Plot.rootLocus(modelName, t_linearize, modelParam, simulationSetup, diagram)
This function examines a root locus analysis of a selected Modelica model over
variation of a certain system parameter.
Note, only first parameter modelParam[1]
is considered for the analysis.
The parameter is varied equidistantly from minimum to maximum value.
Calling the function
Utilities.Plot.rootLocus( modelName = "Modelica.Mechanics.Rotational.Examples.First", t_linearize = 0, modelParam={ Modelica_LinearSystems2.Records.ParameterVariation( Name="Jload", Min=1, Max=6, nVar=10, Unit="kg.m2")});
yields following diagram
function rootLocus import Modelica_LinearSystems2; import Modelica_LinearSystems2.StateSpace; input String modelName "Name of the Modelica model" annotation( Dialog(__Dymola_translatedModel(caption = "Model to be linearized for the root locus"))); input Modelica.Units.SI.Time t_linearize = 0 "Simulate until t_linearize and then linearize" annotation( Dialog); input Modelica_LinearSystems2.WorkInProgress.RootLocusOld.ParameterVariation modelParam[:] "Model parameter to be varied"; input Modelica_LinearSystems2.Records.SimulationOptionsForLinearization simulationSetup = Modelica_LinearSystems2.Records.SimulationOptionsForLinearization() "Simulation options it t_linearize > 0"; input Modelica_LinearSystems2.WorkInProgress.RootLocusOld.RootLocusDiagramOld diagram "Diagram properties of the root locus"; end rootLocus;