Plot.rootLocus(modelName, t_linearize, modelParam, simulationSetup, diagram)
This function examines a root locus analysis of a selected Modelica model over
variation of a certain system parameter.
Note, only first parameter modelParam[1] is considered for the analysis.
The parameter is varied equidistantly from minimum to maximum value.
Calling the function
Utilities.Plot.rootLocus(
modelName = "Modelica.Mechanics.Rotational.Examples.First",
t_linearize = 0,
modelParam={
Modelica_LinearSystems2.Records.ParameterVariation(
Name="Jload",
Min=1,
Max=6,
nVar=10,
Unit="kg.m2")});
yields following diagram
function rootLocus
import Modelica_LinearSystems2;
import Modelica_LinearSystems2.StateSpace;
input String modelName "Name of the Modelica model" annotation(
Dialog(__Dymola_translatedModel(caption = "Model to be linearized for the root locus")));
input Modelica.Units.SI.Time t_linearize = 0 "Simulate until t_linearize and then linearize" annotation(
Dialog);
input Modelica_LinearSystems2.WorkInProgress.RootLocusOld.ParameterVariation modelParam[:] "Model parameter to be varied";
input Modelica_LinearSystems2.Records.SimulationOptionsForLinearization simulationSetup = Modelica_LinearSystems2.Records.SimulationOptionsForLinearization() "Simulation options it t_linearize > 0";
input Modelica_LinearSystems2.WorkInProgress.RootLocusOld.RootLocusDiagramOld diagram "Diagram properties of the root locus";
end rootLocus;