This model computes the convection resistance in the pipes of a borehole segment with heigth hSeg.
The correlation of Dittus-Boelter (1930) is used to find the convection heat transfer coefficient as
Nu = 0.023 Re0.8 Prn,
where Nu is the Nusselt number, Re is the Reynolds number and Pr is the Prandlt number. We selected n=0.35, as the reference uses n=0.4 for heating and n=0.3 for cooling. Dittus-Boelter's correlation is valid for turbulent flow in cylindrical smooth pipe.
+Dittus P.W. and L.M.K Boelter, (1930). Heat transfer in automobile radiators of the tubular type. Univ Calif Pub Eng, 2(13):443-461. (Reprinted in Int. J. Comm. Heat Mass Transf. 12 (1985), 3:22). DOI:10.1016/0735-1933(85)90003-X.
function convectionResistance input Modelica.Units.SI.Height hSeg "Height of the element"; input Modelica.Units.SI.Radius rTub "Tube radius"; input Modelica.Units.SI.ThermalConductivity kMed "Thermal conductivity of the fluid"; input Modelica.Units.SI.DynamicViscosity mueMed "Dynamic viscosity of the fluid"; input Modelica.Units.SI.SpecificHeatCapacity cpMed "Specific heat capacity of the fluid"; input Modelica.Units.SI.MassFlowRate m_flow "Mass flow rate"; input Modelica.Units.SI.MassFlowRate m_flow_nominal "Nominal mass flow rate"; output Modelica.Units.SI.ThermalResistance R "Thermal resistance between the fluid and the tube"; end convectionResistance;
rBor
.
Revised documentation.
cpFluid
to cpMed
to use consistent notation.
Added regularization for computation of convective heat transfer coefficient to
avoid an event and a non-differentiability.