.Modelica_LinearSystems2.ZerosAndPoles.'constructor'.fromFactorization

Information

Syntax

zp = ZerosAndPoles'constructor'.fromFactorization(n1, n2, d1, d2, k, uName, yName)

Description

This function constructs a ZerosAndPoles record zp from first and second order polynomials.

Interface

encapsulated function fromFactorization
  import Modelica;
  import Modelica_LinearSystems2.ZerosAndPoles;
  input Real n1[:] = fill(0, 0) "[p^0] coefficients of 1st order numerator polynomials" annotation(
    Dialog(group = "y = k*(product(p+n1[i]) * product(p^2+n2[i,1]*p+n2[i,2])) / (product(p+d1[i])*product(p^2+d2[i,1]*p+d2[i,2])) *u"));
  input Real n2[:, 2] = fill(0, 0, 2) "[p,p^0] coefficients of 2nd order numerator polynomials" annotation(
    Dialog(group = "y = k*(product(p+n1[i]) * product(p^2+n2[i,1]*p+n2[i,2])) / (product(p+d1[i])*product(p^2+d2[i,1]*p+d2[i,2])) *u"));
  input Real d1[:] = fill(0, 0) "[p^0] coefficients of 1st order denominator polynomials" annotation(
    Dialog(group = "y = k*(product(p+n1[i]) * product(p^2+n2[i,1]*p+n2[i,2])) / (product(p+d1[i])*product(p^2+d2[i,1]*p+d2[i,2])) *u"));
  input Real d2[:, 2] = fill(0, 0, 2) "[p,p^0] coefficients of 2nd order denominator polynomials" annotation(
    Dialog(group = "y = k*(product(p+n1[i]) * product(p^2+n2[i,1]*p+n2[i,2])) / (product(p+d1[i])*product(p^2+d2[i,1]*p+d2[i,2])) *u"));
  input Real k = 1.0 "Multiplicative factor of transfer function" annotation(
    Dialog(group = "y = k*(product(p+n1[i]) * product(p^2+n2[i,1]*p+n2[i,2])) / (product(p+d1[i])*product(p^2+d2[i,1]*p+d2[i,2])) *u"));
  input String uName = "" "Input name";
  input String yName = "" "Output name";
  output ZerosAndPoles zp(redeclare Real n1[size(n1, 1)], redeclare Real n2[size(n2, 1), 2], redeclare Real d1[size(d1, 1)], redeclare Real d2[size(d2, 1), 2]) "ZerosAndPoles transfer function";
end fromFactorization;

Generated at 2025-01-14T19:25:37Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos