.Modelica_LinearSystems2.StateSpace.Analysis.isDetectable

Information

Syntax

detectable = StateSpace.Analysis.isDetectable(ss, method)

Description

This function checks whether a state space system is detectable or not.
A system is detectable for the continuous-time case if all of the unobservable eigenvalues have negative real part. Therefore, a observable system is always detectable.

To check detectability, staircase algorithm is used to separate the observable subspace from the unobservable subspace. Then, the unobservable poles are checked to be stable, i.e. to have negative real parts.

Example

  Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace(
    A=[-1, 1, 1;0, 1, 1;0,0,1],
    B=[0;0;1],
    C=[0,1,0],
    D=[0]);

  Boolean detectable;

algorithm
  detectable := Modelica_LinearSystems2.StateSpace.Analysis.isDetectable(ss);
// detectable = true

Interface

encapsulated function isDetectable
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.StateSpace;
  input StateSpace ss "State space system";
  output Boolean detectable "= true, if system is detectable";
end isDetectable;

Revisions

Date Author Comment
2010-05-31 Marcus Baur, DLR-RM Realization

Generated at 2024-12-26T19:25:54Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos