eigenvalues = Matrices.eigenValues(A); (eigenvalues, eigenvectors) = Matrices.eigenValues(A);
This function call returns the eigenvalues and optionally the (right) eigenvectors of a square matrix A. The first column of "eigenvalues" contains the real and the second column contains the imaginary part of the eigenvalues. If the i-th eigenvalue has no imaginary part, then eigenvectors[:,i] is the corresponding real eigenvector. If the i-th eigenvalue has an imaginary part, then eigenvalues[i+1,:] is the conjugate complex eigenvalue and eigenvectors[:,i] is the real and eigenvectors[:,i+1] is the imaginary part of the eigenvector of the i-th eigenvalue. With function Modelica.Math.Matrices.eigenValueMatrix, a real block diagonal matrix is constructed from the eigenvalues such that
A = eigenvectors * eigenValueMatrix(eigenvalues) * inv(eigenvectors),
provided the eigenvector matrix "eigenvectors" can be inverted (an inversion is possible, if all eigenvalues are different and no eigenvalue is zero).
Real A[3,3] = [1,2,3; 3,4,5; 2,1,4]; Real eval; algorithm eval := Matrices.eigenValues(A); // eval = [-0.618, 0; // 8.0 , 0; // 1.618, 0];
i.e., matrix A has the 3 real eigenvalues -0.618, 8, 1.618.
Modelica.Math.Matrices.eigenValueMatrix, Modelica.Math.Matrices.singularValues
function eigenValues extends Modelica.Icons.Function; input Real A[:, size(A, 1)] "Matrix"; output Real eigenvalues[size(A, 1), 2] "Eigenvalues of matrix A (Re: first column, Im: second column)"; output Real leftEigenvectors[size(A, 1), size(A, 2)] "Real-valued eigenvector matrix"; output Real rightEigenvectors[size(A, 1), size(A, 2)] "Real-valued eigenvector matrix"; end eigenValues;