a subclass of Cell used to enter code in.

Describe the interface for an input cell delegate.

Grammar file for ANTLR, describe tokens.
Specifies color and font settings for the highlighter.
Describe interface for a parser.

Implementation of the NotebookWindow class.
Definition of the NotebookWindow class,

main window used to display a document.
Definition and implementation of all commands on
document/notebook level.

Implementation of the NotebookParser class.

Definition of the NotebookParser class, responsible for loading
Mathematica notebooks saved in fullform.

Implementation of the NotebookSocket class.

Definition of the NotebookSocket class, for communi-cation
between different OMNotebook processes.

Implementation of the OmcCommunicator class.

Definition of the OmcCommunicator class,

responsible for low level communication with OMC.

Implementation of the OmclInteractiveEnvironment class.
Definition of the OmclInteractiveEnvironment class,

a interactive environment for evaluation with OMC.

Help documentation about OMNotebook.
Implementation of the OpenModelicaHighlighter class.
Definition of the OpenModelicaHighlighter class,

a syntax highlighter for modelica code.

Definition and implementation of the OtherDlg class,

a dialog for selecting an integer value.

Define user interface for OtherDlg class.

Grammar file for ANTLR, describe grammar rules.
Describe interface for a parser factory.

Definition of the CellParserFactory,

responsible for creating correct parser for a given file.
Implementation of the PrinterVisitor class.

Definition of the PrinterVisitor class,

creates the document that is sent to a printer.

78

227
135

180
87
84

283
95

126

114
1592
210

81

330
47
66

3348

350

500

171
76

299
63

1420
201

297
79

543
124
116

114

226
83

302
101

Open Source Modelica System Documentation 97

puretextvisitor.cpp
puretextvisitor.h

qtapp.cpp
removehighlightervisitor.h

rule.h

serializingvisitor.cpp
serializingvisitor.h

stripstring.h

stylesheet.cpp
stylesheet.h

stylesheet.xml
syntaxhighlighter.h
textcell.cpp
textcell.h

textcursorcommands.cpp
textcursorcommands.h
treeview.cpp

treeview.h

updategroupcellvisitor.cpp
updategroupcellvisitor.h

updatelinkvisitor.cpp
updatelinkvisitor.h

visitor.h
walker.g

xminodename.h
xmlparser.cpp
xmlparser.h

Implementation of the PureTextVisitor class.
Definition of the PureTextVisitor class,
extracts document contents and save it as pure text.

Contains the main() function.

Definition and implementation of the RemoveHighlighterVisitor
class, remove documents cells from the highlighter thread.
Implementation and definition of the Rule class,

holds format rules for cells and styles.

Implementation of the SerializingVisitor class.

Definition of the SerializingVisitor class,

responsible for saving a document in .onb format.

Static functions for text manipulation, used in walker.g.

Implementation of the Stylesheet class.

Definition of the Stylesheet class,

holds and manages the different cell styles.

XML file containing specification of ass cell styles.
Define interface for a syntax highlighter.
Implementation of the TextCell class.

Definition of the TextCell class,

a subclass of Cell used to write normal text in.

Implementation of all commands on text cursor level.
Definition of all commands on text cursor level.
Implementation of the TreeView class.

Definition of the TreeView class,

represents an item in the tree view of documents.
Implementation of the UpdateGroupcellVisitor class.
Definition of the UpdateGroupcellVisitor class,
responsible for updating groupcell state when loading.

Implementation of the UpdateLinkVisitor class.
Definition of the UpdateLinkVisitor class,
responsible for updating links when needed.
Describe interface for a visitor.

Grammar file for ANTLR, describe how to walk to created tree and

create a cell structure.

Define all xml name used in the .onb file format.
Implementation of the XMLParser class.
Definition of the XMLParser class,

responsible for loading files saved in .onb format.

Sum:

179
95

87
97

101

331
111

353

521
108

146

85
871
167

604
271
220
115

123
86

176
95

96
953

85

600
111

27037

98

55 Class overview

The following diagram contains the complete static structure of OMNotebook.
:
JAN

[QApplication | [QObject] QThread

JAN

[OpenModelicaHighlighter]

«singleton»
HighlighterThread

CellApplication |
1 H «singleton»

<< create instance >>

«vitual class»
CommandCenter

CommandCompletion

CellCommandCenter

«singleton»
Stylesheet

«vitual class»

——1__ Application
'

p———
Command

o 2

Cell _Jeé——]InputTreeView]

11 JAN
InputTreeView

i

QMainWindow
JAN

«vitual class»
DocumentView
N

<<create>>

-
o «witual class» |——{ CellFactory

Document CellStyle

1

I 1 «vitual class»
CellDocument Visitor TextCell

1 . CellCursor

1

1 CellGroup

1

1

NotebookWindow

InputCell

«vitual class»

R Factory

«vitual class»

CellParserFactory

JAN

«vitual class»
NBParser

ParserFactory

QTextBrowser
JAN

<< create >>

MyTextBrowser
MyTextEdit

CursorPosVisitor ‘

ASTFactory

PrinterVisitor ‘

[AntlrNotebookLexer

PureTextVisitor |

[AntirNotebookParser

SerializingVisitor ‘

[AntirNotebookTreeParser

UpdateGroupcellVisitor |

TTIOITT

UpdateLinkVisitor ‘

TextCursorChangeFontFamily ‘ CursorMoveUpCommand ‘

4{ RemoveHighlighterVisitor

TextCursorChangeFontFace ‘ CursorMoveAfterCommand ‘

L—{ ChapterCountervisitor _|

TextCursorChangeFontSize \ CursorMoveDownCommand \

TextCursorChangeFontStretch | SaveDocumentCommand | AddCellCommand |

T T T LT

TextCursorChangeFontColor | OpenFileCommand | CreateNewCellCommand |

+—{ TextCursorChangeTextAlignment | OpenOldFileCommand | DeleteCurrentCellCommand |

t—{ TextCursorChangeVerticalAlignment | PrintDocumentCommand | DeleteSelectedCellsCommand |

TextCursorChangeMargin \ CloseFileCommand \ CopySelectedCellsCommand \

TextCursorChangePadding NewFileCommand PasteCellsCommand

TextCursorChangeBorder | ExportToPureText | ChangeStyleOnCurrentCellCommand _ f>—

INNRNEE

TextCursorinsertimage | EvalSelectedCells |

1
ChangeStyleOnSelectedCellsCommand kH
1

TextCursorlnsertLink | UpdateChapterCounters | MakeGroupCellCommand |

N N 0 N A R R N
N A R

4{
— TextCursorPasteText |

TextCursorCutText | TextCursorCopyText |

Open Source Modelica System Documentation 99

5.6 References

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents.Final thesis to be presented spring 2006, Dept. Computer and Information Science, Linkdping
University, Sweden.

Trolltech, Qt Product Overview, http://www.trolltech.com/products/qt/index.html.

van Heesch, Dimitri, www.doxygen.org (2006), Doxygen, http://www.doxygen.org.
ANTLR, About The Parser Generator ANTLR, http://www.antlr.org/about.html.

100

Chapter 6

OpenModelica Eclipse Plugin — MDT

To be updated, until then, consult the Modelica Development Tooling (MDT) website:
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT

Open Source Modelica System Documentation 101

Chapter 7

How to Write Test Cases for OpenModelica
Development

This chapter is a "how-to" guide to aid in developing testcases for the omc testsuite. At the end of the file
there are examples to illustrate the guide.

7.1 Getting Started

In case you plan to develop several testcases it might be beneficial to have a separate working directory in
the testsuite directory.To set this up you need to copy some files to that directory. Copy rtest,
translation_template.mo, translation_failed_template.mo, simulation_template.mos,
and simulation_failed_template.mos.

Depending on where in the directory hierarchy you put your subdirectory <DIRECTORY> including the rtest
script, you may need to modify the path *. . /. . /build/bin/omc" in the following line in the rtest file:

system ""MODEL ICAUSERCFLAGS=$info{cflags} ../../build/bin/omc $f >$log2>&1";

In order to test your testcase you want to be able to run just a single case at the time. To do this, edit
Makefile.omdev.mingw under the OpenModelica directory. Add the following two lines (perhaps also
including dependencies?):

mytest:
(cd testsuite/<DIRECTORY>; rtest -v XXX.mos)

Here <DIRECTORY> is the specific directory where your testcase is saved.

Then in order to run your testcase, simply type the command mytest when you build the project using the
Eclipse MDT plugin (Ctrl + B).

7.2 Developing a Test Case

A complete testcase consists of 2 separate files. The .mo file containing the model you are running your
tests on and a .mos file containing the test script.

7.21 Creating the .mo File

Open translation_template.mo or translation_failed_template.mo, depending on if the
translation should fail or not.

e Save the file with a name of your choice. (Don't just copy the content to the new file since it might
result in errors.)

102

e Change the XXX to appropriate names.
e Write the code for the test model. In case your model is supposed to translate add the flat code at
the bottomof the file (as seen in the template file).

In order to obtain the flat file, enter the following command:

>omc.exe XXX.mo

at the command prompt. Copy the result to the bottom of your .mo file. It is important that you maintain all
information from the flattened file, including white spaces.

When commenting the flattened code as seen in the template ensure that there is a white space after
each '/I' (as in the template).

7.2.2 Creating the .mos File

Open one of the templates simulation_template.mos, simulation_failed_template.mos depending on
whether your testcase should be simulated successfully or not. Save it with preferably the same name as the
.mo file.

7.2.2.1 Simulation not Failing
The simulation_template.mos file is used when the simulation should not fail.

e Change <XXX> in loadfile to the .mo file name.

e Change <XXX> in the rest of the file to the class or model name that should be simulated (the last
model/class in the mo file)

e Add appropriate startTime, stopTime, and numberOfiIntervals in simulate.

e Change the variables in readSimulationResult to the variables you want to test/check.

To get all the values from a variable in the simulation you use res[1] for the first variable you added in
readSimulationResult and res[2] for the second one and so on.

The res[X] is an array of all simulated values from that variable with the size of
readSimulationResultSize("'<XXX>_res.plt'™); The size of the simulation result depends on the
interval set in simulate. To get a specific value in the set/array you use res[X,Y].

To get a value at a specific time in the simulation you must manually look it up in the <XXX>_res.plt
file.

To do that you have to out comment the line system(*'rm"") in the .mos file and run the test.
Then the result files will not be removed.

This is not very practical. There is a script function called val that can get the value for a specific time.
It’s used like val(variableName,time). However, the function currently works only on scalar
variables, not array elements.

Get the values you are going to test as described above. In the template file there is an example of how
you can round the values to 3 digits/decimals.

x:=res[1]; // get the values
X:=1000*x; // multiply the values with 1000
x:=Floor(x); // remove the decimals

echo(true); // turns on output
x/1000.0; // divide it with 1000 -> 3 digits/decimals and prints it.

Remove:

/7 {1.0,1.654,2.169,2.62,3.032,3.418}
/7 {2.0,2.0,2.0,2.0,2.0,2.0}
/7 {3.0,2.545,2.23,1.979,1.767,1.581}

and add the expected result for your test variables. One way to obtain the expected values is to simulate the
model in another simulator or compute the results manually.

Open Source Modelica System Documentation 103

7.2.2.2 Simulation Fail
The simulation_failed_template.mos is used when the simulation should fail.

e Change <XXX> in loadfile to the .mo file name.
e Change <XXX> in simulate to the class or model name that should be simulate (the last class/model
in the .mo file)

Then remove

//"#Error, too few equations. Underdetermined system
// The model has 3 variables and 2 equations

and replace it with the error message expected for your model.
Note::

The expected values and the errormessage will be matched towards the printout from the simulation. Thus
the expected values and error messages have to be exactly the same as the printout or the test will fail.

Hints:

change the template mos file.

size:=readSimulationResultSize("'<XXX>_res.plt");
res:=readSimulationResult(*""<XXX>_res.plt",{x,y,z},size);

7.3 Status of Simulated Test Cases

7.3.1 Status for .mo Files

There are three different cases of mo.files.
1. The .mo file is correct and translates. Then status shall be correct.
2. The .mo file is inaccurate and thus it won't translate. Status shall then be incorrect.

3. The .mo file is correct according to the modelica language specification but it has features not yet
implemented in the omc compiler. Status shall be set to correct. These tests however will be added
differently to the testsuite.

7.3.2 Status for .mos Files

Status on .mos files should always be set to correct.

7.4 Adding Test Cases to the Suite

Move the files to the dir where they should be and add the new mo and. mos files to the makefile. Normal
correct testcases should be added at the TESTCASE label (like example 1 below). Testcases that are using
features yet not implemented in OMC should be added to the failing test label.

For testcases that have 'planted’ errors in the mo-file and a 'simulation_failed' .mos file (like example 2
below), the mo-file should be added as a failing test and the .mos file as a normal test file.

104

7.5 Examples

7.5.1 Correct Test

MO-FILE
// name: Examplel
// keywords:
// status: correct
//
// Simple example
//
model Ex1
Integer Xx;
equation
X = 2+3;
end Ex1;

// fclass Ex1
// Integer Xx;
// equation
// X = 5;
// end Ex1;

MOS-file

// name: Examplel

// keywords:

// status: correct

//

// Simple example

loadFile(""Examplel._mo™);

simulate(Exl,startTime=0.0, stopTime=1.0, numberOfintervals=2); // 2 intervals ==
3 values

echo(false); // turns of output

size := readSimulationResultSize("Ex1_res.plt’™);
res:=readSimulationResult("Ex1l_res.plt",{x},size);

x1l:=res[1,1]; //CGets the simulated value of the model variable x at the time O
x2:=res[1,size]; //Gets the value of the model variable x at stoptime.

echo(true); // turns on output

x1; //prints x1, expecting 5.0
x2; //prints x2, expecting 5.0

readFile(output.log™); // Check that output log is emtpy
system('rm -rf Ex1_* Exl.exe Exl.cpp Exl.makefile Ex1.libs Ex1.log output.log™);

// Result:

// true

// record

// resultFile = "Ex1l_res.plt"
// end record

// true

// 5.0

// 5.0

// 0
// endResult

Open Source Modelica System Documentation 105

7.5.2 Failing Test
MO-FILE

// name: Example2
// keywords:

// status: incorrect
//

// Simple example

//

model Ex2
Integer x = 5.5; //Type mismatch
equation
X = 5;
end Ex2;

MOS-FILE

// name: Example2
// keywords:

// status: correct
//

// Simple example

loadFile(""Example2.mo™);

simulate(Ex2,startTime=0.0, stopTime=1.0, numberOflntervals=2);

// 2 intervals == 3 values

getErrorString(); // simulation failed, check error string.

// Result:

// true

// record

// resultFile = "Simulation failed.

// Type mismatch in modifier, expected Integer, got modifier =5.5 of type Real
// Error occured while flattening model Ex2

// end record

// endResult

106

Appendix A

Exercises (?? Incomplete, version 070204)

The following are some exercises mostly related to the OpenModelica Compiler (omc), but also about
writing a test script and using the Corba client-server interface.

A.1 Exercise SimpleTestCase — Write a Simple Test Case

Write your own testcase MyHelloWorld.mo as a MyHelloWorld.mos file and add it to the test suite. For
example, modify the existing HelloWorld.mo, e.g. by changing the equation, run it within OMNotebook or
OMShell, check the values at a few points using the val-function — val(x,time). Use these to design your
own .mos file.

Also read Chapter 7 in this document which gives more detailed instructions.

Below is the .mos file that runs and compares with the values in the comments at the end of the file. In the
.mo file there is also a flattened version of the file for checking the flattening.

Helloworld.mos:

// name: HelloWorld
// keywords: equation
// status: correct
//

// Equation handling

//

loadFile(""HelloWorld.mo™);
simulate(HelloWorld, startTime=0.0, stopTime=1.0, numberOflntervals=2);
echo(false);

size := readSimulationResultSize("*HelloWorld_res.plt');
res:=readSimulationResult("'HelloWorld_res.plt",{x},size);
X = res[1];

X = 1000*x;

x = Ffloor(x); ??? Should perhaps be re-written using the val-function?
echo(true);

x/1000.0;

readFile("output._log™);

system('rm -rf HelloWorld_* HelloWorld.exe HelloWorld.cpp HelloWorld.makefile
HelloWorld.libs HelloWorld.log output.log™);

// Result:

// true

// record

// resultFile = "HelloWorld_res._plt"”

// end record

// true

/7 {1.0,0.999,0.999,0.606,0.367}

// 0
// endResult

HellowWorld.mo:

// name: HelloWorld
// keywords: equation
// status: correct

Open Source Modelica System Documentation 107

//
// Equation handling
//

model HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = - a * Xx;
end HelloWorld;

// fclass HelloWorld

// Real x(start = 1.0);
// parameter Real a = 1;
// equation

// der(X) = -(a * xX);
// end HelloWorld;

A.2 Exercise UseAPIFunctions — Call Some OMC API Functions

Take a look at the API table in Section 2.4.3 and in the notebook QueryAPIExamples in the testcases
directory under the OpenModelica installation.

** Call a few APl function.

A.3 Exercise OMCCorbaJava — Commands via Corba from a Java
Client

In this exercise you will send commands to the OMC compiler via the Corba interface. Please switch to the
Java perspective for this exercise. In this exercise you just play around with the Java Corba interface to
omc.

A.3.1 How Corba Communication Works

When OMC is started with: omc[.exe] +d=interactiveCorba, it writes a file in the temporary
directory with its Corba Object reference. The file is called differently depending on the OS. In Windows:
openmodelica.objid and in Linux: openmodelica.USERNAME.objid where USERNAME is the
name of the current user. The Corba clients check if this file exists, read it and use it to initialize the Corba
code that connects to OMC. The code in general looks like this:

ORB orb;
OmcCommunication omcc;

orb = ORB.init(args, null);

/* Convert string to object. */
org.omg.CORBA.Object obj = orb.string_to_object(stringifiedObjectReference);

/* Convert object to OmcCommunication object. */
omcc = OmcCommunicationHelper._.narrow(obj);

In the code above the variable stringifiedObjectReference represents the contents read from the
openmodelica. [USERNAME.Jobj id file.
All the OmcCommunication*.java files are generated using an Corba IDL compiler from a very
simple omc_coomunication. idl file with the following contents:
// As simple as can be omc communication, sending and recieving of strings.
interface OmcCommunication {
string sendExpression(in string expr);
string sendClass(in string model);

};

108

Please reffer to Corba documentation (for example http://www.mico.org) for more information about the
IDL Compiler and ORB.

A.3.2 OMCProxy.java
Provides implementation for:

e starting the OpenModelica compiler: omc[.exe] depending on the platform (Windows/Linux).
See method: startServer().

e sending expressions to OMC and receiving results.
See method: String sendExpression(String e).

e initialization of Corba communication.
See method: setupOmcc(String objReference).

A.4 Corba Clients for C++ and Python

If you are interested in calling OpenModelica compiler OMC from other languages we have available
OMC clients for C++ and Python here: http://www.ida.liu.se/~adrpo/omc/corba/

A.5 Exercise newAPIFunction — Write a new Simple OMC API Function

Write your own simple function myOwnAPIFunction() with no arguments that returns the string
“myString”

Look in the file Interactive.mo.

Locate function evaluateGraphicalApi2.

Look at the cases for some existing API functions, e.g. the one below.
Add your own case for a simple function myOwnAP1Function().

Below you find a case rule for one of the existing functions getEnvironmentvar(...):

algorithm
(outString,outinteractiveSymbolTable):=
matchcontinue (inlnteractiveStmts, inlnteractiveSymbolTable)

case (ISTMTS(interactiveStmtLst = {IEXP(exp = Absyn.CALL(
function_ = Absyn.CREF_IDENT(name = '‘getEnvironmentvVar™),
functionArgs = Absyn._FUNCTIONARGS(args = {Absyn.STRING(value = name)},

argNames = {})))}),)
(st as SYMBOLTABLE(ast = p,explodedAst = s,instClsLst = ic,

IstvarvVal = iv,compiledFunctions = c¥f))

)
equation
resstr = System.readEnv(name);
then
(resstr,st);

A.6 Exercise ASTExpTransform — Write A Small Exp AST
Transformation

Write a small AST transformation, e.g. in the Exp package, for example to simplify an expression. For
example, you can transform small powers of 3, e.g. x3, to corresponding multiplications, e.g. X*x*x.

A.7 Exercise CodeGen — Generate Code for a new Builtin Function

Open Source Modelica System Documentation 109

Make a small change in the code generator. (e.g. add a compiler-known builtin function twice(x) that
generates the code x+x, or mySin2(x) for computing sin(x)+2, or change an existing function (floor), or
something of your choice, etc.)

Depending on your ambitions, you need to change two or more of the following files. Changes to at least
Builtin.mo and Codegen.mo are necessary.

e Builtin.mo — This package creates a top-level environment with all predefined classes and types.
e Static.mo — This package performs type checking and certain cases of symbolic simplification.
e Ceval.mo - This package performs evaluation of constant expressions.

e Codegen.mo — This package performs code generation.

A simple method is to search for the string fi 11" for the builtin function fill in the above .mo-files.
Then you easily find the places where to insert code for your own builtin function.

A.8 Exercise getClassNamesRecursive — Recursive Printout of Class
Names in a Model Hierarchy

Write an API function: getClassNamesRecursive(cref) where cref=Component Reference.
This function should display all the loaded classes/packages hierarchically to the last depth

e each level should be indented
e Anexample of output is given below

Example call:

loadModel (Modelica)
getClassNamesRecursive(Modelica)

Output:

Modelica [package]

Blocks [package]
Continous [package]

Der [block]
Derivative [block]

Discrete [package]
Constants [package]
Electrical [package]
Icons [package]
Math [package]
Mechanics [package]
Slunits [package]
UsersGuide [package]

Hints:
e Start from “getClassNames” and think about how you can write some functions to get the output
above. See also getClassRestriction(cref) .

110

Appendix B

Solutions to Exercises (??Incomplete)

The following are solutions to some exercises in Appendix A.

B.1 Solution SimpleTestCase — Write a Simple Test Case
One possible solution (?? need to update this)
MyHelloWorld.mos:

// name: HelloWorld
// keywords: equation
// status: correct
//

// Equation handling

//

loadFile(""HelloWorld.mo™);
simulate(HelloWorld, startTime=0.0, stopTime=1.0, numberOfintervals=2);
echo(false);

size := readSimulationResultSize("*HelloWorld_res.plt');
res:=readSimulationResult("'HelloWorld_res.plt",{x},size);

x = res[1];

X = 1000*x;

x = Floor(x); ?7?? Should perhaps be re-written using the val-function?

echo(true);

x/1000.0;

readFile('output_log™);

system("'rm -rf HelloWorld_* HelloWorld.exe HelloWorld.cpp HelloWorld.makefile
HelloWorld.libs HelloWorld.log output.log™);
// Result:

// true

// record

// resultFile = "HelloWorld_res._plt"”

// end record

// true

/7 {1.0,0.999,0.999,0.606,0.367}

// 0
// endResult

HellowWorld.mo:

// name: Helloworld
// keywords: equation
// status: correct
//

// Equation handling

//

model HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld;

Open Source Modelica System Documentation 111

// fclass HelloWorld

// Real x(start = 1.0);

// parameter Real a = 1;
// equation

// der(X) = -(a * x);

// end HelloWorld;

B.2 Solution UseAPIFunctions — Call Some OMC API Functions
27 fill in

** Call a few APl functions.

B.3 Solution OMCCorbaJdava — Commands via Corba from a Java
Client

No solution. Just play around with the existing Java Corba communication.

B.4 Solution Corba Clients for C++ and Python

No solution. Just play around with the existing C++ or Python Corba communication implementation.

B.5 Solution newAPIFunction — Write a new Simple OMC API Function

case (ISTMTS(interactiveStmtLst = {
IEXP(exp = Absyn.CALL(Ffunction_ = Absyn.CREF_IDENT(name = "myOwnAPIFunc')))}),
(st as SYMBOLTABLE(ast = p,explodedAst = s,instClsLst = ic,
IstvarVal = iv,compiledFunctions = cf)))
equation
resstr = "returned from myOwnAPIFunc";
then
(resstr,st);

B.6 Solution ASTExpTransform — Write A Small Exp AST
Transformation

2?2 fill in.

B.7 Solution CodeGen — Generate Code for a new Builtin Function

2?2 fill in.

B.8 Solution getClassNamesRecursive — Recursive Printout of Class
Names in a Model Hierarchy

Note: This solution does not display the restriction after the class name. We leave that implementation part
for the reader.

Inserted into the function evaluateGraphicalAPl in Interactive.mo:

case (ISTMTS(interactiveStmtLst = {IEXP(exp = Absyn.CALL(function_ =
Absyn._CREF_IDENT(name = "‘getClassNamesRecursive'),
functionArgs = Absyn.FUNCTIONARGS(args = {Absyn.CREF(componentReg = cr)}P)))}),
(st as SYMBOLTABLE(ast = p,explodedAst = s,instClsLst = ic,
IstvarVal = iv,compiledFunctions = cf)))
local Absyn.Path path;
equation
path = Absyn.crefToPath(cr);

112

resstr = getClassNamesRecursive(path, p, "™");

then
(resstr,st);

protected function getClassnamesInClassList
input Absyn.Path inPath;
input Absyn.Program inProgram;
input Absyn.Class inClass;
output list<String> outString;
algorithm
outString:=
matchcontinue (inPath, inProgram, inClass)
local
list<String> strlist;
list<String> res;
list<Absyn.ClassPart> parts;
Absyn._Class cdef;
Absyn.Path newpath, inmodel,path;
Absyn_Program p;
case (_,_,Absyn.CLASS(body = Absyn._PARTS(classParts = parts)))
equation
strlist = getClassnameslInParts(parts);
then
strlist;
case (inmodel,p,Absyn.CLASS(body = Absyn.DERIVED(path = path)))
equation
(cdef,newpath) = lookupClassdef(path, inmodel, p);
res = getClassnamesInClassList(newpath, p, cdef);
then
res;
end matchcontinue;
end getClassnamesiInClassList;

protected function joinPaths
input String child;
input Absyn._Path parent;
output Absyn.Path outPath;
algorithm
outPaths:=
matchcontinue (child, parent)
local
Absyn.Path r, res;
String c;
case (c, r)
equation
res = Absyn.joinPaths(r, Absyn.IDENT(c));
then res;
end matchcontinue;
end joinPaths;

protected function getClassNamesRecursive "function: getClassNamesRecursive
Returns a string with all the classes for a given path.
input Absyn.Path inPath;
input Absyn.Program inProgram;
input String indent;
output String outString;
algorithm
outString:=
matchcontinue (indent,inPath, inProgram)
local

Open Source Modelica System Documentation

113

Absyn.Class cdef;
String sl,res, parent_string, result;
list<String> strist;
Absyn.Path pp, modelpath;
Absyn.Program p;
String indent;
list<Absyn.Path> result_path_Ist;
case (pp,p,indent)
equation
cdef = getPathedClassInProgram(pp, p);
strist = getClassnamesInClassList(pp, p, cdef);
parent_string = Absyn._pathString(pp);
result_path_Ist = Util_listMapl(strist, joinPaths, pp);
indent = indent +& " "
result = Util._stringAppendList(Util._listMap2(result_path_Ist,
getClassNamesRecursive, p, indent));

res = Util_stringAppendList({parent_string,' \n",indent, result});
then

res;
case (_,_,_) then "Error";
end matchcontinue;
end getClassNamesRecursive;

114

Appendix C

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, etc. The individuals
are listed for each year, from 1998 to the current year: the project leader and main author/editor of this
document followed by main contributors followed by contributors in alphabetical order.

C.1 OpenModelica Contributors 2009
Peter Fritzson, PELAB, Linképing University, Linkping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkoping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Bjorklén, PELAB, Linkoping University, Link6ping, Sweden.
Mikael Blom, PELAB, Linkdéping University, Linképing, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Linkoping University, Linkdping, Sweden.
Anders Fernstrdm, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Vasteras, Sweden

Kim Jansson, PELAB, Link&ping University, Linképing, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Joel Klinghed, PELAB, Linkoping University, Link6ping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linkdping, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Henrik Magnusson, Linképing, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemistd, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.

Open Source Modelica System Documentation

115

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany
Robert Wotzlaw, Goettingen, Germany
Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden

C.2 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.
Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

David Akhvlediani, PELAB, Linkoping University, Link6ping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Vasile Baluta, PELAB, Linkoping University, Linkdping, Sweden.
Mikael Blom, PELAB, Link6ping University, Linkoping, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Link6ping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Link&ping University, Linképing, Sweden.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Link6ping, Sweden
Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Anders Sandholm, PELAB, Link6ping University, Linkoping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

C.3 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Link&ping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkoping University, Link6ping, Sweden.
Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

David Akhvlediani, Linkdping University, Linképing, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkdping University, Linkoping, Sweden.
Kristoffer Norling, Linkdping University, Linkdping, Sweden.

Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, Linkdping University, Linképing, Sweden.

Simon Bjorklén, PELAB, Linkoping University, Link6ping, Sweden
Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

116

C.4 OpenModelica Contributors 2006
Peter Fritzson, PELAB, Linkoping University, Linkping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

David Akhvlediani, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Elmir Jagudin, PELAB, Linkoping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Link6ping University, Link6ping, Sweden.

C.5 OpenModelica Contributors 2005
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Peter Aronsson, PELAB, Linkoping University and MathCore Engineering AB, Linkdping, Sweden.
Adrian Pop, PELAB, Link6ping University, Link6ping, Sweden.
Hakan Lundvall, PELAB, Linkdping University, Linkoping, Sweden.

Ingemar Axelsson, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

C.6 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.

Emma Larsdotter Nilsson, PELAB, Linkdping University, Linkoping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

C.7 OpenModelica Contributors 2003
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Open Source Modelica System Documentation

117

Peter Bunus, PELAB, Linkdping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, Link6ping University, Link6ping, Sweden.
Eva-Lena Lengquist-Sandelin, PELAB, Linkdping University, Linképing, Sweden.
Susanna Monemar, PELAB, Linkdping University, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkoping, Sweden.
Erik Svensson, MathCore Engineering AB, Linkoping, Sweden.
C.8 OpenModelica Contributors 2002
Peter Fritzson, PELAB, Linképing University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linkdping University, Linkoping, Sweden.

Henrik Johansson, PELAB, Linkdping University, Linkdping, Sweden

Andreas Karstrom, PELAB, Linkdping University, Linkdping, Sweden
C.9 OpenModelica Contributors 2001

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

C.10 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

C.11 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Link&ping University, Linkdping, Sweden

Peter Ronnquist, PELAB, Linkoping University, Linkdping, Sweden.

C.12 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Link&ping University, Linkdping, Sweden.
David Kagedal, PELAB, Linképing University, Linkoping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

Index

Error! No index entries found.

