.Modelica_LinearSystems2.StateSpace.Internal.invariantZerosHessenberg

Information

Computes the invariant zeros of a system in state space form:

der(x) = A*x + B*u
    y  = C*x + D*u

The invariant zeros of this system are defined as the variables z that make the following matrix singular:

| A B | | I 0 |
| |  −  z* | |
| C D | | 0 0 |

where I is the identity matrix of the same size as A and 0 are zero matrices of appropriate dimensions.

Currently, there is the restriction that the number of inputs and the number of outputs must be identical.

Interface

encapsulated function invariantZerosHessenberg
  import Modelica;
  import Modelica.ComplexMath;
  import Complex;
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.StateSpace;
  input StateSpace ss "Linear system in state space form";
  output Complex Zeros[:] "Finite, invariant zeros of ss; size(Zeros,1) <= size(ss.A,1)";
end invariantZerosHessenberg;

Generated at 2024-12-26T19:25:54Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos