function kfStepMatrices extends Modelica.Icons.Function; import Modelica; import Modelica_LinearSystems2; import Modelica_LinearSystems2.Math; import Modelica_LinearSystems2.Math.Matrices.LAPACK; import Modelica_LinearSystems2.WorkInProgress.DiscreteStateSpace; input Real A[:, size(A, 1)] "Transition matrix of the discrete system"; input Real B[size(A, 1), :] "Input matrix of the discrete system"; input Real C[:, size(A, 1)] "Output matrix of the discrete system"; input Real P[size(A, 1), size(A, 1)] "State covariance matrix of the previous instant"; input Real Q[size(B, 2), size(B, 2)] "Input or process noise covariance matrix of the previous instant"; input Real R[size(C, 1), size(C, 1)] "Output or measurement noise covariance matrix of the previous instant"; output Real K[size(A, 1), size(C, 1)] = P*transpose(C) "Kalman filter gain matrix"; output Real P_new[size(A, 1), size(A, 1)] "Updated state covariance matrix"; output Real UMutri[size(C, 1), size(C, 1)] "Square root (left Cholesky factor) of the covariance matrix M"; output Real M[size(C, 1), size(C, 1)] = DiscreteStateSpace.Internal.symMatMul(C, P, R, true) "Upper triangle of measurement prediction covariance C*P*C' + R"; output Real PCT[size(A, 1), size(C, 1)] = P*transpose(C) "Matrix P*C'"; end kfStepMatrices;