.Modelica_LinearSystems2.StateSpace.Internal.isStabilizableMIMO

Information

This function checks whether a MIMO state space system is stabilizable or not.

A system is stabilizable for the continuous-time case if all of the uncontrollable eigenvalues have negative real part or for the discrete-time case if all of the uncontrollable eigenvalues are in the complex unit circle respectively. Hence, a controllable system is always stabilizable of course.

To check stabilizability, staircase algorithm is used to separate the controllable subspace from the uncontrollable subspace. The uncontrollable poles are checked to to stable.

Interface

encapsulated function isStabilizableMIMO
  import Modelica;
  import Modelica.ComplexMath.j;
  import Complex;
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.StateSpace;
  input StateSpace ss "State space system";
  output Boolean stabilizable;
end isStabilizableMIMO;

Generated at 2024-12-26T19:25:54Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos