.Modelica_LinearSystems2.StateSpace.Analysis.isStabilizable

Information

Syntax

stabilizable = StateSpace.Analysis.isStabilizable(ss, method)

Description

This function checks whether a state space system is stabilizable or not.
A system is stabilizable for the continuous-time case if all of the uncontrollable eigenvalues have negative real part. Therefore, a controllable system is always stabilizable.

To check stabilizability, staircase algorithm is used to separate the controllable subspace from the uncontrollable subspace. Then, the uncontrollable poles are checked to be stable, i.e. to have negative real parts.

Example

  Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace(
    A=[1, 1, 1;0, 1, 1;0, 0, 1],
    B=[0; 0; 1],
    C=[0, 1, 0],
    D=[0]);

  Boolean stabilizable;

algorithm
   stabilizable := Modelica_LinearSystems2.StateSpace.Analysis.isStabilizable(ss);
// stabilizable = true

Interface

encapsulated function isStabilizable
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.StateSpace;
  input StateSpace ss "State space system";
  output Boolean stabilizable "= true, if system is stabilizable";
end isStabilizable;

Revisions

Date Author Comment
2010-05-31 Marcus Baur, DLR-RM Realization

Generated at 2024-12-26T19:25:54Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos