eigenvalues = DiscreteStateSpace.Analysis.eigenValues(dss)
Calculate the eigenvalues of a discrete state space system, i.e. the eigenvalues of the system matrix A of a discrete state space system.
The output is a complex vector containing the eigenvalues.
The eigenvalues ev_d of the discrete system are related to the eigenvalues of the corresponding continuous system ev_c by
ev_d = exp(Ts*ev_c).
StateSpace ss=Modelica_LinearSystems2.StateSpace( A=[-1,1;-1,-1], B=[1;1], C=[1,1], D=[0], B2=[0;0], Ts=0.1); DiscreteStateSpace dss=DiscreteStateSpace(ss, Ts=0.1); Complex eigenvalues[2]; algorithm eigenvalues = Modelica_LinearSystems2.DiscreteStateSpace.Analysis.eigenValues(dss); // eigenvalues = {0.900452 + 0.0904977*j, 0.900452 - 0.0904977*j} //
encapsulated function eigenValues import Modelica_LinearSystems2; import Modelica_LinearSystems2.DiscreteStateSpace; import Complex; input DiscreteStateSpace dss "Discrete state space system"; output Complex eigvalues[size(dss.A, 1)] = Modelica_LinearSystems2.ComplexMathAdds.eigenValues(dss.A) "Eigenvalues of the system"; end eigenValues;