DiscreteStateSpace.Plot.initialResponse(ss); or DiscreteStateSpace.Plot.initialResponse( dss, tSpan, x0, defaultDiagram=Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(), device=Modelica_LinearSystems2.Utilities.Plot.Records.Device())
This function plots the initial responses of a discrete state space system for the initial state vector x0 for each system corresponding to the transition matrix. It is based on timeResponse.
Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace( A=[-1.0,0.0,0.0; 0.0,-2.0,3.0; 0.0,-2.0,-3.0], B=[1.0; 1.0; 0.0], C=[0.0,1.0,1.0], D=[0.0]) Real x0={1,0.5,0.5}; Real Ts = 0.1; Modelica_LinearSystems2.Types.Method method=Modelica_LinearSystems2.Types.Method.StepExact; DiscreteStateSpace dss=DiscreteStateSpace(dss,Ts,method); algorithm Modelica_LinearSystems2.DiscreteStateSpace.Plot.initial(dss, x0=x0)
encapsulated function initialResponse import Modelica_LinearSystems2; import Modelica_LinearSystems2.DiscreteStateSpace; import Modelica_LinearSystems2.Utilities.Types.TimeResponse; input DiscreteStateSpace dss; input Real tSpan = 0 "Simulation time span [s]"; input Real x0[size(dss.A, 1)] = zeros(size(dss.A, 1)) "Initial state vector"; input Boolean subPlots = true "True, if all subsystem time responses are plotted in one window with subplots" annotation( choices(checkBox = true)); extends Modelica_LinearSystems2.Internal.PartialPlotFunctionMIMO(defaultDiagram = Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(heading = "Initial response")); end initialResponse;