.Buildings.Fluid.Geothermal.Boreholes.BaseClasses.convectionResistance

Information

This model computes the convection resistance in the pipes of a borehole segment with heigth hSeg.

The correlation of Dittus-Boelter (1930) is used to find the convection heat transfer coefficient as

Nu = 0.023   Re0.8   Prn,

where Nu is the Nusselt number, Re is the Reynolds number and Pr is the Prandlt number. We selected n=0.35, as the reference uses n=0.4 for heating and n=0.3 for cooling. Dittus-Boelter's correlation is valid for turbulent flow in cylindrical smooth pipe.

+

References

Dittus P.W. and L.M.K Boelter, (1930). Heat transfer in automobile radiators of the tubular type. Univ Calif Pub Eng, 2(13):443-461. (Reprinted in Int. J. Comm. Heat Mass Transf. 12 (1985), 3:22). DOI:10.1016/0735-1933(85)90003-X.

Interface

function convectionResistance
  input Modelica.Units.SI.Height hSeg "Height of the element";
  input Modelica.Units.SI.Radius rTub "Tube radius";
  input Modelica.Units.SI.ThermalConductivity kMed "Thermal conductivity of the fluid";
  input Modelica.Units.SI.DynamicViscosity mueMed "Dynamic viscosity of the fluid";
  input Modelica.Units.SI.SpecificHeatCapacity cpMed "Specific heat capacity of the fluid";
  input Modelica.Units.SI.MassFlowRate m_flow "Mass flow rate";
  input Modelica.Units.SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";
  output Modelica.Units.SI.ThermalResistance R "Thermal resistance between the fluid and the tube";
end convectionResistance;

Revisions


Generated at 2024-11-22T19:25:38Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos