.Modelica_LinearSystems2.DiscreteStateSpace.Plot.impulse

Information

Syntax

DiscreteStateSpace.Plot.impulse(dss);
   or
DiscreteStateSpace.Plot.impulse(
  dss,
  tSpan,
  x0,
  defaultDiagram=Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(),
  device=Modelica_LinearSystems2.Utilities.Plot.Records.Device())

Description

This function plots the impulse responses of a state space system for each system corresponding to the transition matrix. It is based on timeResponse.

Example

  Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace(
    A=[-1.0,0.0,0.0; 0.0,-2.0,3.0; 0.0,-2.0,-3.0],
    B=[1.0; 1.0; 0.0],
    C=[0.0,1.0,1.0],
    D=[0.0])

  Real Ts = 0.1;
  Modelica_LinearSystems2.Types.Method method=Modelica_LinearSystems2.Types.Method.ImpulseExact;
  DiscreteStateSpace dss=DiscreteStateSpace(dss,Ts,method);

algorithm
  Modelica_LinearSystems2.DiscreteStateSpace.Plot.impulse(dss)

See also

step, ramp, initialResponse

Interface

encapsulated function impulse
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.DiscreteStateSpace;
  import Modelica_LinearSystems2.Utilities.Types.TimeResponse;
  input DiscreteStateSpace dss;
  input Real tSpan = 0 "Simulation time span [s]";
  input Real x0[size(dss.A, 1)] = zeros(size(dss.A, 1)) "Initial state vector";
  input Boolean subPlots = true "True, if all subsystem time responses are plotted in one window with subplots" annotation(
    choices(checkBox = true));
  extends Modelica_LinearSystems2.Internal.PartialPlotFunctionMIMO(defaultDiagram = Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(heading = "Impulse response"));
end impulse;

Generated at 2024-11-26T19:26:15Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos