tss = StateSpace.Transformation.toIrreducibleForm(ss)
This function calculates a minimal controllable and observable block Hessenberg realization for a given state-space representation. Therefore, all uncontrollable and unobservable modes are removed by performing orthogonal similarity transformations as described in [1].
This function is called to compute transfer functions of state space representations as described in [1]. Look at [1] for further details
Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace(
A = [-4.5, 1.5, 4.0;
-4.0, 1.0, 4.0;
-1.5, -0.5, 1.0],
B = [ 1; 0; 1 ],
C = [1, 0, 0],
D = [0]);
algorithm
tss:=Modelica_LinearSystems2.StateSpace.Transformation.toIrreducibleForm(ss);
// tss=StateSpace(
A=[-0.5],
B=[-sqrt(0.5)],
C=[-1/sqrt(0.5)1],
D=[0])
function toIrreducibleForm import Modelica; import Complex; import Modelica_LinearSystems2; import Modelica_LinearSystems2.StateSpace; import Modelica_LinearSystems2.WorkInProgress; input StateSpace ss "State space system"; output StateSpace ssm3(redeclare Real A[rankQ2, rankQ2], redeclare Real B[rankQ2, size(ss.B, 2)], redeclare Real C[size(ss.C, 1), rankQ2], redeclare Real D[size(ss.D, 1), size(ss.D, 2)]); end toIrreducibleForm;
| Date | Author | Comment |
|---|---|---|
| 2010-05-31 | Marcus Baur, DLR-RM | Realization |