Computes the feedback gain K for the state space system according to assigned close loop poles
function testPoleAssignment2 extends Modelica.Icons.Function; import Complex; import Modelica_LinearSystems2.ComplexMathAdds; import Re = Modelica.ComplexMath.real; import Im = Modelica.ComplexMath.imag; import Modelica.ComplexMath.j; import Modelica.Utilities.Streams.print; import Modelica_LinearSystems2.StateSpace; input String dataFile = TestDataDir + "data_Byers6.mat" annotation( Dialog(group = "system data definition", loadSelector(filter = "MAT files (*.mat);; All files (*.*)", caption = "state space system data file"))); input Types.AssignPolesMethod method = Tests.Types.AssignPolesMethod.KNV "method for pole assignment"; input Boolean isSI = true; input String outputFile = ""; input Boolean deleteExistingOutputfile = true; output Real K[size(B, 2), size(A, 1)] "Feedback gain matrix"; output Complex calcPoles[:]; output Real kappa2 "condition number kappa_2(X) = ||X||_2 * ||inv(X)||_2"; output Real kappaF "condition number kappa_F(X) = ||X||_F * ||inv(X)||_F"; output Real zeta "condition number by Byers, zeta(X) = (||X||_F)^2 + (||inv(X)||_F)^2"; output Real cInf "condition number vu1=||c||_inf = max(c_j)"; output Real nu2 "Euclidean norm of the feedback matrix"; output Real nuF "Frobenius norm of the feedback matrix"; output Real dlambda "Distance between the assigned and the calculated poles"; output Real gap = 0.0; output Real Jalpha[11] "Combined condition number, JKX=alpha/2*(kappa2X_B) + (1-alpha)/2*normFroK^2"; output Complex X[:, :] "right eigenvectors of the closed loop system"; end testPoleAssignment2;