.Modelica_LinearSystems2.StateSpace.Analysis.analysis

Information

Syntax

filePath = Modelica_LinearSystems2.StateSpace.Analysis.analysis(ss);
   or
filePath = Modelica_LinearSystems2.StateSpace.Analysis.analysis(
  ss,
  analyseOptions=analyseOptions,
  fileName,
  systemName,
  description);

Description

This function analyzes a state space system

der(x) = A * x + B * u
    y  = C * x + D * u     
    x(t=0) = x0

based on its poles, i.e. the eigenvalues, and the zeros of the system. The system will be checked for stability, controllability and observability. In the case that the system is not stable stabilizability and detectability are examined. Furthermore, stability, controllability, observability, stabilizability, and detectability are indicated for each eigenvalue.

Stability

System (1) is stable if and only if all eigenvalues of the matrix A have negative real parts. The calculation of the eigenvalues is based on the LAPACK routine dgeev.

Controllability

System (1) is said to be controllable if, starting from any initial state x0, the system can be driven by appropriate inputs to any final state x1 within some finite time window. Equivalent is that the eigenvalues of A-BK can arbitrarily be assigned by an appropriate choice of the matrix K.

Stabilizability

System (1) is said to be stabilizable if all the unstable eigenvalues, i.e. all s with Re(s)>=0, of A are controllable. Therefore, a controllable system is always stabilizable. An equivalent definition of stabilizability is, that a system is said to be stabilizable if there exist a matrix K such that A-BK is stable.

Observability

System (1) is said to be observable if the (arbitrary) initial state x0 can be uniquely determined from any state x(t1), t1>0, from the knowledge of the input u(t) and output y(t). With other words, from the system's outputs it is possible to determine the behavior of the entire system. Equivalent is, that the eigenvalues of A-LC can be arbitrarily be assigned by an appropriate choice of matrix L. Observability is called the dual concept of controllability, since a system (A,B,C,D) is observable if the system (AT, CT, BT, DT) is controllable.

Detectability

System (1) is said to be detectable if all the unstable eigenvalues, i.e. all s with Re(s)>=0, of A are observable. Therefore, a observable system is always detectable. An equivalent definition of detectability is, that a system is said to be detectable if there exist a matrix L such that A-LC is stable. Detectability is called the dual concept of stabilizability, since a system (A,B,C,D) is detectable if the system (AT, CT, BT, DT) is stabilizable.

Algorithm to test controllability/stabilizability and observability/detectability respectively

The test of controllability and stabilizability is performed with the staircase algorithm which transforms the system (A,B,C,D) into the controller-Hessenberg form (AH, BH, CH, D) with AH is a block upper Hessenberg matrix and BH=[B1; 0] with triangular matrix B1 with rank(B1) = rank(B). In AH=[Ac, *,0, Anc) the eigenvalues of the matrices Ac and Anc are the controllable eigenvalues and uncontrollable eigenvalues of A respectively. The test of observability and detectability is performed by testing the system (AT, CT, BT, DT) with respect to controllability and stabilizability.

Solution of a linear time invariant system

The solution x(t) of the initial value problem (1) consists of the homogeneous part (zero input response) xh(t) and the inhomogeneous part xi(t). The zero input solution is given by

xh(t) = exp(A*(t-t0))x0.

The system can also be represented as a linear combination of the modal states z,

x = Vz

i.e. the states of a similar system, with

der(z) = V-1AVz + V-1Bu

where the system matrix V-1AV is the real Jordan form. For single real eigenvectors the system is decoupled, i.e. the solution of the modal states are denoted by

zi = exp(si t)*z0i

The behavior of the modal states is determined as the solution of a linear first order differential equation for real eigenvalues. Since this behavior is well known, the behavior of the xi can at least roughly be estimated by means of the behavior of the most relevant modal states. Therefore, the contribution of the modal states to the states is computed as an indication of the original system behavior.

Contribution of the modal states to the states

Generally, as described above, the states of the system can be described as linear combination of modal states and, therefore, the states can be characterized to a certain extend by the modal states if the proportions of the combination are known. Hence, for each modal state zi of the vector z the elements |vi,j|/|vi| of the corresponding right eigenvector vi indicate the proportion of zi that is contributed to the state xj. On the other hand, the composition of xi is indicated by the elements |vi,j|/|viT|, i.e. the elements |vi,j|/|viT| of the corresponding row viT of the eigenvector matrix V indicate the proportion of the state xi that is contributed by the modal state zj.

Example

  ss=StateSpace(
    A=[-3,2,-3,4,5,6; 0,6,7,8,9,4; 0,2,3,0,78,6; 0,1,2,2,3,3; 0,13,34,0,0,1; 0,
      0,0,-17,0,0],
    B=[1,0; 0,1; 1,0; 0,1; 1,0; 0,1],
    C=[0,0,1,0,1,0; 0,1,0,0,1,1],
    D=[0,0; 0,0],
    xNames={"x1","x2","x3","x4","x5","x6"},
    uNames={"u1","u2"}, yNames={"y1","y2"});

  String fileName="analysis.html";
  String systemName="Demonstration System";
  String description="System to demonstrate the usage of Modelica_LinearSystems2.StateSpace.Analysis.analysis()"

algorithm
  Modelica_LinearSystems2.StateSpace.Analysis.analysis(
    ss, fileName=fileName, systemName=systemName, description=description)

// = "C:/working/directory/path/analysis.html"

The resulting report file analysis.html summarizes the following system information.

System report

The system Demonstration System

der(x) = A * x + B * u
    y  = C * x + D * u

is defined by

        x1   x2   x3   x4   x5   x6            u1  u2
    x1  -3    2   -3    4    5    6         x1  1   0
    x2   0    6    7    8    9    4         x2  0   1
A = x3   0    2    3    0   78    6     B = x3  1   0
    x4   0    1    2    2    3    3         x4  0   1
    x5   0   13   34    0    0    1         x5  1   0
    x6   0    0    0  -17    0    0         x6  0   1

        x1   x2   x3   x4   x5   x6            u1  u2
C = y1   0    0    1    0    1    0     D = y1  0   0
    y2   0    1    0    0    1    1         y2  0   0
Description

System to demonstrate the usage of Modelica_LinearSystems2.StateSpace.Analysis.analysis()

Characteristics

The system

is not stable
but it is controllable
and therefore it is stabilizable.
The system is observable
and therefore it is detectable.

Eigenvalues analysis

Real eigenvalues

number eigenvalue T [s] characteristics contribution to states
1   -4.9874e+01   0.0201   stable, controllable, observable   z[1] contributes to x3 with 54.6 %
  z[1] contributes to x5 with 37 %
2   -3.0000e+00   0.3333   stable, controllable, not observable   z[2] contributes to x1 with 100 %
3   2.9891e+00   0.3346   not stable, stabilizable, detectable   z[3] contributes to x2 with 51.9 %
  z[3] contributes to x1 with 23.9 %
4   5.5825e+01   0.0179   not stable, stabilizable, detectable   z[4] contributes to x3 with 48.4 %
  z[4] contributes to x5 with 32.5 %

Conjugated complex pairs of eigenvalues

number eigenvalue freq. [Hz] damping characteristics contribution to states
5/6   1.0299e+00 ± 6.5528e+00j   1.0557   -0.1553   not stable, stabilizable, detectable   z[5/6] contribute to x6 with 35.9 %
  z[5/6] contribute to x2 with 20.6 %

In the tables above, the column contribution to states lists for each eigenvalue the states to which the corresponding modal state z[i] contributes most. This information is based on the two largest absolute values of the corresponding right eigenvector (if the second large value is less than 5 % of the largest contribution, it is not shown). Note the right eigenvector vj and the left eigenvector uj of A satisfy the following relationships with regards to eigenvalue λj, state vector x and modal state vector z (ujH denotes the conjugate transpose of uj):

A * vj = λj * vj;      ujH * A = λj * ujH;      x = V * z;      V = [v1, v2, ...]

In the next table, for each state in the column correlation to modal states, the modal states which contribute most to the corresponding state are summarized, i.e. the state is mostly composed of these modal states This information is based on the two largest absolute values of row i of the eigenvector matrix that is associated with eigenvalue i (if the second large value is less than 5 % of the largest contribution, it is not shown). This only holds if the modal states z[i] are in the same order of magnitude. Otherwise, the listed modal states might be not the most relevant ones.

state correlation to modal states eigenvalue # freq. [Hz] damping T [s]
  x1   is composed of 42.5% by z[2]   2   ---   ---   0.0201
  is composed of 35.4% by z[5/6]   5/6   1.0557   -0.1553   ---
  x2   is composed of 44.2% by z[3]   3   ---   ---   0.3333
  is composed of 43.7% by z[5/6]   5/6   1.0557   -0.1553   ---
  x3   is composed of 36.9% by z[1]   1   ---   ---   0.3346
  is composed of 36.3% by z[4]   4   ---   ---   0.0179
  x4   is composed of 88.9% by z[5/6]   5/6   1.0557   -0.1553   ---
  is composed of 9.8% by z[4]   4   ---   ---   0.0179
  x5   is composed of 45.3% by z[1]   1   ---   ---   0.0000
  is composed of 44.1% by z[4]   4   ---   ---   0.0179
  x6   is composed of 95.7% by z[5/6]   5/6   1.0557   -0.1553   ---

Invariant zeros

number invariant zero Time constant [s] freq. [Hz] damping
  1   -5.4983e+01   0.0182   ---   ---
  2   -3.0000e+00   0.3333   ---   ---
  3/4   3.2417e+00 ± 5.6548e+00j   ---   1.0374   -0.4973

Interface

function analysis
  import Modelica;
  import Modelica.Utilities.Strings;
  import Modelica.ComplexMath.j;
  import Complex;
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.StateSpace;
  import Modelica_LinearSystems2.Internal.Eigenvalue;
  import Modelica_LinearSystems2.Internal;
  import Modelica.Utilities.Streams.print;
  import Modelica_LinearSystems2.Utilities.Plot;
  import DymolaCommands;
  input StateSpace ss "State space system";
  input Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printSystem = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response", dB_w = false);
  input String fileName = "systemReport.html" "Name of html-file that contains eigenvalue table";
  input String systemName = "" "Name of system (used as heading in html file)";
  input String description = "" "Description of system (used in html file)";
  extends Modelica_LinearSystems2.Internal.PartialPlotFunction(defaultDiagram = Modelica_LinearSystems2.Internal.DefaultDiagramPolesAndZeros());
  output String filePath "Full path name of report file";

  encapsulated function printSystem "Print the state space system in html format on file"
    import Modelica;
    import Modelica.Utilities.Streams.print;
    import Modelica_LinearSystems2.StateSpace;
    import Modelica_LinearSystems2;
    input StateSpace ss "State space system to analyze";
    input String fileName = "systemAnalysis.html" "File on which the state space system is written in html format";
    input String systemName = "State Space System" "Name of the state space system";
    input String description = "" "Description of system (used in html file)";
    input String format = ".6g" "Format of numbers (e.g. \"20.8e\")";
    input Boolean htmlBasics = false "True, if text should be printed within 'html' and 'body' environment, otherwise text printed into existing file fileName" annotation(
      Dialog(group = "HTML format"));
    input Integer hSize(min = 1, max = 5) = 1 "Size of heading of printed document (=1: Title, =2: Chapter, etc.)" annotation(
      Dialog(group = "HTML format"));
  protected
    Integer nx = size(ss.A, 1);
    Integer nu = size(ss.B, 2);
    Integer ny = size(ss.C, 1);
    Integer c1 = integer(ceil(nx/2) - 1);
    Integer c2 = integer(ceil(ny/2) - 1);
    Integer dist = 2;
    Boolean centered = true "True, if matrices columns should be centered, otherwise right aligned";
    String td_align = if centered then "  <td style=\"text-align:center\">" else "  <td style=\"text-align:right\">";
  protected
    Integer hSizeOK = if hSize < 1 then 1 else if hSize > 4 then 4 else hSize;
    String heading = "h" + String(hSizeOK);
    String heading2 = "h" + String(hSizeOK + 1);
    String heading3 = "h" + String(hSizeOK + 2);
    Boolean printIndices;
  algorithm
// ---------------------------------------------------------------------------------------------------
// The correct HTML format generated with this function can be checked with following commands:
//   Modelica_LinearSystems2.StateSpace.Analysis.analysis.printSystem(Modelica_LinearSystems2.StateSpace(A=[2,1,1;1,1,1;1,2,2], B=[1;2.2;3], C=[2,4,6;3,8,5], D=[6;4], yNames={"y1_test","y2_test"}, xNames={"xx1","xx2","xx3"}, uNames={"u1_test"}));
//   Modelica_LinearSystems2.StateSpace.Analysis.analysis.printSystem(Modelica_LinearSystems2.StateSpace(A=[2, 1.43, 12, 3; 1, 1, 1, 43; 1, 3, 2, 2; 1, 1, 4.2, 1.2], B=[1, 2; 2.2, 3; 3, 1; 4, 0], C=[25, 1.4, 6.3, 1; 0.3, 8, 5, 1; 1, 3, 2, 2], D=[6, 4; 4, 2; 6, 5], yNames={"y1_test","y2_te","y3_"}, xNames={"xx1","x2","xxx3","xx4"}, uNames={"u1_test","u2_test"}));
//   Modelica_LinearSystems2.StateSpace.Analysis.analysis.printSystem(ss=Modelica_LinearSystems2.StateSpace.Import.fromModel("Modelica.Mechanics.Rotational.Examples.First"), description="Test file in HTML format from function printSystem.");
// ---------------------------------------------------------------------------------------------------
    if htmlBasics then
// Text should be printed into new file in HTML environment
// --------------------------------------------------------
      StateSpace.Analysis.analysis.printHTMLbasics(fileName, true);
    end if;
    print("<" + heading + ">System report</" + heading + ">", fileName);
    print("\n<" + heading2 + ">General information</" + heading2 + ">", fileName);
//print("<h1>System report</h1>", fileName);
//print("\n<h2>General information</h2>", fileName);
    if systemName == "" then
    else
      print("\n<" + heading3 + ">System name</" + heading3 + ">", fileName);
//print("\n<h3>System name</h3>", fileName);
      print("<p>\n" + systemName + "\n</p>", fileName);
    end if;
    if description == "" then
    else
      print("\n<" + heading3 + ">Description</" + heading3 + ">", fileName);
//print("\n<h3>Description</h3>", fileName);
      print("<p>\n" + description + "\n</p>", fileName);
    end if;
    print("\n<" + heading3 + ">Matrices</" + heading3 + ">", fileName);
//print("\n<h3>Matrices</h3>", fileName);
    print("<p>\nThe system described in the state space representation\n</p>", fileName);
    print("<table style=\"font-size:10pt; font-family:Arial; border-collapse:collapse; margin: 20px 0 20px 20px\" " + "cellpadding=\"3\" border=\"0\"> ", fileName);
    print("<tr><td>der(x) </td> <td>=</td> <td> Ax</td> <td> +</td><td> Bu</td></tr>
         <tr><td> y </td>     <td>=</td> <td> Cx</td> <td> + </td><td>Du</td></tr>", fileName);
    print("</table>\n<p>\nis defined by\n</p>", fileName);
// ===============================
// Print signal names and matrices (print row and column indices if at least one matrix has more as 5 elements)
// ===============================
    printIndices := size(ss.A, 1) > 5 or size(ss.B, 2) > 5 or size(ss.C, 1) > 5;
    Modelica_LinearSystems2.Math.Vectors.printStringVectorInHtml(ss.uNames, "uNames", fileName = fileName, printIndices = printIndices);
    Modelica_LinearSystems2.Math.Vectors.printStringVectorInHtml(ss.yNames, "yNames", fileName = fileName, printIndices = printIndices);
    Modelica_LinearSystems2.Math.Vectors.printStringVectorInHtml(ss.xNames, "xNames", fileName = fileName, printIndices = printIndices);
    Modelica_LinearSystems2.Math.Matrices.printMatrixInHtml(ss.A, "A", format = format, fileName = fileName, printIndices = printIndices);
    Modelica_LinearSystems2.Math.Matrices.printMatrixInHtml(ss.B, "B", format = format, fileName = fileName, printIndices = printIndices);
    Modelica_LinearSystems2.Math.Matrices.printMatrixInHtml(ss.C, "C", format = format, fileName = fileName, printIndices = printIndices);
    Modelica_LinearSystems2.Math.Matrices.printMatrixInHtml(ss.D, "D", format = format, fileName = fileName, printIndices = printIndices);
    if ny == 0 and nu == 0 then
      print("<p>\n<strong>Note</strong>, that the system has neither inputs nor outputs (and therefore matrices B, C, and D are empty matrices)!\n</p>", fileName);
    elseif ny == 0 then
      print("<p>\n<strong>Note</strong>, that the system has no outputs (and therefore matrices C and D are empty matrices)!\n</p>", fileName);
    elseif nu == 0 then
      print("<p>\n<strong>Note</strong>, that the system has no inputs (and therefore matrices B and D are empty matrices)!\n</p>", fileName);
    end if;
    if htmlBasics then
// Last print of HTML environment
// --------------------------------------------------------
      StateSpace.Analysis.analysis.printHTMLbasics(fileName, false);
    end if;
  end printSystem;

  encapsulated function printHead1 "Print the heading of document for characteristics in html format on file"
    import Modelica;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    import Modelica_LinearSystems2.StateSpace;
    input StateSpace ss;
    // This could be deleted sinc not used. But for reasons of beackward compatibility it is still here.
    input Boolean isStable;
    input Boolean isControllable;
    input Boolean isStabilizable;
    input Boolean isObservable;
    input Boolean isDetectable;
    input String fileName = "systemHead1.html" "File on which the information is written in html format";
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
    input Boolean htmlBasics = false "True, if text should be printed within 'html' and 'body' environment, otherwise text printed into existing file fileName" annotation(
      Dialog(group = "HTML format"));
    input Integer hSize(min = 1, max = 5) = 2 "Size of heading of printed document (=1: Title, =2: Chapter, etc.)" annotation(
      Dialog(group = "HTML format"));
  protected
    Integer hSizeOK = if hSize < 1 then 1 else if hSize > 5 then 5 else hSize;
    String heading = "h" + String(hSizeOK);
  algorithm
// ---------------------------------------------------------------------------------------------------
// The correct HTML format generated with this function can be checked with following commands:
//   Modelica_LinearSystems2.StateSpace.Analysis.analysis.printHead1(Modelica_LinearSystems2.StateSpace(A=[2], B=[1], C=[1], D=[1]), false, false, false, true, false, htmlBasics=true, hSize=3);
// ---------------------------------------------------------------------------------------------------
    if htmlBasics then
// Text should be printed into new file in HTML environment
// --------------------------------------------------------
      StateSpace.Analysis.analysis.printHTMLbasics(fileName, true);
    end if;
    print("\n<" + heading + ">Characteristics</" + heading + ">\n<p>\nThe system\n</p>\n<p> is ", fileName);
    if analyseOptions.printControllability and analyseOptions.printObservability then
      print((if isStable then " " else "<strong>not</strong> ") + "stable" + "\n<br>" + (if isStable then if isControllable then "and it is " else "but it is <strong>not</strong> " else if isControllable then "but it is " else "and it is <strong>not</strong> ") + "controllable" + (if isStable then "" else "\n<br>" + (if isControllable then " and therefore it is " else if isStabilizable then " but it is " else "and is <strong>not</strong> ") + "stabilizable.") + "\n<br> The system is " + (if isObservable then " " else "<strong>not</strong> ") + "observable" + (if isStable then "" else "\n<br>" + (if isObservable then " and therefore it is " else if isDetectable then " but it is " else "and is <strong>not</strong> ") + "detectable.") + "\n<br>", fileName);
    elseif not analyseOptions.printObservability and analyseOptions.printControllability then
      print((if isStable then " " else "<strong>not</strong> ") + "stable" + "\n<br>" + (if isStable then if isControllable then "and it is " else "but it is <strong>not</strong> " else if isControllable then "but it is " else "and it is <strong>not</strong> ") + "controllable" + (if isStable then "" else "\n<br>" + (if isControllable then " and therefore it is " else if isStabilizable then " but it is " else "and is <strong>not</strong> ") + "stabilizable.") + "\n<br>", fileName);
    elseif not analyseOptions.printControllability and analyseOptions.printObservability then
      print((if isStable then " " else "<strong>not</strong> ") + "stable." + "\n<br> The system is " + (if isObservable then " " else "<strong>not</strong> ") + "observable" + (if isStable then "" else "\n<br>" + (if isObservable then " and therefore it is " else if isDetectable then " but it is " else "and is <strong>not</strong> ") + "detectable.") + "\n<br>", fileName);
    else
      print((if isStable then " " else "<strong>not</strong> ") + "stable." + "\n<br>", fileName);
    end if;
    print("</p>", fileName);
    if htmlBasics then
// Last print of HTML environment
// --------------------------------------------------------
      StateSpace.Analysis.analysis.printHTMLbasics(fileName, false);
    end if;
  end printHead1;

  encapsulated function printHead2a "Print the heading of document for eigenvalues in html format on file"
    import Modelica;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    import Modelica_LinearSystems2.StateSpace;
    input String fileName = "systemHead2a.html" "File on which the information is written in html format";
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
    input Boolean printTable = true "True, if the system has real eigenvalues to be printed in table";
    input Integer hSize(min = 1, max = 5) = 3 "Size of heading of printed document (=1: Title, =2: Chapter, etc.)" annotation(
      Dialog(group = "HTML format"));
  protected
    Integer hSizeOK = if hSize < 1 then 1 else if hSize > 5 then 5 else hSize;
    String heading = "h" + String(hSizeOK);
  algorithm
// ---------------------------------------------------------------------------------------------------
// The correct HTML format generated with this function can be checked with following commands:
//   Modelica_LinearSystems2.StateSpace.Analysis.analysis.printHead2a(htmlBasics=true, hSize=3);
// ---------------------------------------------------------------------------------------------------
    print("\n<" + heading + ">Eigenvalues analysis</" + heading + ">", fileName);
//print("<p>\n<strong>Real eigenvalues</strong>\n</p>", fileName);
    if printTable then
      print("<p>The system has the following real eigenvalues.</p>", fileName);
      print("<table style=\"background-color:rgb(100, 100, 100); margin: 20px 0 20px 20px\" " + "cellpadding=\"3\" border=\"0\" cellspacing=\"1\">", fileName);
      print("<caption>Real eigenvalues</caption>", fileName);
      print("<tr style=\"background-color:rgb(230, 230, 230); text-align:center;\">" + "\n  <td> number </td>\n  <td> eigenvalue </td>\n  <td> T [s] </td>\n  <td> characteristics </td>", fileName);
      if analyseOptions.printEigenValueProperties then
        print("  <td> contribution to states</td>", fileName);
      end if;
      print("</tr>", fileName);
    else
      print("<p>\nThe system has no real eigenvalues.\n</p>", fileName);
    end if;
  end printHead2a;

  encapsulated function printHead2b "Print the heading of document for conjugated complex pairs in html format on file"
    import Modelica;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    input String fileName = "systemHead2b.html" "File on which the information is written in html format";
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
    input Boolean printTable = true "True, if the system has complex pairs to be printed in table";
  algorithm
// ---------------------------------------------------------------------------------------------------
// The correct HTML format generated with this function can be checked with following commands:
//   Modelica_LinearSystems2.StateSpace.Analysis.analysis.printHead2b();
// ---------------------------------------------------------------------------------------------------
    if printTable then
      print("<p>The system has the following complex conjugate pairs of eigenvalues.<br>&nbsp;</p>", fileName);
      print("<table style=\"background-color:rgb(100, 100, 100); margin: 20px 0 20px 20px\" " + "cellpadding=\"3\" border=\"0\" cellspacing=\"1\">", fileName);
      print("<caption>Complex conjugate pairs of eigenvalues</caption>", fileName);
      print("<tr style=\"background-color:rgb(230, 230, 230); text-align:center;\">" + "\n  <td> number </td>\n  <td> eigenvalue </td>\n  <td> freq. [Hz] </td>\n  <td> damping </td>\n  <td> characteristics </td>", fileName);
      if analyseOptions.printEigenValueProperties then
        print("  <td> contribution to states</td>", fileName);
      end if;
      print("</tr>", fileName);
    else
      print("<p>\nThe system has no complex conjugate eigenvalue pairs.\n</p>", fileName);
    end if;
  end printHead2b;

  encapsulated function printHead3 "Print the heading of document for description in html format on file"
    import Modelica;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    input String fileName = "systemHead3.html" "File on which the information is written in html format";
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
  algorithm
    print("<p>\nIn the tables above, the column <strong>contribution to states</strong> lists for each eigenvalue the states to which the" + " corresponding modal state z[i] contributes most. This information is based on the" + " two largest absolute values of the corresponding right eigenvector (if the second large value" + " is less than 5&nbsp;% of the largest contribution, it is not shown). Note" + " the <strong>right eigenvector</strong> v<sub>j</sub> and the <strong>left eigenvector</strong> u<sub>j</sub> of A satisfy the" + " following relationships with regards to <strong>eigenvalue</strong> &lambda;<sub>j</sub>," + " state vector x and modal state vector z (u<sub>j</sub><sup>H</sup> denotes the conjugate transpose of u<sub>j</sub>):" + " </p>" + " <table border=\"0\" cellspacing=\"0\" cellpadding=\"2\">" + " <tr><td width=\"50\"></td>" + "\n    <td>A * v<sub>j</sub> = &lambda;<sub>j</sub> * v<sub>j</sub>; &nbsp;&nbsp;&nbsp;&nbsp;" + "         u<sub>j</sub><sup>H</sup> * A = &lambda;<sub>j</sub> * u<sub>j</sub><sup>H</sup>; &nbsp;&nbsp;&nbsp;&nbsp;" + "               x = V * z; &nbsp;&nbsp;&nbsp;&nbsp; V = [v<sub>1</sub>, v<sub>2</sub>, ...]</td>" + "           </tr>" + "\n</table>" + "\n<p>" + "\nIn the next table, for each state in the column <strong>correlation to modal states</strong>, the modal" + " states z[i] which contribute most to the corresponding state are summarized, that is" + " the state is mostly composed of these modal states." + "\nThis information is based on the two largest absolute values of row i of the" + " eigenvector matrix that is associated with eigenvalue i (if the second large value" + " is less than 5&nbsp;% of the largest contribution, it is not shown). This only holds" + " if the modal states z[i] are in the same order of magnitude. Otherwise, the listed modal states" + " might be not the most relevant ones.</p>", fileName);
    print("<table style=\"background-color:rgb(100, 100, 100); margin: 20px 0 20px 20px\" " + "cellpadding=\"3\" border=\"0\" cellspacing=\"1\">\n" + "<tr style=\"background-color:rgb(230, 230, 230); text-align:center;\">" + "\n  <td> state </td>\n  <td> correlation to modal states </td>\n  <td> eigenvalue # </td>" + "\n  <td> freq. [Hz] </td>\n  <td> damping </td>\n  <td> T [s] </td>\n</tr>", fileName);
  end printHead3;

  encapsulated function printHead4 "Print the heading of document for invariant zeros in html format on file"
    import Modelica;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    import Modelica_LinearSystems2.StateSpace;
    input String fileName = "systemHead4.html" "File on which the information is written in html format";
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
    input Boolean printTable = true "True, if the system has complex pairs to be printed in table";
  algorithm
// ---------------------------------------------------------------------------------------------------
// The correct HTML format generated with this function can be checked with following commands:
//   Modelica_LinearSystems2.StateSpace.Analysis.analysis.printHead4(htmlEnv=true, hSize=3);
// ---------------------------------------------------------------------------------------------------
    if printTable then
      print("<p>The system has the following invariant zeros.<br>&nbsp;</p>", fileName);
      print("\n<table style=\"background-color:rgb(100, 100, 100); margin: 20px 0 20px 20px\" " + "cellpadding=\"3\" border=\"0\" cellspacing=\"1\">", fileName);
      print("<caption>Invariant zeros</caption>", fileName);
      print("<tr style=\"background-color:rgb(230, 230, 230); text-align:center;\">" + "\n  <td> number </td>\n  <td> invariant zero </td>\n  <td> Time constant [s] </td>" + "\n  <td> freq. [Hz] </td>\n  <td> damping </td>\n</tr>", fileName);
    else
      print("<p>\nThe system has no invariant zeros.\n</p>", fileName);
    end if;
  end printHead4;

  encapsulated function printHTMLbasics "Print the html preamble or ending on file"
    import Modelica.Utilities.Files;
    import Modelica.Utilities.Streams;
    input String fileName = "systemReport.html" "File on which the html basics should be written";
    input Boolean printBegin = false "True, if beginning of a html file should be printed, otherwise the ending" annotation(
      choices(checkBox = true));
  algorithm
    if printBegin then
// First print of HTML environment into new file
      Files.removeFile(fileName);
// Following doesn't work in Dymola
//Streams.print("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\" \"http://www.w3.org/TR/html4/strict.dtd\">", fileName);
      Streams.print("<html>", fileName);
      Streams.print("<head>\n  <title>Analysis of a state space system from Modelica LinearSystems2</title>\n</head>", fileName);
      Streams.print("<style type=\"text/css\">", fileName);
      Streams.print("* { font-size: 10pt; font-family: Arial,sans-serif; }", fileName);
      Streams.print("</style>", fileName);
    else
// Last print of HTML environment
      Streams.print("</html>", fileName);
    end if;
  end printHTMLbasics;

  encapsulated function printTab1 "Print the table with real eigenvalues in html format on file"
    import Modelica;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    import Modelica_LinearSystems2.Internal.Eigenvalue;
    input Eigenvalue evSorted[:];
    input Integer evIndex[size(evSorted, 1)];
    input Real r_evec[size(evSorted, 1), size(evSorted, 1)];
    input Real l_evec[size(evSorted, 1), size(evSorted, 1)];
    input Integer nReal;
    input String xNames2[size(evSorted, 1)];
    input String fileName;
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
  protected
    Integer nx = size(evSorted, 1);
    Real w;
    Real d;
    Integer i;
    Integer j;
    Integer k;
    String number;
    Real r_abs_evec[nx];
    Real l_abs_evec[nx];
    Integer r_maxIndex1;
    Integer l_maxIndex1;
    Integer r_maxIndex2;
    Integer l_maxIndex2;
    //  Complex v_normalized[size(evSorted,1)];
    Real r_abs_v_normalized;
    Real l_abs_v_normalized;
    Real r_v;
    Real l_v;
    Real r_absMax1;
    Real l_absMax1;
    Real r_absMax2;
    Real l_absMax2;
    Boolean r_two;
    Boolean l_two;
    Boolean r_first;
    Boolean l_first;
  algorithm
    i := 1;
    j := i;
    while i <= nReal loop
// Build eigenvalue number
      number := String(i, minimumLength = 7, leftJustified = false);
      j := j + 1;
// Determine largest value in eigenvector
      k := evIndex[i] "Index with respect to unsorted eigen values";
      r_abs_evec := abs(r_evec[:, k]);
      l_abs_evec := abs(l_evec[:, k]);
      r_first := true;
      r_two := false;
      r_absMax1 := 0;
      r_maxIndex1 := 0;
      r_absMax2 := 0;
      r_maxIndex2 := 0;
      r_abs_v_normalized := Modelica.Math.Vectors.norm(r_abs_evec, 1);
      l_first := true;
      l_two := false;
      l_absMax1 := 0;
      l_maxIndex1 := 0;
      l_absMax2 := 0;
      l_maxIndex2 := 0;
      l_abs_v_normalized := Modelica.Math.Vectors.norm(l_abs_evec, 1);
      for j in 1:nx loop
        r_v := r_abs_evec[j];
        l_v := l_abs_evec[j];
        if r_first then
          r_first := false;
          r_absMax1 := r_v;
          r_maxIndex1 := j;
        elseif not r_two then
          r_two := true;
          if r_v < r_absMax1 then
            r_absMax2 := r_v;
            r_maxIndex2 := j;
          else
            r_absMax2 := r_absMax1;
            r_maxIndex2 := r_maxIndex1;
            r_absMax1 := r_v;
            r_maxIndex1 := j;
          end if;
        elseif r_v > r_absMax1 then
          r_absMax2 := r_absMax1;
          r_maxIndex2 := r_maxIndex1;
          r_absMax1 := r_v;
          r_maxIndex1 := j;
        elseif r_v > r_absMax2 then
          r_absMax2 := r_v;
          r_maxIndex2 := j;
        end if;
        if l_first then
          l_first := false;
          l_absMax1 := l_v;
          l_maxIndex1 := j;
        elseif not l_two then
          l_two := true;
          if l_v < l_absMax1 then
            l_absMax2 := l_v;
            l_maxIndex2 := j;
          else
            l_absMax2 := l_absMax1;
            l_maxIndex2 := l_maxIndex1;
            l_absMax1 := l_v;
            l_maxIndex1 := j;
          end if;
        elseif l_v > l_absMax1 then
          l_absMax2 := l_absMax1;
          l_maxIndex2 := l_maxIndex1;
          l_absMax1 := l_v;
          l_maxIndex1 := j;
        elseif l_v > l_absMax2 then
          l_absMax2 := l_v;
          l_maxIndex2 := j;
        end if;
      end for;
      r_absMax1 := 100*r_absMax1/r_abs_v_normalized;
      r_absMax2 := 100*r_absMax2/r_abs_v_normalized;
      if r_absMax2 < 0.05*r_absMax1 then
        r_two := false;
      end if;
      l_absMax1 := 100*l_absMax1/l_abs_v_normalized;
      l_absMax2 := 100*l_absMax2/l_abs_v_normalized;
      if l_absMax2 < 0.05*l_absMax1 then
        l_two := false;
      end if;
// Print data for one eigen value
      print("<tr style=\"background-color:white\">\n  <td style=\"text-align:center\"> " + number + " </td>\n  <td style=\"text-align:left\"> &nbsp; " + String(evSorted[i].ev.re, format = "14.4e") + " </td>\n  <td style=\"text-align:left\"> &nbsp; " + (if evSorted[i].timeConstant < 1e6 then String(evSorted[i].timeConstant, format = "9.4f") else "---") + " </td>\n  <td style=\"text-align:left\"> &nbsp; " + (if evSorted[i].isStable then "" else "not ") + "stable, " + (if evSorted[i].isStable then (if evSorted[i].isControllable then "" else "not ") + "controllable, " else (if evSorted[i].isStabilizable then "" else "not ") + "stabilizable, ") + (if evSorted[i].isStable then (if evSorted[i].isObservable then "" else "not ") + "observable " else (if evSorted[i].isDetectable then "" else "not ") + "detectable ") + " </td>", fileName);
      if analyseOptions.printEigenValueProperties then
        print("  <td style=\"text-align:left\"> &nbsp; " + " z[" + String(i) + "]" + " contributes to " + xNames2[r_maxIndex1] + " with " + String(r_absMax1, format = ".3g") + " %<br>" + (if r_two then "&nbsp; " + " z[" + String(i) + "]" + " contributes to " + xNames2[r_maxIndex2] + " with " + String(r_absMax2, format = ".3g") + " %" else "") + " </td>", fileName);
      end if;
      print("</tr>", fileName);
      i := j;
    end while;
    print("</table>", fileName);
  end printTab1;

  encapsulated function printTab2 "Print the table with complex conjugate eigenvalues in html format on file"
    import Modelica;
    import Modelica.Utilities.Strings;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    import Modelica_LinearSystems2.Internal.Eigenvalue;
    input Eigenvalue evSorted[:];
    input Integer evIndex[size(evSorted, 1)];
    input Real r_evec[size(evSorted, 1), size(evSorted, 1)];
    input Real l_evec[size(evSorted, 1), size(evSorted, 1)];
    input Integer nReal;
    input String xNames2[size(evSorted, 1)];
    input String fileName;
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
  protected
    Integer nx = size(evSorted, 1);
    Integer i;
    Integer k;
    String number;
    String number2;
    Integer j;
    Real r_abs_evec[nx];
    Real l_abs_evec[nx];
    Integer r_maxIndex1;
    Integer r_maxIndex2;
    Integer l_maxIndex1;
    Integer l_maxIndex2;
    Real r_abs_v_normalized;
    Real l_abs_v_normalized;
    Real r_v;
    Real l_v;
    Real r_absMax1;
    Real r_absMax2;
    Real l_absMax1;
    Real l_absMax2;
    Boolean r_two;
    Boolean l_two;
    Boolean r_first;
    Boolean l_first;
  algorithm
    i := nReal + 1;
    j := i;
    while i <= nx loop
// Build eigenvalue number
      number := String(i) + "/" + String(i + 1);
      number2 := number;
      number := Strings.repeat(max(0, 7 - Strings.length(number))) + number;
      j := j + 2;
// Determine largest value in eigenvector
      k := evIndex[i] "Index with respect to unsorted eigen values";
      for i2 in 1:nx loop
        r_abs_evec[i2] := sqrt(r_evec[i2, k]^2 + r_evec[i2, k + 1]^2);
        l_abs_evec[i2] := sqrt(l_evec[i2, k]^2 + l_evec[i2, k + 1]^2);
      end for;
      r_first := true;
      r_two := false;
      r_absMax1 := 0;
      r_maxIndex1 := 0;
      r_absMax2 := 0;
      r_maxIndex2 := 0;
      r_abs_v_normalized := Modelica.Math.Vectors.norm(r_abs_evec, 1);
      l_first := true;
      l_two := false;
      l_absMax1 := 0;
      l_maxIndex1 := 0;
      l_absMax2 := 0;
      l_maxIndex2 := 0;
      l_abs_v_normalized := Modelica.Math.Vectors.norm(l_abs_evec, 1);
      for j in 1:nx loop
        r_v := r_abs_evec[j];
        l_v := l_abs_evec[j];
        if r_first then
          r_first := false;
          r_absMax1 := r_v;
          r_maxIndex1 := j;
        elseif not r_two then
          r_two := true;
          if r_v < r_absMax1 then
            r_absMax2 := r_v;
            r_maxIndex2 := j;
          else
            r_absMax2 := r_absMax1;
            r_maxIndex2 := r_maxIndex1;
            r_absMax1 := r_v;
            r_maxIndex1 := j;
          end if;
        elseif r_v > r_absMax1 then
          r_absMax2 := r_absMax1;
          r_maxIndex2 := r_maxIndex1;
          r_absMax1 := r_v;
          r_maxIndex1 := j;
        elseif r_v > r_absMax2 then
          r_absMax2 := r_v;
          r_maxIndex2 := j;
        end if;
        if l_first then
          l_first := false;
          l_absMax1 := l_v;
          l_maxIndex1 := j;
        elseif not l_two then
          l_two := true;
          if l_v < l_absMax1 then
            l_absMax2 := l_v;
            l_maxIndex2 := j;
          else
            l_absMax2 := l_absMax1;
            l_maxIndex2 := l_maxIndex1;
            l_absMax1 := l_v;
            l_maxIndex1 := j;
          end if;
        elseif l_v > l_absMax1 then
          l_absMax2 := l_absMax1;
          l_maxIndex2 := l_maxIndex1;
          l_absMax1 := l_v;
          l_maxIndex1 := j;
        elseif l_v > l_absMax2 then
          l_absMax2 := l_v;
          l_maxIndex2 := j;
        end if;
      end for;
      r_absMax1 := 100*r_absMax1/r_abs_v_normalized;
      r_absMax2 := 100*r_absMax2/r_abs_v_normalized;
      if r_absMax2 < 0.05*r_absMax1 then
        r_two := false;
      end if;
      l_absMax1 := 100*l_absMax1/l_abs_v_normalized;
      l_absMax2 := 100*l_absMax2/l_abs_v_normalized;
      if l_absMax2 < 0.05*l_absMax1 then
        l_two := false;
      end if;
// Print data for one eigen value
      print("<tr style=\"background-color:white\">\n  <td style=\"text-align:left\"> " + number + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; " + String(evSorted[i].ev.re, format = "14.4e") + " &plusmn; " + String(evSorted[i].ev.im, format = "12.4e") + "j" + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; " + String(evSorted[i].frequency, format = "9.4f") + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; " + String(evSorted[i].damping, format = "9.4f") + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; " + (if evSorted[i].isStable then "" else "not ") + "stable, " + (if evSorted[i].isStable then (if evSorted[i].isControllable then "" else "not ") + "controllable, " else (if evSorted[i].isStabilizable then "" else "not ") + "stabilizable, ") + (if evSorted[i].isStable then (if evSorted[i].isObservable then "" else "not ") + "observable " else (if evSorted[i].isDetectable then "" else "not ") + "detectable ") + " </td>", fileName);
      if analyseOptions.printEigenValueProperties then
        print("  <td style=\"text-align:left\"> &nbsp; " + " z[" + number2 + "]" + " contribute to " + xNames2[r_maxIndex1] + " with " + String(r_absMax1, format = ".3g") + " %<br>" + (if r_two then "&nbsp; " + " z[" + number2 + "]" + " contribute to " + xNames2[r_maxIndex2] + " with " + String(r_absMax2, format = ".3g") + " %" else "") + " </td>", fileName);
      end if;
      print("</tr>", fileName);
      i := j;
    end while;
    print("</table>", fileName);
  end printTab2;

  encapsulated function printTab3 "Print the table with eigenvalues in html format on file"
    import Modelica;
    import Modelica.Utilities.Strings;
    import Modelica.ComplexMath;
    import Complex;
    import Modelica_LinearSystems2;
    import Modelica_LinearSystems2.ComplexMathAdds;
    import Modelica.Utilities.Streams.print;
    import Modelica_LinearSystems2.Internal.Eigenvalue;
    input Eigenvalue evSorted[:];
    input Complex evecComplex[:, :];
    input Integer evIndex[size(evecComplex, 1)];
    input Complex cev[size(evecComplex, 1)];
    input Integer nReal;
    input String xNames2[size(evecComplex, 1)];
    input String fileName;
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
  protected
    Integer nx = size(evecComplex, 1);
    Integer maxIndex1;
    Integer maxIndex2;
    Complex v_normalized[size(evecComplex, 1)];
    Real abs_v_normalized;
    Real v;
    Real absMax1;
    Real absMax2;
    Boolean two;
    Boolean first;
    Integer j;
    Integer k;
    Integer iw1;
    Integer iw2;
    String number1;
    String number2;
    Real w1;
    Real w2;
    Real d1;
    Real d2;
  algorithm
    for i in 1:nx loop
// Normalize i-th row of complex eigenvector matrix and determine two largest elements
      v_normalized := ComplexMath.Vectors.normalize(evecComplex[i, :]);
      first := true;
      two := false;
      absMax1 := 0;
      maxIndex1 := 0;
      absMax2 := 0;
      maxIndex2 := 0;
      j := 1;
      abs_v_normalized := ComplexMath.Vectors.norm(v_normalized, 1);
      while j <= nx loop
        if cev[j].im == 0 then
          v := abs(v_normalized[j].re);
          k := j;
          j := j + 1;
        else
          v := 2*ComplexMath.abs(v_normalized[j]);
          k := j;
          j := j + 2;
        end if;
        if first then
          first := false;
          absMax1 := v;
          maxIndex1 := k;
        elseif not two then
          two := true;
          if v < absMax1 then
            absMax2 := v;
            maxIndex2 := k;
          else
            absMax2 := absMax1;
            maxIndex2 := maxIndex1;
            absMax1 := v;
            maxIndex1 := k;
          end if;
        elseif v > absMax1 then
          absMax2 := absMax1;
          maxIndex2 := maxIndex1;
          absMax1 := v;
          maxIndex1 := k;
        elseif v > absMax2 then
          absMax2 := v;
          maxIndex2 := k;
        end if;
      end while;
      if abs_v_normalized > 1e-30 then
        absMax1 := absMax1/abs_v_normalized;
        absMax2 := absMax2/abs_v_normalized;
      end if;
      if absMax2 < 0.05*absMax1 then
        two := false;
      end if;
// Determine frequency and number of corresponding eigenvalue
      (w1, d1) := ComplexMathAdds.frequency(cev[maxIndex1]);
      iw1 := Modelica.Math.Vectors.find(maxIndex1, evIndex);
      if iw1 <= nReal then
        number1 := String(iw1);
      else
        number1 := String(iw1) + "/" + String(iw1 + 1);
      end if;
      if two then
        (w2, d2) := ComplexMathAdds.frequency(cev[maxIndex2]);
        iw2 := Modelica.Math.Vectors.find(maxIndex2, evIndex);
        if iw2 <= nReal then
          number2 := String(iw2);
        else
          number2 := String(iw2) + "/" + String(iw2 + 1);
        end if;
      end if;
      if two then
        print("<tr style=\"background-color:white\">\n  <td rowspan=2 style=\"text-align:left\"> &nbsp; " + xNames2[i] + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; is composed of " + String(100*absMax1, format = "5.1f") + "% by z[" + number1 + "]</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + number1 + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw1 <= nReal then "---" else String(w1, format = "9.4f")) + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw1 <= nReal then "---" else String(d1, format = "9.4f")) + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw1 <= nReal then String(evSorted[i].timeConstant, format = "9.4f") else "--- </td>") + "\n</tr>\n<tr style=\"background-color:white\">" + "\n  <td style=\"text-align:left\"> &nbsp; is composed of " + String(100*absMax2, format = "5.1f") + "% by z[" + number2 + "]</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + number2 + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw2 <= nReal then "---" else String(w2, format = "9.4f")) + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw2 <= nReal then "---" else String(d2, format = "9.4f")) + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if (iw2 <= nReal and abs(cev[maxIndex2].re) > 1e-10) then String(1/abs(cev[maxIndex2].re), format = "9.4f") else "--- </td>\n</tr>"), fileName);
      else
        print("<tr style=\"background-color:white\">\n  <td style=\"text-align:left\"> &nbsp; " + xNames2[i] + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; is composed of " + String(100*absMax1, format = "5.1f") + "% by z[" + number1 + "]</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + number1 + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw1 <= nReal then "---" else String(w1, format = "9.4f")) + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw1 <= nReal then "---" else String(d1, format = "9.4f")) + "</td>" + "\n  <td style=\"text-align:center\"> &nbsp; " + (if iw1 <= nReal then String(evSorted[i].timeConstant, format = "9.4f") else "--- </td>\n</tr>"), fileName);
      end if;
//     print("<tr style=\"background-color:white\">\n  <td style=\"text-align:left\"> &nbsp; " + xNames2[i] + " </td>\n  <td style=\"text-align:left\"> &nbsp; "
//        + " is composed of " + String(100*absMax1, format="5.1f") + "% by z[" +
//       number1 + "]" + (if two then " <br>" + " &nbsp; " + " is composed of " +
//       String(100*absMax2, format="5.1f") + "% by z[" + number2 + "]" else "") + " </td> <td style=\"text-align:center\"> &nbsp; "
//        + number1 + (if two then "<br> &nbsp; " + number2 else Strings.repeat(9))
//        + " </td> <td style=\"text-align:center\"> &nbsp; " + (if iw1 <= nReal then
//             "---" else String(w1, format="9.4f")) + (if two then "<br> &nbsp; "
//        + (if iw2 <= nReal then "---" else String(w2, format="9.4f")) else
//       Strings.repeat(9)) + " </td>\n  <td style=\"text-align:center\"> &nbsp; " +
//       (if iw1 <= nReal then "---" else String(d1, format="9.4f")) + (if two then
//             "<br> &nbsp; " + (if iw2 <= nReal then "---" else String(d2,
//       format="9.4f")) else "") + " </td>\n  <td style=\"text-align:center\"> &nbsp; "
//        + (if (iw1 <= nReal) then String(evSorted[i].timeConstant, format="9.4f") else
//             "---") + (if two then "<br> &nbsp; " + (if (iw2 <= nReal and abs(
//       cev[maxIndex2].re) > 1e-10) then String(1/abs(cev[maxIndex2].re),
//       format="9.4f") else "---") else "") + " </td>\n</tr> ", fileName);
    end for;
    print("</table>", fileName);
  end printTab3;

  encapsulated function printTab4 "Print the table with eigenvalues in html format on file"
    import Modelica;
    import Modelica.Utilities.Strings;
    import Modelica_LinearSystems2;
    import Modelica.Utilities.Streams.print;
    import Complex;
    input Complex systemZeros[:];
    input Integer evIndex[size(systemZeros, 1)];
    input Integer nReal;
    input String fileName;
    input Modelica_LinearSystems2.Internal.AnalyseOptions analyseOptions = Modelica_LinearSystems2.Internal.AnalyseOptions(plotEigenValues = true, plotInvariantZeros = true, plotStepResponse = true, plotFrequencyResponse = true, printEigenValues = true, printEigenValueProperties = true, printInvariantZeros = true, printControllability = true, printObservability = true, headingEigenValues = "Eigenvalues", headingInvariantzeros = "Invariant zeros", headingStepResponse = "Step response", headingFrequencyResponse = "Frequency response");
  protected
    Integer nz = size(systemZeros, 1);
    String number;
    Real timeConstant;
    Real freq;
    Real damp;
  algorithm
    for i in 1:nReal loop
// Build eigenvalue number
      number := String(i, minimumLength = 7, leftJustified = false);
      timeConstant := if abs(systemZeros[i].re) > 10*Modelica.Constants.eps then 1/abs(systemZeros[i].re) else 1/(10*Modelica.Constants.eps);
      print("<tr style=\"background-color:white\">\n  <td style=\"text-align:left\"> &nbsp; " + number + " </td>" + "\n  <td> &nbsp; " + String(systemZeros[i].re, format = "14.4e") + " </td>" + "\n  <td> &nbsp; " + String(timeConstant, format = "9.4f") + " </td>" + "\n  <td style=\"text-align:center\"> &nbsp; --- </td>" + "\n  <td style=\"text-align:center\"> &nbsp; --- </td>\n</tr>", fileName);
    end for;
    for i in nReal + 1:2:nz loop
      number := String(i) + "/" + String(i + 1);
      number := Strings.repeat(max(0, 7 - Strings.length(number))) + number;
// Determine frequency and number of corresponding zero
      (freq, damp) := Modelica_LinearSystems2.ComplexMathAdds.frequency(systemZeros[i]);
      print("<tr style=\"background-color:white\">\n  <td style=\"text-align:left\"> &nbsp; " + number + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; " + String(systemZeros[i].re, format = "14.4e") + " &plusmn; " + String(systemZeros[i].im, format = "12.4e") + "j </td>" + "\n  <td style=\"text-align:center\"> &nbsp; --- </td>" + "\n  <td style=\"text-align:left\"> &nbsp; " + String(freq, format = "9.4f") + " </td>" + "\n  <td style=\"text-align:left\"> &nbsp; " + String(damp, format = "9.4f") + " </td>\n</tr>", fileName);
    end for;
    print("</table>\n", fileName);
  end printTab4;
end analysis;

Contents

NameDescription
 printSystemPrint the state space system in html format on file
 printHead1Print the heading of document for characteristics in html format on file
 printHead2aPrint the heading of document for eigenvalues in html format on file
 printHead2bPrint the heading of document for conjugated complex pairs in html format on file
 printHead3Print the heading of document for description in html format on file
 printHead4Print the heading of document for invariant zeros in html format on file
 printHTMLbasicsPrint the html preamble or ending on file
 printTab1Print the table with real eigenvalues in html format on file
 printTab2Print the table with complex conjugate eigenvalues in html format on file
 printTab3Print the table with eigenvalues in html format on file
 printTab4Print the table with eigenvalues in html format on file

Revisions

Date Author Comment
2010-05-31 Marcus Baur, DLR-RM Realization

Generated at 2024-11-22T19:25:38Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos