Lapack documentation:
Purpose
=======
DPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
=====================================================================
function dposv
extends Modelica.Icons.Function;
input Real A[:, size(A, 1)] "Real symmetric positive definite matrix A";
input Real B[size(A, 2), :] "Right hand side of A*X = B";
input Boolean upper = true "True if the upper triangle of A is provided";
output Real X[size(B, 1), size(B, 2)] = B "Solution of A*X = B";
output Integer info;
end dposv;
Generated at 2024-11-23T19:25:52Z
by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos