eigenvalues = ZerosAndPoles.Analysis.eigenValues(zp)
Calculate the eigenvalues of the corresponding state space representation of a zeros-and-poles transfer function. The output is a complex vector containing the eigenvalues. Note, that the conversion of the transfer function does not result in a minimal state space system. Therefore also unobservable and uncontrollable eigenvalues will be calculated.
ZerosAndPoles p = Modelica_LinearSystems2.ZerosAndPoles.p(); Modelica_LinearSystems2.ZerosAndPoles zp=(p+1)/(p^2+p+1); Complex eigenvalues[2]; algorithm eigenvalues = Modelica_LinearSystems2.ZerosAndPoles.Analysis.eigenValues(zp); // eigenvalues = {-0.5 + j*sqrt(3)/2, -0.5 - j*sqrt(3)/2}
function eigenValues import Modelica_LinearSystems2; import Modelica_LinearSystems2.StateSpace; import Modelica_LinearSystems2.ZerosAndPoles; import Complex; input ZerosAndPoles zp "ZerosAndPoles transfer function of a system"; output Complex eigval[:] "eigen values of the system"; end eigenValues;