.Buildings.Fluid.Geothermal.Boreholes.BaseClasses.HexInternalElement

Information

Model for the heat transfer between the fluid and within the borehole filling. This model computes the dynamic response of the fluid in the tubes, the heat transfer between the fluid and the borehole filling, and the heat storage within the fluid and the borehole filling.

This model computes the different thermal resistances present in a single-U-tube borehole using the method of Bauer et al. (2011) and computing explicitly the fluid-to-ground thermal resistance Rb and the grout-to-grout resistance Ra as defined by Hellstroem (1991) using the multipole method. The multipole method is implemented in Buildings.Fluid.Geothermal.Boreholes.BaseClasses.singleUTubeResistances. The convection resistance is calculated using the Dittus-Boelter correlation as implemented in Buildings.Fluid.Geothermal.Boreholes.BaseClasses.convectionResistance.

The figure below shows the thermal network set up by Bauer et al. (2010).

image

References

G. Hellström. Ground heat storage: thermal analyses of duct storage systems (Theory). Dept. of Mathematical Physics, University of Lund, Sweden, 1991.

D. Bauer, W. Heidemann, H. Müller-Steinhagen, and H.-J. G. Diersch. Thermal resistance and capacity models for borehole heat exchangers . International Journal Of Energy Research, 35:312–320, 2011.

Contents

NameDescription
MediumMedium in the component

Revisions


Generated at 2024-05-18T18:16:21Z by OpenModelicaOpenModelica 1.22.4 using GenerateDoc.mos