(y, t, x) = TransferFunction.Analysis.initialResponse(tf, dt, tSpan, x0)
This function calculates the time response of a state space system for given initial condition and zero inputs. The state space system is transformed to a appropriate discrete state space system and, starting at x(t=0)=0 and y(t=0)=C*x0 + D*u0, the outputs y and x are calculated for each time step t=k*dt.
TransferFunction.Analysis.initialResponse(x0,tf, dt, tSpan)
gives the same result as
TransferFunction.Analysis.timeResponse(tf, dt, tSpan, response=Types.TimeResponse.Initial, x0=x0).
TransferFunction s = Modelica_LinearSystems2.TransferFunction.s(); Modelica_LinearSystems2.TransferFunction tf=1/(s^2+s+1); Real Ts=0.1; Real tSpan= 0.4; Real x0[2] = {1,1}; Real y[5,1,1]; Real t[5]; Real x[5,1,1] algorithm (y,t,x):=TransferFunction.Analysis.initialResponse(x0,tf,Ts,tSpan); // y[:,1,1]={1, 1.0903, 1.1616, 1.2151, 1.252} // t={0, 0.1, 0.2, 0.3, 0.4} // x[:,1,1]={1, 1.0903, 1.1616, 1.2151, 1.252}
TransferFunction.Analysis.timeResponse
encapsulated function initialResponse import Modelica; import Modelica_LinearSystems2; import Modelica_LinearSystems2.TransferFunction; input Real x0[:] = fill(0, 0) "Initial state vector"; extends Modelica_LinearSystems2.Internal.timeResponseMask2_tf; end initialResponse;