Model of a sluice or tainter gate based on [Bollrich2019]
Implementation
The calculation of the flow through the gate is approximated for two different regions and is based
on [Bollrich2019].
Equation numbers and figure numbers given below are in sync with the numbers of [Bollrich2019].
Free flowing
|
Fig. 8.13: Free flow through the tainter gate (source:
[Bollrich2019], page 376)
The free flow can be calculated with:
$$Q_A = \mu_A \cdot A \cdot \sqrt{2g\cdot h_0} \tag{8.24} $$
(valid for gate opening higher than the downstream water level)
With
- Opening area
- $$ A = a\cdot b $$
- Discharge coefficient
- $$ \mu_A = \frac{\psi}{\sqrt{1+\frac{\psi\cdot a}{h_0}}} \tag{8.23}$$
- Contraction coefficient sluice gate (\(\alpha=90^\circ\))
- $$ \psi_{90^\circ}= \frac{1}{1+0.64\cdot \sqrt{1-(a/h_0)^2}} \tag{8.25}$$
- Contraction coefficient radial gate (for \(a/h_0 \rightarrow 0\))
- $$ \psi_0(\alpha)= 1.3 -0.8\cdot\sqrt{1-\left(\frac{\alpha -205^\circ}{220^\circ}\right)^2} \tag{8.25a}$$
- The edge angle \(\alpha\) of the gate
- $$ \alpha = \left( \frac{\pi}{2} - \arcsin(\frac{h_h-a}{r})\right) \cdot \frac{180^\circ}{\pi} $$
With:
- \(a \ldots\) Vertical gate opening
- \(h_h \ldots\) Height of the hinge above gate bottom"
- \(r \ldots\) Radius of the gate arm
Backed-up discharge
|
Fig. 8.16: Backed-up flow through the tainter gate (source:
[Bollrich2019], page 379)
$$Q_A = \chi \cdot \mu_A \cdot A \cdot \sqrt{2g\cdot h_0} \tag{8.29} $$
With
- Back-up coefficient
- $$ \chi = \sqrt{
\left(
1 + \frac{\psi\cdot a}{h_0}
\right) \cdot
\left\{
\left[
1 - 2\cdot\frac{\psi\cdot a}{h_0} \cdot
\left(
1-\frac{\psi\cdot a}{h_2}
\right)
\right]
- \sqrt{
\left[
1 - 2 \cdot \frac{\psi\cdot a}{h_0} \cdot
\left(
1-\frac{\psi\cdot a}{h_2}
\right)
\right]^2
+
\left(
\frac{h_2}{h_0}
\right)^2
- 1
}
\right\}
} \tag{8.28}$$
Boundary between free and backed-up flow
The boundary of the height of the water level \(h_2\) behind the gate from which on the calculation switches to the backed-up flow (8.29) can be derived from:
$$ \frac{h_2^*}{a} = \frac{\psi}{2} \cdot \left( \sqrt{ 1 + \frac{16}{\psi\cdot\left(1+\frac{\psi\cdot a}{h_0}\right)}\cdot\frac{h_0}{a}} - 1 \right) \tag{8.26}$$
So when \(\frac{h_2}{a} \geq \frac{h_2^*}{a}\) then we have back-up flow.
Generated at 2026-02-09T19:21:58Z
by OpenModelicaOpenModelica 1.26.1 using GenerateDoc.mos