.Modelica_LinearSystems2.StateSpace.Analysis.isObservable

Information

Syntax

observable = StateSpace.Analysis.isObservable(ss, method)

Description

Function StateSpace.Analysis.isObservable checks the observability of a state space system. Since observability is dual to controllability of the dual system (A', C', B', D'), proof of observability is referred to proof of controllability of the dual system.
The boolean input method defines for multi output systems the method to generate the staircase form of the system, whereas Types.StaircaseMethod.QR and Types.StaircaseMethod.SVD denotes QR-factorization and singular value decomposition respectively. Since staircase algorithm contains rank decisions QR-factorization should be restricted to well conditioned systems of lower order (<5). Default is SVD.

Example

  Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace(
    A=[-1, 1, 1;0, -1, 1;0,0,-1],
    B=[0;0;1],
    C=[0,1,0],
    D=[0]);

  Types.Method method=Modelica_LinearSystems2.Types.StaircaseMethod.SVD

  Boolean observable;

algorithm
  observable := Modelica_LinearSystems2.StateSpace.Analysis.isObservable(ss, method);
// observable = false

Interface

encapsulated function isObservable
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.StateSpace;
  input StateSpace ss "State space system";
  input Modelica_LinearSystems2.Utilities.Types.StaircaseMethod method = Modelica_LinearSystems2.Utilities.Types.StaircaseMethod.SVD "Staircase algorithm method";
  output Boolean observable "= true, if system is observable";
end isObservable;

Revisions

Date Author Comment
2010-05-31 Marcus Baur, DLR-RM Realization

Generated at 2024-11-22T19:25:38Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos