(y, t, x) = StateSpace.Analysis.initialResponse(ss, dt, tSpan, x0)
Function initialResponse calculates the time response of a state space system for given initial condition and zero inputs. The state space system is transformed to a appropriate discrete state space system and, starting at x(t=0)=0 and y(t=0)=C*x0 + D*u0, the outputs y and x are calculated for each time step t=k*dt.
StateSpace.Analysis.initialResponse(x0,ss, dt, tSpan)
gives the same result as
StateSpace.Analysis.timeResponse(ss, dt, tSpan, response=Types.TimeResponse.Initial, x0=x0).
Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace( A=[-1], B=[1], C=[2], D=[0]); Real Ts=0.1; Real tSpan= 0.4; Real x0[2] = {1}; Real y[5,1,1]; Real t[5]; Real x[5,1,1] algorithm (y,t,x):=StateSpace.Analysis.initialResponse(x0,ss,Ts,tSpan); // y[:,1,1]={2, 1.809, 1.637, 1.4812, 1.3402} // t={0, 0.1, 0.2, 0.3, 0.4} // x[:,1,1]={1, 0.9048, 0.8186, 0.7406, 0.6701}
StateSpace.Analysis.timeResponse
encapsulated function initialResponse import Modelica_LinearSystems2; input Real x0[:] = fill(0, 0) "Initial state vector"; extends Modelica_LinearSystems2.Internal.timeResponseMask2(redeclare Real y[:, size(sc.C, 1), 1], redeclare Real x_continuous[:, size(sc.A, 1), 1]); end initialResponse;
Date | Author | Comment |
---|---|---|
2010-05-31 | Marcus Baur, DLR-RM | Realization |